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PEMBUATAN DAN PENCIRIAN NANOPARTIKEL EMAS TERBENAM KE

DALAM SENTUHAN LOGAM UNTUK PERANTI BERASAS SILIKON DAN

SILIKON KARBIDA

ABSTRAK

Penerapan logam nanopartikel (NPs) ke dalam sentuhan logam di antara muka

dengan semikonduktor adalah kaedah alternatif untuk mengubahsuai ketinggian

halangan Schottky (SBH) dalam sentuhan elektrik dan membolehkan adaptasi

langkah-langkah pemperosesan menjadi lebih mudah. Diod penghalang Schottky

bersentuhan aluminium (Al) tertanam dengan emas (Au) NPs pada silikon (Si) jenis

n- dan p- serta silikon karbida (4H- SiC) substrat telah direka, malah ciri-ciri fizikal

dan elektrik mereka telah disiasat. Berdasarkan kajian hasil pengukuran permukaan

sentuhan sudut ke atas Si dan nilai-nilai zeta-potensi negatif pembenihan 20 nm Au

NPs, satu pendekatan alternatif telah dicadangkan untuk mendepositkan Au NPs

pada pemaut bebas n- dan p-Si substrat dengan menggunakan teknik putaran salutan.

Ketumpatan NPs pada n-Si adalah lebih tinggi dari p-Si (ditentukan oleh mikroskop

pengimbas elektron), disebabkan oleh perbezaan ciri-ciri permukaan

Analisa arus-voltan diod Al/Si menunjukkan peningkatan dalam ketumpatan arus

diod dalam kedua-dua arah pincang kerana kesan peningkatan medan elektrik

dan 0.05 eV untuk p-Si).

Keputusan sefat elektrik kemudiannya dikaitkan dengan sifat-sifat struktur Al/Si

(ditentukan oleh mikroskop transmisi elektron). Kepadatan lebih tinggi Au NPs yang

bersaiz 5 dan 10 nm telah dienapkan di permukaan SiC dengan menggunakan teknik

pengasidan dengan HF. Diod Al/4H-SiC menunjukkan peningkatan yang besar

xx i

n- dan p-Si.

tempatan NPs dan SBH berkurang (0.11 eV untuk n-



dalam penurunan SBH (0.09 eV untuk n- dan 0.24 eV untuk p- 4H- SiC) dan dengan

itu ketumpatan arus terus di samping mengekalkan ciri-ciri penyearah pincang

songsang. Untuk menentukan punca peningkatan medan elektrik tempatan adalah

dengan kehadiran NPS di logam- semikonduktor, model ketakhomogenan Tung

dalam SBH (ISBH) dan model tiga kali ganda antaramuka terowong dipertingkatkan

(ETTI) telah digunakan. NPs bersaiz kecil adalah factor penting dalam kedua-dua

model. Faktor-faktor lain seperti saiz NPs dan perbezaan antara SBH Au/Al dan Si/Si

(A = <I>b (ai/si) - (hb(Au/si)) dalam model ISBH dan saiz dan fungsi kerja Al/Au (<I>Ai -

Au) dalam model ETTI. Dalam sistem Al/Si, magnitud A adalah lebih kecil (0.31

eV untuk n -Si dan 0.24 eV untuk p-Si) berbanding dengan perbezaan fungsi kerja

1 eV) dan dengan itu peningkatan medan elektrik

terutamanya disebabkan oleh kesan peningkatan tiga kali ganda terowong antara

muka. Dalam sistem Al/4H-SiC oleh kerana magnitud A (0.77 eV untuk n-SiC dan

menyumbang kepada peningkatan medan elektrik.

xxii

antara Au/Al (d>Ai - (I>Au

0.45 eV untuk p-Si) juga tinggi secara relatif, kedua-dua model dijangka



FABRICATION AND CHARACTERIZATION OF EMBEDDED GOLD

NANOPARTICLES IN METAL CONTACTS FOR SILICON AND SILICON

CARBIDE-BASED DEVICES

ABSTRACT

Embedding metal nanoparticles (NPs) into metal contacts, at the interface with

semiconductor, is an alternative method for modification of Schottky barrier height

(SBH) in electrical contacts and offers a tremendous simplification and adaptation in

processing steps. Schottky barrier diodes with aluminum (Al) contacts embedded

with gold (Au) NPs on n- and p-type silicon (Si) and silicon carbide (4H-SiC)

substrates were fabricated and their physical and electrical characteristics were

investigated. Based on the studies on Si surface contact angle measurement and the

negative zeta-potential values of seeded growth 20 nm Au NPs, an alternative

approach was proposed to deposit Au NPs on linker-free n- and p-Si substrates using

spin-coating technique. Density of NPs (determined by scanning electron

microscope) on n-Si was substantially higher than p-Si which was due to the

differences in surface properties of n- and p-Si. Current-voltage analysis of diodes

revealed an increase in current density in both bias directions due to NPs local

electric field enhancement effect and SBH lowering (0.1 1 eV for n- and 0.05 eV for

p-Si). The electrical results were then correlated to the structural properties of Al/Si

(determined by transmission electron microscope). Higher density of 5 and 10 nm Au

NPs were deposited on SiC surface by using acidification technique with diluted HF.

Al/4H-SiC diodes showed great improvement in SBH lowering (0.09 eV for n- and

0.24 eV for p-4H-SiC) and hence forward bias current density elevation while

maintaining the rectification properties in reverse bias. To determine the source of

xxiii



local electric field enhancement due to the presence of NPs at the metal

semiconductor, Tung’s model of inhomogeneity in SBH (ISBH) and enhanced

tunnelling at triple interface model (ETTI) were invoked. Small size of NPs is the

key factor in both models. Other factors are the difference between the SBH of Au/Si

and Al/Si (A = <I>b (Ai/Si) - (I}b (AuSi)) in ISBH model and Al/Au work function (WF)

difference (<I>ai - ^au) in ETTI model. The potential and electric field distribution

were also calculated. In Al/Si system the magnitude of A was smaller (0.3 1 eV for n-

Si and 0.24 eV for p-Si) compared with the WF difference of Au/Al ( 1 eV) and

hence the electric field enhancement was mainly attributed to ETTI model. In A1/4H-

also relatively high, both models were expected to attribute to the electric field

enhancement.

xxiv

SiC system since the magnitude of A (0.77 eV for n-SiC and 0.45 eV for p-Si) were



CHAPTER 1 -

INTRODUCTION

Background1.1

Electrical contacts are fundamental to semiconductor devices, as gates and

contacts in diodes, transistors, etc., and are one of the most important parts of

modem integrated circuitry (Cohen and Gildenblat, 1986, Ghate, 1982). In order to

understand and predict the properties of electrical contacts it is essential to

comprehend the semiconductor surface and interface chemistry and physics prior and

upon the intimate connection and coupling with the contact material. In general,

semiconductor, the energetic balance is disturbed at the metal-semiconductor (MS)

interface due to the difference in the energy levels of the metal and the

semiconductor. To restore the balance, charge carriers (electrons or hole) would

begin to redistribute and hence the atoms at the semiconductor become ionized and

depleted of charge carriers. The depleted region is so called depletion region,

depletion layer, or space charge region. This process continues until the potential

energy barrier, which is formed due to the presence of ionized atom and formation of

thickness of the depletion region is defined as the depletion width (w).

Figure 1.1 (a-d) is a typical representation of energy band diagrams of metal

energy level (EVac), conduction band minimum (Ec), valence band maximum (Ev),

and Fermi level (FL) energy (EF) have been defined. FL is a measure of the

probability of occupancy of allowed energy states by electrons or hole.

1

an electric field, would prevent further charge transfer across the MS interface. The

and n- and p-type semiconductors before and after the intimate contact. The vacuum

when a material (a metal in particular) is put into an intimate contact with a
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energy to remove an electron from FL of the metal. The WF of the semiconductor is

also <DS. However, in semiconductors a more useful quantity, i.e. electron affinity

is often used which is the difference between the vacuum energy level (EVac) and the

bottom of the conduction band (Ec).

rectify the current, which in this case is termed Schottky (rectifying) contact (Figure

1.1 (e) - (f)). But, when there is a minimum barrier or the barrier is non-rectifying

(Anderson and Anderson, 2005) the term "Ohmic contact” is applied to the electrical

contact (Figure 1.1 (g) and (h)).

and p-type

semiconductors with a specific value of SBH (Ob)- The SBH is ideally determined by

a relationship known as “Schottky-Mott limit” (Schottky, 1939, Mott, 1939), which

is the difference between the WF of a metal (<!>m) and electron affinity (&) of a

semiconductor (n-type). The experimental results on many semiconductors, however,

indicate a weak dependency or even independency of SBH to Oin (Porter and Davis,

1995). This deviation from Schottky-Mott limit has led to the development of

semiconductor, atoms have unsaturated dangling bonds. These unsaturated bonds

create allowed energy states within the band gap (Eg) at the surface of the

semiconductor and a metal they are referred to as “interface states”. The relationship

between the SBH and interface states is known as “Bardeen limit” (Bardeen, 1947).

Bardeen found that the number of interface states can be so high that would lead to

pinning of FL position at the semiconductor surface and making SBH completely

Most metals form a rectifying Schottky contact on both n-

semiconductor. When these energy states are present at the interface of a

Based on the value of potential energy difference (<Dm - <I>S), the barrier could

another theory based on MS interface energy states. At the surface of a

<Dm is the work function (WF) of the metal which is a measure of the required



independent of <E>m (Colinge and Colinge, 2005, Brillson, 1993). It should be noted

contact with the semiconductor no change takes place within the depletion region of

accommodate the potential energy difference (<I>m - <PS). The practical relationship

however, is usually somewhere between the two limits which

has been developed and modified by other researchers (Tung, 2000a, Tung, 2001,

Sullivan et al., 1991). Another source of the deviation from ideal Schottky diode is

the image force lowering effect on SBH. When an electron approaches from

semiconductor to a specific distance from the metal contact a positive charge will be

induced in the metal part. The existence of the positive charge at the mirror image

location of the electron will form an electrostatic force which is called image force

and the SBH will be lowered by this exerted force (Achuthan and Bhat, 2006).

Modification of the electrical properties of Schottky and Ohmic contacts is

directly linked to the MS interface properties and in particular the band bending and

Schottky barrier formation at the MS interface. Thus, engineering and modification

of SBH is the key to design and fabricate electronic and optical devices with desired

electrical properties.

In Schottky contacts the purpose of SBH modification can be both increasing

state voltage drop in forward bias (VF) while maintaining the rectification properties

practical Schottky

contact are shown in Figure 1.2 (a). Inset is the logarithmic representation of the I-V.

4

that the band bending in Schottky-Mott model is entirely due to the difference in <Din

in reverse bias. The current-voltage (I-V) characteristics of a

between SBH and <I>m,

the SBH, to improve rectification properties, and reducing the SBH, to reduce on-

semiconductor. This is because the charge in interface states would fully

and <T>S. But in case the FL in semiconductor is pinned, as the metal is brought into



demonstrated in Figure 1.2 (b) and (c), respectively.
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Figure 1.2: 1-V characteristics of a Schottky contact (a); as well as its corresponding 
energy band diagrams in forward (b) and reverse (c) bias directions.
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The corresponding energy band diagrams of Schottky contacts when a

voltage is applied in forward (F) and reverse (R) bias directions are also



In forward bias the potential barrier decreases with applied voltage and

electrons in the semiconductor conduction band receive enough potential energy to

effectively surmount the potential energy barrier from semiconductor to metal. Thus,

applied voltage (Va). In reverse bias, the potential barrier increases with applied

voltage and hence negligible number of electrons can flow from semiconductor to

metal.

In Ohmic contacts the lowest possible resistivity for current conduction to

and from the semiconductor is required which can be achieved by reducing the

overall SBH. In practical Ohmic contacts the current injection in and out of

characteristics should be linear in both bias directions. Figure 1.3 (a) and (b) depict

the typical linear and logarithmic I-V characteristics of Ohmic and semi- (or quasi-)

Ohmic contacts. Ohmic contacts are often evaluated based on the value of contact

resistivity (p), which is a measure of all the factors, including the SBH, that

contribute to the current conduction at MS interface. By decreasing the contact

resistivity current conduction in both directions increases and the electrical contact

characteristics transform from Schottky to semi-Ohmic or Ohmic behavior. A

practical Ohmic contact should have a low contact resistivity (p) with a small voltage

drop across the contact when compared with the active device region (Dobbs et al.,

1977, Blank and Gol’dberg, 2007). The typical values of contact resistivity are in the

In the process of SBH modification, selection of an appropriate material may

particular SBH. This approach

becomes challenging as finding a suitable contact material is often limited by the

6

very well seem to be the easiest option to acquire a

a large number of electrons flow and their number increase exponentially with the

£2 cm2.order of 10 5

semiconductor should happen with lowest possible resistance and the 1-V



number of available and feasible materials and also considerations of cost,

result, SBH is often modified without

changing the material itself, by tuning the MS interface properties instead.

(a)

T
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Other than changing the contact material itself, measures that have been taken

place to modify the Schottky barrier in Schottky and Ohmic contacts can be mainly

divided into two categories: Pre-contact deposition and post-contact deposition

treatments.

Post-contact deposition treatment mainly consists of a post deposition

annealing (PDA) step that leads to creation of an interfacial compound at the MS

interface with unique desired properties. PDA steps are strictly temperature sensitive.

For example, the PDA of Ni/n-4H-SiC Schottky contacts at higher than 600°C results

in the formation of Ni2Si at the interface, while maintaining the Schottky behavior.

Ni2Si layer which transforms the Schottky into Ohmic contact (Han et al., 2001).

Pre-deposition treatments can also be carried out on substrate itself, before

the deposition of contact material, to change and create new electronic states at the

surface of semiconductor, with processes such as surface passivation (Jia and Qin,

1990, Tao et al., 2003), native oxide thickness variation (Siad et al., 2004, Altindal et

al., 2006) and removal (Miyawaki et al., 1990), or insertion of organic/inorganic

materials (thin films (Soylu et al., 2011, Pakma et al., 2008) or monolayers of atoms

(Wang et al., 2009)) at the MS interface. The inserted layer can effectively alter

(promote or diminish) the current conduction through the MS interface based on the

application of contact and the nature of the contact and semiconductor materials

(Zheng et al., 2013, Tredgold and El-Badawy, 1985). One common pre-deposition

treatment, which is being used in majority of actual Ohmic contacts in electronic

devices, is increasing the doping concentration near the surface of the semiconductor.

This will narrow the Schottky barrier width and facilitate the direct tunneling of the

charge carriers through the barrier (Anderson and Anderson, 2005).

8

However, at PDA processes higher than 900°C a graphite phase is formed under the



The above mentioned approaches that are being applied for modification of

electrical contacts have their own merits and drawbacks. The drawbacks are mainly

associated with the limitations in controlling the semiconductor surface properties in

pre-contact deposition treatments or the MS interface undesirable changes in post

contact deposition treatments such as undesirable and unexpected reactions at MS

interface due to the semiconductor surface contamination and poor metal deposition

techniques (Ghate et al., 1977, Blair and Ghate, 1977, McCarthy, 1970). Another

common device failure especially in aluminium (Al)/silicon (Si) system is thermo

migration (spiking), which is basically the mass transport (Si atoms into Al and vice

versa) across the interface during the annealing process (Cohen and Gildenblat,

1986). Formation of an undesirable thin p-n junction layer at the MS interface due to

the unintentional doping of the semiconductor with the opposite dopant is another

device failure. In this phenomenon, diffusion of contact metal atoms (with opposite

doping property) to the semiconductor during the annealing, can alter the effective

Si during Al/n-Si PDA step (Vaidya and Sinha, 1982).

To address the above-mentioned issues and constrains of the conventional

methods of electrical contact fabrication, a modern and novel scheme was introduced

to modify the Schottky barrier without the need to make substantial alteration of

semiconductor surface properties, changing its near-surface doping concentration, or

any post deposition heat treatments of the contact material. In this method which is

based on the local electric field enhancement effect, the effective SBH is modified

and reduced by incorporation and embedding of nano-sized particulates (referred to

nanoparticles (NPs)” throughout the thesis) in contact materials at the MSas

interface (Olbrich et al., 1998, Narayanan et al., 2000). This contact structure is being

9

SBH value. For example, diffusion of Al atoms (with three valence electrons) into n-



with nano-scaled contacts on nanomaterials such as nanotubes, nanorods, nanowires,

graphene, etc. as their electrical behavior is often fundamentally different because of

their special geometries (Leonard and Talin, 2011). Figure 1.4 (a) shows the cross-

sectional schematics of the nanostructured contacts with embedded NPs at the MS

interface.
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NPs at the MS interface (a) and corresponding band structure changes due to the 
effect of NPs along a-d dash-lines (b). The barrier has become thinner along dash
lines b and d (based on ETTI model) and dash-line c (based on ISBH model) as 
opposed to normal band structure along dash-line a.
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The effect of the embedded NPs in a contact material is most often explained

by the Tung’s model of inhomogeneity in SBH (ISBH) (Tung, 1991), and the model

of enhanced tunneling at nanoparticle/semiconductor/metal contact triple interface

(ETTI) by Narayanan et al., (2000). Both ISBH and ETT1 models have been

discussed in details in section 2.7. The presence of NPs at the interface would create

of semiconductor, which would locally thin the Schottky barrier. Thus, the tunneling

of charge carrier through the banner is enhanced that would eventually contribute to

the current conduction enhancement and the overall SBH lowering.

Figure 1.4 (b) corresponds to the band structure changes due to the effect of

NPs along dash-lines a-d. The barrier has become thinner along dash-lines a and d

ETTI model) and dash-line c (based on ISBH model) as opposed to the

normal band structure along dash-line a. Discussions on the effect of NPs on current

conduction and ISBH and ETTI models can be found in sections 2.5 and 2.6,

respectively.

Different types of NPs have been previously embedded in different contact

materials to form nanostructured Schottky and Ohmic contacts on variety of

substrates (i.e. Si, Ge, SiC, GaN, GaAs6?P33, and InP). Fabrication process of these

nanostructured contacts mainly consists of two main steps: deposition of NPs on the

substrates and subsequently deposition of contact material on top of NPs. In order to

deposit NPs on substrates substrate, as the first fabrication step, different techniques

have been adopted including, aerosol deposition (Lee et al., 2002), direct deposition

self-assembly (Kang et al., 2012b, Kang et al., 2012a, Ruffino et al., 2010b, Ruffino

et al., 2010a), discontinuous thin film deposition (Olbrich et al., 1998, Olbrich et al.,

1997), and deposition through anodic porous alumina nano-mask (Sohn et al., 2004c,

11

an electric field, strong enough to overcome the electric field in the depletion region

(based on



Sohn et al., 2004b) which have also been used for realization of NPs on different

substrates and subsequent fabrication of nanostructured contacts as presented in

Figure 1.4 (a).

Problem Statement1.2

From the standpoint of NPs deposition technique, in all the methods

synthesized and deposited directly onto the

substrate during the fabrication procedure. There are some drawbacks and limitations

in application of each of these techniques. Limitations such as:

• Controlling and optimization of the shape, size, and uniform distribution of

NPs in discontinuous thin film deposition.

• Lengthy processing steps for deposition of NPs in aerosol deposition method

that requires several machines connected in a sequential order.

mask, as well as, controlling the NPs size and distribution when deposited

through the nano-mask.

• The requirement of a heat treatment process for the fabrication of NPs via

properties or cause some degree of reaction between the NPs and substrate.

To address some of the issues affiliated with synthesis and deposition of NPs

during the nanostructured contact system, in this work, colloidal Au NPs have been

used for the first time for nanostructured contact fabrication. One of the main

advantages of colloidal Au NPs is the availability of commercial Au NPs in different

sizes and densities (i.e. the number of NPs per mililiter). This makes it possible to

deposit NPs with specific size and shape onto the substrate by using an appropriate

12

mentioned above, NPs are being

• Fabrication, placement and reliability of the anodic porous alumina nano

direct deposition self-assembly technique that can affect the substrate



deposition technique. Polymeric linker molecules are often used to adhere the NPs to

the substrates. However, since these linker molecules are not removable afterward

and would contribute to the conduction mechanism which is not desirable. As a

result, for the deposition of Au NPs on linker-free Si substrates by spin-coating

technique a new approach based on surface properties of n- and p-Si was introduced.

linker-free 4H-SiC substrates, in order to further

increase the density of NPs (i.e. the number of NPs per unit area) on the substrates

acidification technique (O’Reilly et al., 2012, Woodruff et al., 2007) was adopted.

From the point of view of the electrical characteristics of the nanostructured

contact systems, majority of the studies in the literature mainly focus on the adoption

of one model to explain the effect of embedded NPs which has proven to be

inadequate. For example, the theoretical calculated results predicted by ISBH model

have exhibited a usually less than what is experimentally observed for Schottky

barrier lowering (Lee et al., 2002). In some studies (Lee et al., 2002, Kwak et al.,

2006) the inconsistency is attributed to the effect of ETT1 model without a solid

argument that integrates or correlates the two models. In this work, Au NPs and Al

contact combination was selected for the first time to fabricate nanostructured

contacts on both Si and 4H-SiC substrates. Au NPs are the most available and well-

studied colloidal NPs. Al is also still one of the most frequently used materials in

contact fabrication in electronic circuitry. Apart from the availability and well-

defined properties, Au and Al have a relatively high WF difference ( 1 eV) which is

a key factor in nanostructured contact efficiency. Hence, their selection as the contact

combination makes it possible to define the dominating model which can best

describe the experimentally observed SBH lowering due to the embedded NPs in Si-

based diodes. In addition, in 4H-SiC-based diodes, Au NPs/Al contact system

13

For the deposition of Au NPs on



properties of diodes in reverse bias.

Objectives of the Research1.3

The main objective of this research is to investigate the effect of Au NPs in

SBH lowering of Au NPs/Al nanostructured contacts on both Si and 4H-SiC

substrates. With this main objective, the following aspects are to be achieved:

1. To investigate the effect of surface properties of n- and p-Si and also the effect of

multiple depositions of Au NPs by spin-coating on the final density of Au NPs on

Si substrates.

2. To study the effect of the density of Au NPs in SBH lowering of Au NPs/Al

contact system on Si substrates.

3. To investigate the effect of surface morphology of

substrates in the density of deposited Au NPs, with two different sizes, by using

the acidification method.

To investigate the effect of the size of Au NPs in the SBH lowering of Au4.

NPs/Al contact system on 4H-SiC substrates.

Scope of the Research1.4

In this study, two different types of Au colloidal NPs with different sizes

have been used for deposition on Si and 4H-SiC substrates: Seeded growth Au NPs

reduced by hydroxylamine with the average size of 20 nm and the solution pH of

Si substrates by spin-coating technique and their

adhesion, distribution and density were comprehensively studied. The mentioned size

of NPs is the average diameter (d) of NPs but when required to use the radius instead

14

around 3.2 were deposited on

effectively reduces the SBH and at the same time maintains the rectification

n- and p-type 4H-SiC



(for potential and electric field calculations), the NPs size will be specified by Ro.

Commercial citrate stabilized Au NPs with sizes of 5 and 10 nm were deposited by

acidification method with diluted HF to increase the density of NPs on substrates.

Au NPs/Al contact combination was fabricated on both n- and p-Si and 4H-SiC

substrates and their physical and electrical characteristics were comprehensively

studied by field-emission scanning electron microscope (FE-SEM), Goniometer,

energy-filtered transmission electron microscope (EF-TEM) and semiconductor

parameter analyzer (SPA).

Thesis Outline1.5

This thesis is organized and divided into five chapters. Chapter 1 provides an

overview of current issues in fabrication of electrical contacts on Si and 4H-SiC

substrates and challenges in modification of SBH of the contacts and the

Subsequently the current research objectives and the scope of study are further

elaborated. Chapter 2 covers the detailed literature review, which covers two main

areas of NPs deposition techniques for fabrication of nanostructured electrical

contacts and the physical modeling and interpretation of the structures and their

practical applications. In chapter 3 systematic methodology of the research is

presented. Chapter 4 is the comprehensive elucidation and discussion of the

obtained results. Chapter 5 summarizes this study and its conclusions. This chapter

also includes the recommendations for future works.

15

effectiveness of nanostructured contact systems as an alternative method.



CHAPTER 2 -

LITERATURE REVIEW

Overview2.1

The purpose of this literature review is to bring fundamental understanding of

the effect of embedded NPs in contact materials. The main scope of this review is

limited to the straightforward two-step fabrication processes: NPs deposition on the

semiconductor substrate followed by the deposition of the capping contact metal

without any post contact deposition heat treatments. The summary of the studies that

used the two-step processing for the fabrication of nanostructured contacts is

presented in Table 2.1. This table is intended to highlight the main aspects of

previous attempts on development of Schottky and Ohmic contacts with embedded '

NPs. The literature review is comprised of four main parts:

NPs deposition techniques.1.

Practical application and reliability of NPs in Schottky and Ohmic contacts.2.

Physical interpretation of NPs effect on electrical properties of contacts.3.

Nanostructured contacts with non-metal NPs or non-metal contacts.4.

After a brief introduction of Si and SiC substrates in section 2.2, different

techniques for NPs deposition are introduced and their advantages and disadvantages

are discussed (section 2.3). Second part is the review of the performance and

reliability of Schottky and Ohmic contacts embedded with NPs (sections 2.4 and

2.5). In the third part, studies on the NPs effect on electric field enhancement and

subsequent influence in current conduction mechanism by invoking two main models

of ISBH and ETTI are critically reviewed (sections 2.6 and 2.7). Finally, the state of

other nanostructured contacts with non-metal NPs or non-metal contacts on Si and

SiC are reviewed (sections 2.7).

16
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Si and SiC

Si with its superior physical and technological advantages over other types of

semiconductors is still the most prevailing semiconductor in electronic device

industry. Si is an abundant material with low-cost purification and crystallization

methods (Brillson, 1993). It has atomic number of 14 with 4 valence electrons and

with diamond crystal structure and its relatively strong covalent bonds makes it

suitable for mechanical handling and fabrication processing as well. Single crystal Si

substrate with high purity is still the most commercially available semiconductor.

Figure 2.1 is the 3-dimentional (3D) representation of a Si crystal structure with

defined lattice constant (a) of around 0.54307 nm (El-Kareh, 2009).

I

a
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Figure 2.1: Si crystal with diamond lattice structure and defined lattice constant (a). 
Each atom is tetrahedrally bonded to four Si neighbors as displayed by dark atoms 
(El-Kareh, 2009).
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Si has also a moderate band gap (Eg) of about 1.12 eV with a relatively high

solid solubility of dopant atoms (Brillson, 1993, El-Kareh, 2009). Dopant atoms are

the intentionally introduced atoms with different valence electrons which are used to

fabricate n- and p-Si substrates with different electrical properties. For example, Si

doped with nitrogen (with 5 valence electrons) would gain a net negative charge and

Si doped with boron (with 3 valence electrons) would gain a net positive charge

which is very important in fabrication of diodes and transistors. Moreover, the

maturity of fabrication and processing techniques of device structures based on Si

has made it the top choice for many electronic device applications (Brillson, 1993).

SiC has a unique combination of electrical and thermo-physical properties which

temperatures, high power, and high frequencies. Figure 2.2 (a) and (b) demonstrates

the atomic structure of SiC and hexagonal bilayer with alternating Si and C layers,

respectively. Based on the stacking of Si and C layers numerous polytypes of SiC

can be formed. The Most commonly applied and studied polytypes of SiC are the

cubic 3C-SiC, and the hexagonal 4H-SiC and 6H-SiC, which are shown in Figure 2.2

(c-e), respectively. The interest in 4H-SiC for device fabrication has increased

and 2.3 eV), respectively (Wijesundara and Azevedo, 2011). It now seems that most

SiC-based electronic devices can be made on 4H-SiC with an improved performance,

considering its superior advantages compared with other polytypes (Wijesundara and

Azevedo, 2011).

19

because of its higher electron mobility (800 cm

compared to that of 6H-SiC (400 cm2/Vs and 3.03 eV) and 3C-4H-SiC (750 cm2/Vs

2/Vs) and wider band gap (3.26 eV)

SiC, on the other hand, is a wide band gap semiconductor with Eg > 2 eV.

make it ideal semiconductor for preparation of devices operating at high
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Nanoparticles Deposition Techniques2.3

For deposition of the NPs on semiconductor surfaces, many techniques have

been developed such

nanosphere lithography (Haynes and Van Duyne, 2001), nano-scale hole arrays filled

with metals (Wen et al., 2012), ion-implantation (Ramaswamy et al., 2005),

discontinuous thin film deposition (Olbrich et al., 1998), aerosol deposition (Hinds,

1982), anodic porous alumina nano-mask (Ruffino et al., 2010b), direct deposition

self-assembly (Narayanan et al., 2000). The last four deposition techniques have

been adopted as the first step of a two-step processing for fabrication of Schottky and

Ohmic contacts with the second step being the contact metal deposition. Application

20

(e) 6H-SiC

B
C;
A I
C

(a) #

(d) 4H-SiC
A

as conventional lithography (Xia and Brueck, 2004),

Figure 2.2: SiC atomic structure with tetrahedrally bonded Si-C cluster (a), and 
hexagonal bilayer with alternating Si and C layers (b). Most applicable polytypes of 
SiC include cubic 3C-SiC (a), hexagonal 4H-SiC (d) and 6H-SiC (e) (Wijesundara 
and Azevedo, 2011).
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of colloidal NPs, i.e. NPs dispersed and suspended in liquid solutions, is another way

to deposit NPs on substrates by using different deposition techniques. This technique,

however, has not been previously used for the fabrication of nanostructured contacts

but has a great potential for such applications.

The semiconductor substrates on which NPs are deposited include Si

(Narayanan et al., 2000), Ge (Kishore et al., 2012), SiC (Lee et al., 2002, Olbrich et

al., 1997, Ruffino et al., 2010b, Kan et al., 2004, Kang et al., 2012a), GaN (Sohn et

al., 2004a, Kim et al., 2006, Olbrich et al., 1997, Brown et al., 2000, Sohn et al.,

2004b), GaAs6?P33 (Olbrich et al., 1998), and InP (Bell and Kaiser, 1988). In this

section each of these four methods, together with colloidal NPs deposition technique

which was used and developed in this study, are briefly introduced and their

advantages and disadvantages with respect to the final distribution of NPs and the

reliability and adaptation to the final contact deposition step are briefly discussed and

evaluated. Figure 2.3 depicts the processing steps and resulting NPs distributions of

the four currently used NPs deposition techniques for nanostructured contact

fabrication.

2.3.1 Discontinuous Thin Film Deposition

Deposition techniques such as thermal evaporation and sputtering are very

common methods to create thin layers of metals on semiconductors. However, at the

very early stages of deposition, when the nominal thickness of deposited thin film is

usually less than 5 nm, the film is generally discontinuous and consists of arrays and

islands of finite and yet very small-sized particles. The level of discontinuity and

not it has reached the percolation threshold is

highly affected by the conditions of the applied deposition technique, temperature of

21

properties of a thin film and whether or



the substrate and the chamber, and the vacuum level. These parameters would

eventually contribute to the final shape and morphology of the resulted discontinuous

films. The structure and temperature of the substrate and deposited atoms, and their

interaction properties are among the most influential parameters (Malinsky et al.,

2012).

Film Deposition

Si SiC

»•
Si

GaN

Au Au

Au Au

V

lOOnm
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Figure 2.3: Schematic representation of required processing steps for deposition of 
Au NPs on different substrates and the corresponding SEM images of NPs 
distribution by using (a) discontinuous Au thin film deposition (Hovel et al., 2010), 
(b) aerosol method (Lee et al., 2002), (c) deposition through anodic porous alumina 
nano-mask (Sohn et al., 2004b), and (d) direct deposition self-assembly (Kang et al., 
2012a).
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Discontinuous metal thin films have been studied extensively under the

subject of percolation threshold and transition from insulator to conductor behaviors.

By deposition of metals with different nominal thicknesses to the threshold point

where the clusters start to coalesce, the morphological and electrical properties of the

discontinuous films can be controlled (Pal et al., 2004, Hovel et al., 2010). This

method is perhaps the simplest technique with only one processing step for

fabrication and deposition of NPs on any substrate. Another advantage is that the

contact material can also be deposited immediately after NPs deposition without

breaking the vacuum, depending on the capability and specifications of the machine

used. On the other hand, despite the simple fabrication process, controlling and

optimization of shape, size and uniform distribution of NPs can be quite challenging.

Olbrich et al. (1997 and 1998) directly deposited discontinuous nano-sized

cobalt (Co) clusters on GaAs6?P33 substrate by thermal evaporation. The effects of

the final morphological properties of the nano-clusters were then comprehensively

studied (Olbrich et al., 1998, Olbrich et al., 1997). Their results showed that the Co

films with nominal thickness of 1 nm deposited on the substrates with 300 K

temperature are already continuous, whereas the Co films on the substrate with 500

K were not continuous due the stronger coalescence of the impinging Co atoms in

substrate high temperature. They also studied the effect of variable nominal

thicknesses less than 1 nm (i.e. 0.25, 0.5, 0.8 nm) in both 300 K. and 500 K substrate

temperatures and correlated the morphological properties of the resulted Co

discontinues film to the final electrical properties of the Schottky contacts. A typical

representation of discontinuous thin film process and the resulting distribution of Au

NPs are shown in Figure 2.3 (a).
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substrate temperature as well as altering the nominal thickness of deposited film on



2.3.2 Aerosol Deposition Technique

Aerosol deposition is based on vaporization and subsequent deposition of

nano-sized particles on a substrate through a sequential processing step using tube

furnaces, aerosol charger, and differential mobility analyzer (DMA). The material is

first evaporated and aerosolized in

vapour pressure of the material. The aerosol particles are then being charged after

passing through

subsequently being size selected using a differential mobility analyzer (DMA). The

DMA classifies the charged particles according to their mobility in an electric field.

Since the aerosol particles leaving the furnace consist of agglomerates of small

particles (3—5 nm in diameter), to make the particles compact and also to obtain

spherical particles, they are reshaped in another furnace. The particle size is further

controlled using a second similar DMA. The resulting aerosol particles are deposited

onto the substrates in a deposition chamber where the NPs are precipitated using a

perpendicular electric field. In order to avoid oxidation of the particles, the whole

process is run under nitrogen carrier flow. The particle size and final density of NPs

on the substrate can be manipulated by controlling the evaporation and reshaping

temperature and also the deposition time. The aerosol generator setup and NPs

production procedure are fully described by Magnusson et al. (1999).

method to deposit Ag NPs (34 nm) and Au NPs (20 nm) on InP and SiC substrate,

respectively and subsequently fabricated the nanostructured contacts. One of the

main advantages of this technique is that the size and shape of NPs can be

manipulated in a wide range. For example by changing the temperature of the

furnaces or the DMA parameters, NPs with desired size, shape, and distribution can

24

Anand et al. (1996) and Lee et al ( 2002) (Figure 2.3 (b)) have used the same

a high-temperature tube furnace by heating to

a photoelectric charging device. The charged particles are


