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KLASIFIKASI TEKANAN MENTAL DALAM KALANGAN PELAJAR
PENGAJIAN TINGGI DI MALAYSIA DARIPADA
ELEKTROENSEFALOGRAM (EEG) MENGGUNAKAN KAEDAH
PERLINGKARAN RANGKAJIAN NEURAL DENGAN STOCHASTIC

GRADIENT DESCENT TERUBAH

ABSTRAK

Kajian ini menyiasat pengkelasan tekanan mental dalam kalangan pelajar universiti
di Malaysia menggunakan data Elektroensefalogram (EEG) dan rangkaian neural kon-
volusi 1D (ID-CNN) yang dioptimumkan dengan Pengurangan Kecerunan Stokastik
(SGD) yang Terubah. Penyelidikan ini menangani jurang yang ketara dalam keterse-
diaan set data tempatan untuk pengesanan tekanan menggunakan isyarat EEG, kerana
model dan set data sedia ada kebanyakannya memberi tumpuan kepada populasi lain
dan tidak mengambil kira variasi serantau dalam faktor tekanan dan tindak balas. Selain
itu, terdapat kekurangan pengoptimuman dalam model pengesanan tekanan, khusus-
nya dalam menangani data EEG, yang boleh menjejaskan ketepatan model dan potensi
aplikasi masa nyata. Untuk menangani cabaran ini, isyarat EEG dikumpulkan semasa
ujian Stroop dan tahap tekanan yang dilaporkan sendiri diukur menggunakan Skala Te-
kanan yang Dirasai (PSS). Pendekatan prapemprosesan yang ketat, termasuk Analisis
Komponen Bebas (ICA) untuk penyingkiran artifak, telah digunakan, diikuti dengan
pengekstrakan ciri yang memberi tumpuan kepada metrik utama seperti tenaga, entropi,
dan sisihan piawai daripada kedua-dua domain masa dan frekuensi. Algoritma yang
dipilih, 1D-CNN, telah diubah menggunakan pengoptimum SGD yang disesuaikan
yang menggabungkan momentum dan pengecilan kadar pembelajaran untuk mening-
katkan konvergensi dan menangani cabaran seperti kecerunan lenyap. Pengubahsuaian
ini penting untuk meningkatkan proses pembelajaran model, yang akhirnya membawa
kepada prestasi pengkelasan tekanan yang lebih baik. Model 1D CNN yang dicadangk-
an, yang ditingkatkan dengan SGD yang Terubah, menunjukkan prestasi yang lebih
baik berbanding model tradisional seperti Support Vector Machine (SVM), k-k-Nearest

Neighbors (k-NN), dan seni bina yang lebih mendalam seperti CNN Standard dan Ale-
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xNet. Khususnya, 1D CNN mencapai ketepatan 92.64%, mengatasi SVM (84.5%),
k-NN (76.6%), CNN Standard (91.3%), RNN (90.04%) dan AlexNet (91.65%). Model
1D CNN juga menunjukkan sensitiviti dan kekhususan yang tinggi, menjadikannya pe-
nyelesaian yang kukuh untuk pengesanan tekanan berasaskan EEG. Penemuan utama
menunjukkan bahawa model 1D-CNN yang ditingkatkan bukan sahaja lebih berkesan
tetapi juga menawarkan kerangka kerja yang dipertingkat dan boleh dipercayai untuk
pengkelasan tekanan mental. Kajian ini memberikan sumbangan yang ketara kepada
bidang ini, menawarkan metodologi yang kukuh untuk pengesanan tekanan berasaskan
EEG. Kerja masa depan dicadangkan untuk mengembangkan set data, menggabungk-
an input multimodal, dan meneroka teknik pembelajaran mendalam lanjutan untuk

aplikasi pemantauan tekanan masa nyata.
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MENTAL STRESS CLASSIFICATION AMONG HIGHER EDUCATION
STUDENTS IN MALAYSIA FROM ELECTROENCEPHALOGRAM (EEG)
USING CONVOLUTIONAL NEURAL NETWORK WITH MODIFIED

STOCHASTIC GRADIENT DESCENT

ABSTRACT

This study investigates the classification of mental stress among Malaysian univer-
sity students using Electroencephalogram (EEG) data and a 1D-Convolutional Neural
Network (1D-CNN) optimized with Modified Stochastic Gradient Descent (SGD). The
research addresses a significant gap in the availability of localized datasets for stress
detection using EEG signals, as existing models and datasets predominantly focus on
other populations and do not account for regional variations in stressors and responses.
Moreover, there is a lack of optimization in stress detection models, specifically in
handling EEG data, which can affect the models’ accuracy and real-time application
potential. To address these challenges, EEG signals were collected during Stroop tests
and self-reported stress levels were measured using the Perceived Stress Scale (PSS).
A rigorous preprocessing approach, including Independent Component Analysis (ICA)
for artifact removal, was applied, followed by feature extraction focusing on key metrics
such as energy, entropy, and standard deviation from both time and frequency domains.
The chosen algorithm, 1D-CNN, was modified using a tailored SGD optimizer that
incorporates momentum and learning rate decay to improve convergence and address
challenges like vanishing gradients. This modification was essential for enhancing
the model’s learning process, ultimately leading to better stress classification perfor-
mance. The proposed 1D CNN model, enhanced with Modified SGD, demonstrated
superior performance compared to traditional models such as Support Vector Machines
(SVM), k-Nearest Neighbors (k-NN), and deeper architectures like Standard CNN and
AlexNet. Specifically, the 1D CNN achieved an accuracy of 92.64%, outperforming
SVM (84.5%), k-NN (76.6%), Standard CNN (91.3%), RNN (90.04%) and AlexNet
(91.65%). The 1D CNN model also demonstrated high sensitivity and specificity,

making it a robust solution for EEG-based stress detection. Key findings indicate that

Xviii



the refined 1D CNN model is not only more effective but also offers an enhanced and
reliable framework for mental stress classification. This research provides a signif-
icant contribution to the field, offering a robust methodology for EEG-based stress
detection. Future work is suggested on expanding datasets, incorporating multi-modal
inputs, and exploring advanced deep learning techniques for real-time stress monitoring

applications.
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CHAPTER 1

INTRODUCTION

1.1 Reasearch Background

The mental stress experienced by university students in Malaysia represents a mul-
tifactorial issue, underpinned by various socio-economic, academic, and psychological
determinants (Shahabudin, 2014). Extensive research has consistently highlighted the
high prevalence of mental health disorders, particularly depression, anxiety, and stress
(DAS), among this demographic (Beiter et al., 2015). Epidemiological studies reveal
that a substantial proportion of Malaysian university students are affected by these
conditions, with prevalence rates as high as 34.8% for depression, 42.2% for anxiety,
and 33.5% for stress in some cohorts (Maung et al., 2023). Another study further ex-
acerbates the concern by reporting that 68.9% of students experience moderate to high
levels of psychological distress, with 72.7% suffering from anxiety and 60.6% from
depression (Hassan et al., 2022). These statistics underscore the critical need for effec-
tive mental health monitoring and intervention strategies within academic institutions

(Rusli et al., 2023)).

Academic stress is a predominant factor contributing to the high incidence of men-
tal health issues among Malaysian students (Saleem et al., [2013). The competitive
academic environment, coupled with the cultural and societal emphasis on academic
excellence, exerts significant pressure on students to perform at exceptionally high
standards. This pressure is often compounded by external stressors, such as financial
constraints, which are particularly prevalent among students from lower-income back-
grounds (Thomas, 2022). Financial burdens can necessitate part-time employment,
further exacerbating stress by diminishing the time available for academic pursuits and
social interaction (Hossain et al., [2023). Social and familial expectations also play
a crucial role, as students navigate the challenges of adapting to university life while

managing the expectations of success imposed by their families and society (Kassim &



Hanafi, 2020).

The intersection of these stressors creates a complex and challenging mental health
landscape for Malaysian university students. Despite the recognition of these issues,
current methodologies for detecting and addressing mental stress remain inadequate.
Traditional approaches predominantly rely on self-reported data, which is inherently
subjective and may not accurately reflect the true mental state of the individual. More-
over, these methods are reactive, often identifying issues only once they have escalated
to severe levels (Yusoff et al., |2017). This reactive approach limits the potential for
early intervention, which is critical for preventing the progression of stress into more

severe mental health conditions.

Given the complexities of mental stress and its potential escalation into more se-
vere mental health issues, the development of an automated system for measuring and
monitoring mental stress could be crucial in preventing such outcomes. This grow-
ing recognition has fueled interest in the detection of various mental states, including
stress, drowsiness, and fatigue, making it a prominent area of research. Several studies
have successfully demonstrated the feasibility of using Electroencephalogram (EEG)
data to measure mental stress in experiments that employ stimuli or visual monitoring
(Giannakakis et al.,2019; Giannakakis et al., 2017} Panicker & Gayathri,|2019). How-
ever, developing or adapting signal processing methods to accurately extract relevant

information from EEG signals for stress detection presents several challenges.

Current research on mental stress detection using EEG data has predominantly
focused on the development and optimization of various signal processing methodolo-
gies and classification algorithms. Numerous studies have substantiated the efficacy
of EEG-based systems in monitoring neurophysiological states such as stress, drowsi-
ness, and fatigue within controlled experimental settings. These studies have leveraged
advanced machine learning techniques to classify different mental states with varying
degrees of accuracy (Badr et al., 2024; Mhaouch et al., [2024; Sahithi et al., 2024).

However, several critical limitations persist within the existing body of work, which



continue to challenge the broader applicability and generalizability of these findings.

One of the primary limitations in EEG-based stress detection studies lies in the
nature of the datasets commonly used. Many of these datasets are restricted in access,
limiting their availability to the broader research community, which hinders collabora-
tive efforts and the validation of findings across different studies (X. Hu et al., 2019).
Additionally, a significant number of these datasets focus on neurocognitive states that,
while related, do not accurately reflect the unique neural signatures of mental stress.
For instance, datasets designed to capture neural correlates of cognitive fatigue or work-
load, though relevant, may not directly correspond to the specific patterns associated
with stress (Mhaouch et al., [2024). This overlap between related but distinct mental
states can lead to inaccuracies in model training and testing, ultimately affecting the

reliability of stress detection algorithms (Bahameish et al.,|[2024).

The challenge of limited dataset access is further exacerbated by issues related
to privacy, ethics, and the high costs associated with EEG data collection (Fidas &
Lyras, 2023). Data sharing in EEG research is complex, involving technical, ethical,
and legal challenges, particularly given the sensitive nature of EEG data, which can
reveal personal cognitive and emotional information (X. Hu et al., [2019). As a result,
many datasets are kept confidential or are only available under strict access agreements,
limiting their use for broader research purposes (Rashid et al., [2020). This restricted
access not only impedes the validation of results across multiple studies but also

introduces potential biases and reduces the reproducibility of research findings.

Moreover, there is a significant inconsistency in the documentation and standardiza-
tion of the stress-inducing protocols employed during data acquisition(Giannakakis et
al.,[2019; Masri et al.,|2023). The lack of uniformity in how stressors are administered,
such as the type, duration, and intensity of the stimuli used to evoke stress responses,
introduces variability that complicates the interpretation of EEG data. This vari-
ability undermines the replicability of findings across studies and presents challenges

in the generalization of models developed under specific experimental conditions to



real-world applications. The heterogeneity in stressor documentation also impedes the
ability to perform meta-analyses or comparative studies, further limiting the cumulative

advancement of the field.

1.2 Problem Statement

The mental stress experienced by university students in Malaysia is a multifaceted
issue driven by various socio-economic, academic, and psychological factors. De-
spite the high prevalence of stress-related disorders among this demographic, current
approaches to mental health monitoring within academic settings remain inadequate
(Badr et al., [2024; Katmah et al., [2021; Mueller et al., [2022). Traditional methods,
which primarily rely on self-reported data, are inherently subjective and reactive, often
failing to detect stress until it has escalated into more severe mental health issues.
The growing interest in using EEG data to objectively measure mental stress offers a
promising avenue for more accurate and early detection (Katmabh et al., 2021; Yao et al.,
2023). However, significant challenges impede the advancement of EEG-based stress

detection systems.

A critical limitation in this field is the scarcity of publicly accessible EEG datasets
that accurately capture the neural signatures of mental stress, particularly within the
context of Malaysian university students. Most existing datasets are either restricted in
access, limiting their use for validation and generalization, or they focus on related but
distinct neurocognitive states such as cognitive fatigue or workload (Badr et al., 2024;
Katmah et al., [2021), which do not directly correspond to stress. This misalignment
hampers the development of robust machine learning models specifically tailored for

stress detection.

Furthermore, the process of data cleaning and feature extraction in EEG research
presents additional challenges. EEG signals are inherently noisy, and the presence
of artifacts can significantly distort the data, leading to inaccuracies in analysis (Fu

et al., [2022; Kit et al., 2023; Mueller et al., [2022)). Effective artifact removal and the



extraction of features that truly represent mental stress are crucial for developing reliable
stress detection models (Halim & Rehan, 2020). Moreover, the lack of consistency
in the documentation and standardization of stress-inducing protocols across studies
introduces variability that complicates the interpretation of EEG data, further limiting
the replicability and generalizability of findings (Arroyo-Araujo et al., 2022; Kabbara
et al.,[2023; Katmah et al.,[2021)).

Addressing these challenges is essential to advancing the field of EEG-based mental
stress detection. This research aims to develop a comprehensive EEG dataset specif-
ically focused on capturing mental stress among Malaysian university students. To
achieve this, the study will implement rigorous data collection protocols, ensuring the
accurate and consistent application of stress-inducing stimuli. Additionally, advanced
signal processing techniques will be employed for data cleaning and feature extraction,
facilitating the development of a machine learning model optimized for stress detection.
By bridging these gaps, this research will pave the way for the development of more
precise and scalable methodologies for mental stress detection (Giannakakis et al.,
2019; Masri et al., |2023). The outcomes of this study have the potential to facilitate
timely interventions, ultimately enhancing the mental well-being and academic success

of university students in Malaysia.

1.3 Research Questions

The study is guided by the following questions:

1. How can EEG data be effectively constructed and processed to reflect the stress

levels of Malaysian university students?

2. What are the most suitable features for accurately classifying mental stress based

on EEG signal?

3. How can the proposed model be optimized to enhance its accuracy and reliability

in classifying mental stress?



1.4 Research Objectives

The primary objectives of this thesis are as follows:

1. To construct a robust EEG dataset from participants within Malaysia, ensuring
the data reflects the unique environmental and demographic characteristics of the

local population for stress detection research.

2. To enhance the dataset’s suitability for stress classification by removing noise and

artifacts, followed by extracting key time-domain and frequency-domain features.

3. To refine and evaluate a One Dimensional Convolutional Neural Network (1D-
CNN) model with Modified Stochastic Gradient Descent (SGD) to enhance the
performance of stress classification, ensuring improved accuracy and reliability

based on the preprocessed EEG data.

1.5 Methodology Overview

The research will involve the collection of EEG data from university students in
Malaysia, under conditions designed to simulate typical academic stressors. This data
will be meticulously preprocessed to remove noise and artifacts, followed by feature
extraction (Aggarwal & Chugh, |2019; Boonyakitanont et al., 2020; Jiang et al., 2019;
Katmah et al., [2021; Sadruddin et al., 2024). A machine learning model will then be
developed and fine-tuned to classify mental stress levels with a focus on enhancing the
model’s accuracy and reliability. The flow of these methodological steps is illustrated in
the following illustration, Figure The process begins with Data Collection, where
EEG signals were recorded under controlled stress conditions. This is followed by Data
Preprocessing, where noise and artifacts were removed to ensure clean and reliable data.
Next, in Feature Extraction, key neural patterns related to stress, such as energy and
entropy, were identified. Model Development then involved using these features to build
a 1D-CNN model for classifying stress levels. Finally, Model Optimization refined the

model’s parameters to improve classification accuracy, ensuring reliable performance.



Figure 1.1: Methodology Overview

1.6 Contribution

In addressing the research questions posed, this study makes significant contribu-

tions to the following areas:

1. Establishment of a Specialized EEG Dataset for Mental Stress Research:
A comprehensive EEG dataset was developed, specifically tailored to the study
of mental stress among university students in Malaysia. This dataset, including
multiple recordings from participants subjected to controlled, stress-inducing
scenarios, fills a critical gap in the existing body of research. By providing an
extensive and contextually relevant dataset, future studies are enabled to explore

mental stress detection with greater accuracy and reliability.

2. Advancement of EEG Data Preprocessing Techniques: Recognizing the chal-
lenges inherent in analyzing EEG data, this research introduces an advanced
preprocessing pipeline designed to enhance the quality of EEG signals for men-

tal stress classification. By employing sophisticated noise reduction and artifact



removal methodologies, the pipeline significantly improves the integrity of the
data, thereby laying a stronger foundation for the development of more effective

mental health monitoring tools.

3. Refinement of 1D-CNN Architecture for Stress Classification: This study pro-
poses an innovative Convolutional Neural Network (CNN) architecture, specifi-
cally optimized for the classification of mental stress using EEG data. The archi-
tecture incorporates a Modified Stochastic Gradient Descent (SGD) algorithm,
uniquely adapted to the nuances of EEG signal processing. This contribution
not only advances the technical understanding of EEG-based stress detection but

also demonstrates superior classification accuracy compared to existing models.

1.7 Thesis Organization

The remainder of the thesis is organized as follows:

Chapter 2 introduces EEG technology as a tool for studying brain activity, highlight-
ing its role in mental stress detection. It covers electrode placement, signal character-
istics, and frequency bands, and reviews key literature on EEG-based stress detection,

identifying gaps and challenges that this study addresses.

Chapter 3 outlines the research methodology, including participant selection, ex-
perimental design, and stress-inducing tasks. It details preprocessing steps like noise
reduction and artifact removal and explains the feature extraction methods used for

subsequent stress classification.

Chapter 4 provides a comprehensive overview of the data collection process, cov-
ering participant recruitment, ethical considerations, and the experimental setup. It
also discusses the EEG equipment used and the stress-inducing tasks administered to

participants.

Chapter 5 focuses on EEG data preprocessing and feature extraction. Techniques

such as filtering and artifact removal are described, and their importance in extracting



meaningful features (e.g., energy, entropy) for stress classification is discussed.

Chapter 6 details the development of a 1D-Convolutional Neural Network (1D-
CNN) for mental stress classification, explaining the model architecture and the use
of a Modified Stochastic Gradient Descent (SGD) algorithm. Model performance is

evaluated and compared to other classification methods.

Chapter 7 revisits the study’s objectives and summarizes its findings. It highlights
the key contributions to EEG-based stress detection, such as the collection of a locally-
relevant EEG dataset, the introduction of an advanced preprocessing pipeline, and the
refinement of the 1D-CNN model. This chapter also discusses real-world applications
of the model and acknowledges the study’s limitations. Finally, it proposes directions
for future research to further improve the model’s accuracy and reliability in mental

stress detection.

1.8 Chapter Summary

This chapter addresses the significant challenge of mental stress among Malaysian
university students, underscored by various socio-economic, academic, and psychologi-
cal pressures. The chapter discusses the inadequacy of current mental health monitoring
approaches, which are predominantly reactive and reliant on subjective self-reporting,

often missing early indicators of stress.

To address these limitations, this research focuses on developing a specialized EEG
dataset tailored to the Malaysian university student demographic and creating a machine
learning model optimized for precise stress detection. The chapter outlines the key
research questions guiding the investigation, including the effective collection of EEG
data, identification of suitable algorithms, and improvement of model performance.
Additionally, it provides an overview of the research methodology, laying the foundation
for the study’s contributions. These contributions include advancements in EEG data
processing techniques and the development of a novel 1D-CNN model for mental stress

classification.



Table|1.2| presents a summary of the problem statement, objectives, research ques-

tions, and contributions of this study.
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CHAPTER 2

LITERATURE REVIEW

Chapter 2 presents the literature review on EEG-based mental stress detection. The
chapter begins with an exploration of the existing data collection procedures, focusing
on methodologies employed for acquiring EEG data in the context of mental stress
studies, including controlled experiments. This is followed by an examination of various
sampling methods and data cleansing techniques crucial for ensuring data integrity and
reliability. The discussion then moves to feature extraction methodologies, emphasizing
their role in improving the precision of stress classification. Additionally, the chapter
reviews different model used in EEG-based research, with a particular emphasis on their
effectiveness in mental stress detection. Finally, a comprehensive survey of the current
state-of-the-art approaches is presented, concluding with a gap analysis that identifies
opportunities for future research and enhancements, which will be summarized in the

final section of the chapter.

2.1 Introduction

EEG-based mental stress detection is an emerging field that harnesses the non-invasive
capabilities of EEG to evaluate psychological stress through the analysis of brain wave
patterns. By examining frequency bands such as alpha, beta, theta, and gamma,
EEG signals offer valuable insights into neural activity and mental states, making
them a powerful tool for detecting stress. (Badr et al., 2024; Bakare et al., 2024)). The
importance of datasets in this field cannot be overstated, as they serve as the cornerstone
for training and validating machine learning models designed to classify stress levels.
EEG-based stress detection relies on a range of machine learning and deep learning
techniques, making the quality and comprehensiveness of the datasets pivotal to the

accuracy and reliability of the detection models.
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For instance, models like k-Nearest Neighbors (k-NN) and Support Vector Machine
(SVM) have been employed to classify stress levels, with k-NN showing superior per-
formance in some studies (Bakare et al., 2024). Deep learning approaches, particularly
Convolutional Neural Networks (CNNs) have also been explored, with CNNs being
the most frequently used due to their ability to handle complex data representations
(Badr et al., 2024). The choice of model and its architecture significantly impacts the
classification accuracy, with some studies achieving up to 88% accuracy using spectral

and topographical data representations (Badr et al., [2024)).

Datasets play a pivotal role in the development and evaluation of these models. The
size and quality of the dataset, as well as the representation of EEG data, are critical
factors influencing model performance (Khan & Ahmad, 2024). The preprocessing of
EEG data, including artifact removal and feature extraction, is essential for enhancing
model accuracy. Techniques such as Independent Component Analysis (ICA) have been
employed to improve data quality for both offline and online stress detection scenarios
(Chang et al., 2024). The integration of EEG data with machine learning models has
shown promising results in various studies. For instance, the use of wavelet-based
feature extraction methods has been effective in classifying stress levels, achieving
high accuracy with decision tree classifiers (Kit et al.,[2023). Similarly, the application
of SVM and other machine learning algorithms has demonstrated the potential for
accurate stress detection, with some studies reporting classification accuracies as high

as 96.85% after preprocessing (Troyee et al.,[2024).

Despite these advancements, challenges remain, particularly regarding the gener-
alizability of models across different subjects and conditions. Inter-subject variability
and the need for robust models that can handle diverse EEG data representations are

ongoing areas of research (Badr et al., [2024).
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2.2 EEG: A Tool to Study Brain

In 1929, German psychiatrist Hans Berger made a significant discovery that introduced
a new diagnostic tool for neurology and psychiatry: the electroencephalogram (EEG)
(La Vaque, [1999). Since then, EEG has become one of the most important tools
for studying brain functionality. Over time, numerous portable and powerful EEG

recording devices have been developed (T. J. Sullivan et al., 2008).

EEG measures the electrical activity of the brain by detecting the voltage differences
between pairs of electrodes placed on the scalp. This method allows for the analysis of
brain activity as it responds to various natural and recurrent stimuli, which can provide
insights into different brain states and human behaviors. Although EEG has relatively
low spatial resolution, it compensates with its high temporal resolution, making it well-
suited for detecting brain waves and induced electric potentials that occur at frequencies

typically between 1 and 100 Hz (Nunez & Srinivasan, 2006} T. J. Sullivan et al., [2008)).

EEG is a highly effective tool for examining a wide range of neuronal circuits within
the human brain. By placing electrodes on the scalp, EEG captures the electrical
activity generated by neural processes, ensuring a strong connection to record this
activity accurately (Rana et al.,[2017). Thanks to its high temporal resolution, EEG is
particularly well-suited for observing the rapid changes in brain activity associated with
different mental states. The amplitude and frequency of the EEG waveform provide

valuable insights into an individual’s level of consciousness.

The five fundamental brain waves—alpha, beta, theta, delta, and gamma—each
have distinct characteristics, as shown in Table [2.1| and Figure Recent research
on mental stress has found that elevated frequencies of alpha and beta waves are often
linked to increased stress and anxiety. EEG signals, captured and recorded through
various methods such as scalp EEG, offer a detailed view of brain activity and its

connection to mental states.
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To capture these brain waves and study their relationship with mental states, EEG
signals are recorded through various methods, including scalp EEG. Figure illus-
trates a typical EEG recording setup, where a human wears a device that captures
and records EEG signals. The brain, containing approximately 100 billion neurons,
is a highly complex organ where each neuron is constantly transmitting and receiving
signals via an intricate network of connections. All thoughts and actions are encoded
in the brain’s electrical signals, which can be measured and recorded. Although EEGs
measure very low voltage potentials, they are sensitive enough to detect significant
signals, such as those generated by blinking eyelids.

Table 2.1: The Five Fundamental Brain Waves and Their Characteristics (Abhang et al.,
2016)

EEG Band | Frequency Range (Hz) Brain States

Delta ¢ 1-4 Sleep

Theta 0 4-8 Mediation, Inward Focused

Alpha « 8-12 Very relaxed, passive attention

Beta g8 13-25 Anxiety, active , external focused, relaxed
Gamma y > 25 Concentration

Figure 2.1: Brainwaves Frequencies (Abhang et al., 2016)

2.3 Overview of Existing Datasets in EEG-Based Stress Detection

The development and validation of EEG-based mental stress detection models rely

heavily on the availability of high-quality datasets. Several prominent EEG datasets

16



Figure 2.2: The electroencephalogram (EEG) of the human brain is recorded. The
patient looks at a screen that displays stimuli that can activate the brain and generate
an EEG signal. On the right, five distinct types of EEG signals are displayed.

have been widely used in emotion and stress-related studies, each contributing uniquely
to the field. This section provides an overview of some of the most influential datasets,

including DEAP, SEED, and other relevant datasets.

2.3.1 DEAP Dataset

The DEAP (Dataset for Emotion Analysis using Physiological Signals) dataset is
one of the most extensively used datasets in the study of emotion recognition and stress
detection. Created by S. Koelstra et al., 2011, DEAP contains EEG and peripheral
physiological signals recorded from 32 participants as they watched 40 one-minute-
long excerpts of music videos. The dataset is particularly valuable for its combination
of multimodal data, which includes EEG signals, facial expressions, and peripheral
physiological measures such as skin conductance and respiration (Gaddanakeri et al.,

2024).

One of the strengths of the DEAP dataset is its large number of participants, which
enhances the generalizability of the findings derived from it (Khateeb et al., 2021)). The
dataset also includes self-reported valence, arousal, and dominance ratings, allowing
researchers to explore the relationship between physiological responses and subjective

emotional experiences. The variety of stimuli used in DEAP, which are carefully
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selected to evoke a broad range of emotional responses, further increases the dataset’s

utility in studying complex emotional states and their neural correlates (Jha et al., 2024)).

However, the DEAP dataset has certain limitations. While it provides a robust
foundation for emotion-related studies, its direct applicability to stress detection is
somewhat limited (Kulkarni & Patil, 2023). The controlled laboratory environment
in which the data were collected may not fully capture the complexities of real-world
stressors. Moreover, the short duration of the stimuli (only one minute per video) may
not be sufficient to induce significant stress levels in participants, thus limiting the

dataset’s use in stress-specific research (R. A. L. Koelstra, |[2012).

2.3.2 SEED Dataset

The SEED (SJTU Emotion EEG Dataset) is another highly regarded dataset in the
field of EEG-based emotion and stress detection. Developed by Zheng and Lu, 2015,
the SEED dataset consists of EEG recordings from 15 participants as they watched
a series of film clips designed to elicit positive, neutral, and negative emotions. The
dataset is collected using a 62-channel EEG system, providing high spatial resolution
data that is particularly valuable for fine-grained analysis of brain activity associated

with different emotional states.

The SEED dataset’s strength lies in its focus on eliciting strong emotional responses,
which makes it particularly relevant for stress detection studies (Saranya et al., 2023).
The use of emotionally charged film clips as stimuli ensures that participants experience
significant emotional fluctuations, which are crucial for studying the neural correlates
of stress (Ma et al., 2022). Additionally, the dataset includes recordings from mul-
tiple sessions over different days, allowing researchers to investigate the stability and

variability of emotional responses over time (Zheng & Lu, 2015).

Despite its strengths, the SEED dataset has certain limitations. The relatively small
number of participants (15) may limit the generalizability of findings, particularly in

studies aiming to develop models that can be applied across diverse populations (W.
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Chan et al., [2023)). Furthermore, while the dataset is effective for studying emotion-
related EEG patterns, its focus on a limited set of emotions (positive, neutral, and
negative) may not fully encompass the broader spectrum of stress-related neural activity

(Zheng & Lu, 2015).

2.3.3 Other Similar EEG Dataset

In addition to DEAP and SEED, several other datasets have made significant con-
tributions to the field of EEG-based detection. The AMIGOS dataset, for example,
includes EEG, ECG, and GSR recordings from 40 participants as they watched videos
designed to induce different levels of emotional arousal and valence. The AMIGOS
dataset is particularly useful for its inclusion of both individual and group settings,
providing insights into the social context of emotional and stress responses (Miranda-

Correa et al., [2018)).

Another notable dataset is the DREAMER dataset, which contains EEG and ECG
recordings from 23 participants as they watched film clips selected to evoke specific
emotional states (Garg et al., 2022). The dataset includes self-reported valence, arousal,
and dominance ratings, making it a valuable resource for studies exploring the relation-
ship between physiological signals and subjective emotional experiences. However,
like DEAP and SEED, the DREAMER dataset’s applicability to stress detection is
somewhat limited by the nature of its stimuli, which are primarily designed to elicit

emotions rather than stress (Katsigiannis & Ramzan, [2017).

These datasets collectively provide a rich resource for researchers studying EEG-
based emotion and stress detection. However, each has its own set of limitations,
particularly in terms of applicability to stress detection. The controlled environments
and specific emotional stimuli used in these datasets may not fully capture the complex-
ity of real-world stressors, underscoring the need for the development of new datasets

that better reflect the diverse and dynamic nature of stress.
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2.4 Comparison of Dataset Characteristics

In EEG-based research, particularly in the context of mental stress detection, the
characteristics of datasets are critical in determining the validity, reliability, and gen-
eralizability of research findings. This section provides a comparative analysis of key
characteristics across major EEG datasets, focusing on demographics and sample size,

stress induction protocols, and data quality and preprocessing methods.

2.4.1 Stress Induction Protocols

The methods used to induce stress in participants are pivotal in EEG-based stress
detection research, as they directly impact the quality and relevance of the data collected.
Different stress induction protocols can result in varying levels of stress, which in turn

affects the EEG signals recorded.

In the DEAP dataset, stress induction is indirect; participants are exposed to music
videos designed to evoke a wide range of emotional responses, including stress. How-
ever, these stimuli primarily focus on general emotional arousal rather than targeted
stress induction. Consequently, while the dataset is valuable for studying emotional re-
sponses, its direct applicability to stress-specific research is somewhat limited (R. A. L.

Koelstra, 2012).

The SEED dataset employs emotionally charged film clips as stimuli, specifically
selected to induce positive, neutral, and negative emotions. Although the negative
clips are effective in inducing stress, the protocol is more emotion-focused rather than
exclusively designed for stress induction. This approach, while useful for studying the
neural correlates of emotion, may not fully capture the nuances of stress-specific EEG

patterns (Zheng & Lu, 2015).

The AMIGOS dataset utilizes a combination of video clips and a controlled group
environment to induce varying levels of emotional arousal, including stress. The

inclusion of both individual and group settings allows for the study of social stressors,
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which are prevalent in real-world scenarios. This dual approach enhances the dataset’s
value for stress research, as it more accurately mimics the complex and varied nature

of real-world stressors (Miranda-Correa et al., [2018)).

Similarly, the DREAMER dataset uses film clips as stimuli to evoke specific emo-
tional states. However, like the SEED dataset, the focus is primarily on emotion rather
than stress specifically, which may limit its utility in studies aimed at exploring the neu-
ral mechanisms of stress. The stress induction in DREAMER is incidental, resulting
from the emotional arousal induced by the stimuli rather than being a primary focus of

the experiment (Katsigiannis & Ramzan, 2017).

The stress induction protocols utilized in these datasets significantly influence the
results and their applicability to stress detection. Datasets such as AMIGOS, which
use more realistic and varied stress induction methods, are better suited for developing
models applicable to real-world stress detection. In contrast, datasets that rely on
emotion-focused stimuli, like DEAP and SEED, may be more limited in their ability to

capture stress-specific EEG patterns.

2.4.2 Data Quality and Preprocessing

Data quality and the preprocessing steps applied to EEG data are crucial factors
that determine the reliability and usability of the dataset. Effective preprocessing can
enhance the signal-to-noise ratio and remove artifacts, thereby improving the accuracy

of subsequent analyses.

The DEAP dataset includes comprehensive preprocessing steps, such as the appli-
cation of a 4-45 Hz bandpass filter to remove low-frequency drifts and high-frequency
noise. Additionally, Independent Component Analysis (ICA) is employed to identify
and remove artifacts such as eye blinks and muscle movements (Uddin, 2023). These
preprocessing steps significantly enhance the quality of the EEG data, making it more

suitable for emotional stress detection (R. A. L. Koelstra, 2012).
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The SEED dataset undergoes similar preprocessing, including bandpass filtering
and artifact removal using ICA. However, the dataset is distinguished by its high spatial
resolution, as it utilizes a 62 channel EEG system. This higher resolution allows for more
detailed analysis of brain activity but also necessitates more sophisticated preprocessing

techniques to manage the increased data complexity (Zheng & Lu, 2015).

The AMIGOS dataset employs a combination of preprocessing techniques, includ-
ing notch filtering to remove power line noise and bandpass filtering to isolate the
relevant EEG frequency bands. Artifact removal is performed using both automatic
and manual methods, ensuring that the final dataset is of high quality. The inclusion of
both individual and group data in AMIGOS also necessitates careful preprocessing to

account for potential interferences in group settings (Miranda-Correa et al., 2018)).

The DREAMER dataset applies standard preprocessing steps, including bandpass
filtering and artifact removal. However, the use of off-the-shelf, wireless EEG devices
in this dataset presents unique challenges, as these devices are more susceptible to noise
and signal degradation. Consequently, extensive preprocessing is required to ensure

the data is of sufficient quality for analysis (Katsigiannis & Ramzan, 2017).

The preprocessing methods used in these datasets are critical in determining the
final data quality. Datasets like DEAP and SEED, which employ advanced prepro-
cessing techniques such as ICA, provide high-quality data that is more reliable for
stress detection. In contrast, datasets like DREAMER, which use less sophisticated
EEG equipment, may require more extensive preprocessing to achieve comparable data
quality. The choice of preprocessing methods directly impacts the usability of the

dataset in developing accurate and reliable stress detection models.

2.5 Limitations of Existing Datasets

While existing EEG datasets have significantly contributed to the development of
emotional stress detection models, they also present certain limitations that impact their

utility, generalizability, and broader applicability in research. This section addresses
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key limitations related to access and availability, specificity to mental stress (Uddin,

2023).

2.5.1 Access and Availability

The accessibility of EEG datasets is a critical factor that influences the extent to
which researchers can utilize these resources to advance the field. Many EEG datasets,
while publicly available, come with restrictions that limit their broader use. For
instance, datasets such as DEAP and SEED, though widely used, require researchers
to formally request access, often needing to agree to specific terms and conditions
that govern the use of the data (R. A. L. Koelstra, 2012; Zheng & Lu, 2015). These
restrictions, although necessary for protecting participant confidentiality and ensuring
ethical use, can pose challenges for broader research and collaboration, particularly
for researchers with limited resources or those working in institutions without robust

support systems for data access.

Additionally, some datasets may not be freely available to the public and require
a subscription or purchase, further limiting their accessibility. For example, certain
proprietary datasets developed for commercial purposes are only accessible through
paid licenses, which can restrict the ability of academic researchers to engage with and

build upon these data resources.

The limited availability of diverse and large-scale datasets also hampers the ability to
generalize findings across different populations and settings. Datasets such as AMIGOS
and DREAMER are valuable resources but may not be as easily accessible as more
widely distributed datasets, thereby limiting the potential for widespread validation of

research findings (Katsigiannis & Ramzan, 2017; Miranda-Correa et al.,|[2018).

2.5.2 Specificity to Stress

A significant limitation of many existing EEG datasets is their focus on related

but not entirely relevant mental states, such as general emotional arousal or cognitive
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fatigue, rather than specifically on stress. For instance, the DEAP and SEED datasets,
while invaluable for studying emotional responses, primarily capture data related to
emotional arousal rather than targeted stress induction (R. A. L. Koelstra, 2012; Zheng
& Lu, 2015). This focus on broader emotional states can lead to the collection of
EEG data that may not fully capture the neural signatures of stress, thereby limiting the

applicability of these datasets in stress-specific research.

Moreover, datasets like DREAMER, which aim to induce specific emotional states
using film clips, do not directly address the nuances of stress-related brain activity
(Katsigiannis & Ramzan, [2017)). The stress responses elicited in these experiments
are often incidental and may not reflect the complexities of stress as experienced in
real-world situations (Katsigiannis & Ramzan, |2017). This limitation is particularly
critical for developing models that accurately detect and predict stress, as the neural
mechanisms underlying stress are distinct from those associated with other emotional

or cognitive states.

To advance the field of EEG-based stress detection, there is a clear need for datasets
that specifically target stress induction, employing stimuli and experimental designs
that are tailored to eliciting stress in a controlled yet ecologically valid manner. This
would help in generating more accurate and reliable models that can be applied to

real-world scenarios.

2.6 Data Collection Methodologies for EEG

The methodologies employed in collecting EEG data are critical in ensuring the
reliability, validity, and reproducibility of research findings in EEG-based mental stress
detection (Dong et al., 2024). This section delves into the various challenges associated
with EEG data collection, focusing on technical difficulties, ethical and privacy issues,

and the standardization and variability of stress-inducing protocols.
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