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PEMODELAN FARMAKOMETRIK “TIME-TO-EVENT” DAN 

PERKEMBANGAN PENYAKIT BAGI NEFROPATI DIABETIK DALAM 

PESAKIT DIABETES JENIS II DI MALAYSIA 

ABSTRAK 

Nefropati diabetis (DN) adalah komplikasi yang paling umum untuk penyakit 

diabetes mellitus jenis 2 (T2DM) serta menimbulkan beban yang besar kepada sistem 

penjagaan kesihatan di seluruh dunia. Kajian ini bertujuan untuk membangunkan 

model masa ke kejadian, (TTE) dan model perkembangan penyakit (DP) berasaskan 

farmakometrik untuk mendapatkan gambaran tentang faktor-faktor yang 

mempengaruhi perkembangan nefropati diabetis dalam kohort pesakit Malaysia, di 

samping menganalisis perbezaan dalam ciri klinikal antara pesakit dengan dan tanpa 

nefropati diabetis. Data dikumpulkan dari dua hospital penjagaan tertiari, dan 

perkembangan pesakit diikuti selama 7.2 tahun. Analisis parametrik TTE telah 

dijalankan menggunakan perisian NONMEM. Pemboleh ubah kajian ini ditakrifkan 

sebagai perkembangan proteinuria berterusan untuk tiga lawatan berturut-turut. Tiga 

model bahaya garis dasar eksponen, model bahaya Gompertz dan Weibull telah diuji. 

Untuk model asas HbA1c dan eGFR, kedua-dua model perkembangan penyakit linear 

dan bukan linear telah dinilai. Model linear mewakili model perkembangan penyakit 

paling mudah yang digunakan dalam kajian ini, dengan mengandaikan kadar 

perubahan yang berterusan dalam status penyakit dari semasa ke semasa. Perbezaan 

dalam kumpulan dalam parameter klinikal di bawah pelbagai rawatan ubat telah dinilai 

menggunakan ujian peringkat bertanda Wilcoxon, manakala analisis antara kumpulan 

dijalankan menggunakan ujian Mann-Whitney U. Kohort kajian ini terdiri daripada 

251 pesakit T2DM, dan data klinikal serta makmal yang komprehensif dikumpulkan 

untuk pembangunan model. Analisis TTE mendedahkan perkaitan yang ketara antara 
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tekanan darah sistolik (SBP) dan kandungan gula darah semasa puasa (FBS) dengan 

peningkatan risiko untuk perkembangan nefropati diabetis. Berdasarkan model akhir, 

garis dasar risiko ialah 1.006/tahun manakala risiko meningkat separuh selepas setiap 

0.7 tahun. Setiap satu unit peningkatan eGFR melebihi 85.20 ml/min/1.73m2 

mengurangkan risiko sebanyak 5%. Manakala setiap peningkatan unit dalam FBS 

melebihi 7.4 mmol/L meningkatkan risiko sebanyak 25% dan setiap peningkatan unit 

dalam SBP melebihi 132 mmHg meningkatkan risiko bahaya sebanyak 7%. Model 

linear ialah model DP paling mudah yang digunakan dalam kajian ini, di mana kadar 

perubahan status penyakit dianggap berterusan dari semasa ke semasa. Model 

perkembangan penyakit mengenal pasti FBS, umur, dan indeks jisim badan (BMI) 

sebagai faktor risiko yang memburukkan status glisemik dalam pesakit diabetes. Garis 

asas HbA1c ialah 10.1%, manakala setiap kenaikan unit dalam FBS melebihi 7.4 

mmol/L dikaitkan dengan penurunan sebanyak 0.06% dalam HbA1c dalam masa 

setahun. BMI mempunyai impak tertinggi terhadap perkembangan penyakit T2DM 

berkaitan HbA1c (0.12%/tahun). Selain itu, dalam DP berdasarkan eGFR, gangguan 

kardiovaskular (CVD) bersamaan dengan diabetes mengakibatkan penurunan eGFR 

sebanyak 1.05 ml/min/1.73m2/tahun. Setiap kenaikan unit FBS melebihi 7.4 mmol/L 

dikaitkan dengan penurunan eGFR sebanyak 0.043 ml/min/1.73m2/tahun dan ARB 

telah menunjukkan peningkatan eGFR sebanyak 0.4 ml/min/1.73m2/tahun. FBS 

muncul sebagai alternatif yang berpotensi untuk menilai profil glisemik apabila 

pemeriksaan HbA1c tidak tersedia. Selain itu, analisis konvensional mendedahkan 

perbezaan dalam parameter klinikal yang berkaitan dengan penggunaan ubat. Pesakit 

DN menunjukkan paras HbA1c dan SBP yang tinggi (p<0.001) berbanding pesakit 

bukan DN, seiring dengan peningkatan ketara secara statistik dalam BMI daripada 

garis dasar dalam pesakit DN (p=0.034). Peningkatan yang ketara dalam kedua-dua 



 

xix 

HbA1c dan BMI direkodkan pada pesakit bukan DN yang sedang menjalankan terapi 

metformin. Walau bagaimanapun, pengurangan ketara dalam tahap HbA1c 

diperhatikan pada pesakit yang menggunakan insulin, dengan peningkatan ketara 

dalam BMI yang diperhatikan pada pesakit bukan DN. Tiada perbezaan ketara dalam 

parameter klinikal antara kohort pesakit yang menerima rawatan dengan ARB atau 

ACEi (perencat enzim angiotensin). Walau bagaimanapun, penurunan ketara dalam 

eGFR juga diperhatikan pada pesakit yang diberikan CCB (penghalang saluran 

kalsium). Secara ringkasnya, kajian ini memberikan penemuan yang berharga tentang 

pemodelan berasaskan farmakometrik TTE dan perkembangan penyakit nefropati 

diabetis dalam kalangan pesakit T2DM. Penemuan ini menekankan kepentingan 

pemantauan secara rapi, pengurusan intensif glisemia, dan campur tangan berkala 

untuk faktor risiko yang boleh diubah suai untuk melambatkan permulaan dan 

perkembangan nefropati diabetis. Kajian ini juga lebih menyerlahkan potensi 

terapeutik untuk meningkatkan hasil pesakit dan menekankan kepentingan strategi 

pengurusan yang lebih peribadi atau individu untuk populasi yang berisiko tinggi ini. 

 

 

 



 

xx 

PHARMACOMETRICS TIME-TO-EVENT AND DISEASE PROGRESSION 

MODELLING OF DIABETIC NEPHROPATHY IN PATIENTS WITH TYPE 

II DIABETES MELLITUS IN MALAYSIA 

ABSTRACT 

Diabetic nephropathy (DN) is a significant complication of type 2 diabetes 

mellitus (T2DM) and poses a considerable burden on healthcare systems worldwide. 

This study aims to develop pharmacometrics-based time-to-event (TTE) and disease 

progression (DP) models to gain insights into the factors influencing the progression 

and development of diabetic nephropathy in a cohort of Malaysian patients, while also 

analysing the differences in clinical characteristics between patients with and without 

diabetic nephropathy. The data were collected from two tertiary care hospitals, and the 

patients were followed for 7.2 years. Parametric TTE analysis was conducted using 

NONMEM software. The event was defined as the development of persistent 

proteinuria for three consecutive visits. Three baseline hazard models exponential, 

Gompertz, and Weibull hazard models were tested. For the baseline HbA1c and eGFR 

model, both linear and non-linear disease progression models were assessed. The 

linear model represents the simplest disease progression model utilized in this study, 

assuming a constant rate of change in disease status over time. Within-group 

differences in clinical parameters under various drug treatments were evaluated using 

the Wilcoxon signed-rank test, while between-group analyses were conducted using 

the Mann-Whitney U Test. The study cohort consisted of 251 T2DM patients, and 

comprehensive clinical and laboratory data were collected to inform the model 

development. The TTE analysis revealed significant associations between systolic 

blood pressure (SBP) and fasting blood sugar (FBS) with an increased hazard of 

developing diabetic nephropathy. Based on the final model the baseline hazard was 
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1.006/year while the hazard increases by half after every 0.7 year. Every one unit 

increase in eGFR above 85.20 ml/min/1.73m2 decrease the hazard by 5%. While Every 

unit increase in FBS above 7.4 mmol/L increases hazard by 25% and every unit 

increase in SBP above 132 mmHg increase the hazard by 7%. Linear model is the 

simplest DP model used in the present study, which assume a constant rate of change 

of disease status over time. The disease progression models identified FBS, age, and 

body mass index (BMI) as risk factors for worsening glycaemic status in diabetic 

patients. Baseline HbA1c was 10.1%, while every unit rise in FBS above 7.4 mmol/L 

was associated with 0.06% incline in HbA1c per year. BMI has the highest impact on 

HbA1c associated disease progression of T2DM (0.12%/year). Additionally, in the DP 

based on eGFR, cardiovascular disorders (CVD) concurrent to diabetes resulted in 

decrease of eGFR by 1.05 ml/min/1.73m2/year. Every unit rise in FBS above 7.4 

mmol/L was associated with decrease in eGFR by 0.043 ml/min/1.73m2/year and 

ARBs have shown to improve the eGFR by 0.4 ml/min/1.73m2/year. FBS emerged as 

a potential alternative for evaluating glycaemic profiles when HbA1c examinations are 

not readily available. Additionally, the conventional analysis revealed differences in 

clinical parameters associated with the use of drugs. DN patients exhibited elevated 

levels of HbA1c and SBP (p<0.001) compared to non-DN patients, along with 

statistically significant escalation in BMI from baseline in DN patients (p=0.034). 

Considerable improvement in both HbA1c and BMI was recorded in non-DN patients 

on metformin therapy. However, significant reduction in HbA1c level was observed 

in patients on insulin, with a substantial increase in BMI observed in non-DN patients. 

There was no significant variance in clinical parameters between the patient cohorts 

receiving treatment with ARBs or ACEi (angiotensin converting enzyme inhibitors). 

However, a notable decline in eGFR was observed in patients administered with CCBs 
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(calcium channel blockers). In summary, this study provides valuable insights into the 

pharmacometrics-based modelling of TTE and disease progression in diabetic 

nephropathy among T2DM patients. The findings underscore the importance of close 

monitoring, intensive management of glycaemia, and timely intervention in modifiable 

risk factors to delay the onset and progression of diabetic nephropathy. The study also 

highlights potential therapeutic avenues for improving patient outcomes and 

emphasizes the significance of personalized management strategies for this high-risk 

population. 
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CHAPTER 1  

INTRODUCTION 

 Background 

Diabetes is a chronic multi-system disorder characterised by hyperglycaemia 

condition. Hyperglycaemia is associated with either insulin secretion or insulin action, 

or both.  Persistent high blood glucose level in T2DM leads to multifaceted 

complications and indelible damages to multiple organs like diabetic retinopathy (eye), 

diabetic nephropathy (kidney), diabetic neuropathy (nerves), and cardiovascular 

(blood vessels and heart)  (Saraco et al., 2021).   

According to the guidelines by the American Diabetes Association (ADA), 

diabetes is categorized into several types, including type 1 diabetes mellitus (T1DM), 

type 2 diabetes mellitus (T2DM), gestational diabetes, and other specific types of 

diabetes that are linked to various causes such as monogenic diabetes syndrome, 

diseases affecting the exocrine pancreas, and diabetes induced by drugs or chemicals. 

T1DM also referred to as insulin dependent diabetes mellitus exists in 5-10% of 

diabetic patients and is juvenile onset usually leads to absolute insulin deficiency. 

Cellular mediated autoimmune degeneration of pancreatic beta-cells leads to this type 

of diabetes and may sometime be idiopathic in nature causing insulinopenia. Such 

patients with idiopathic causes are usually prone to ketoacidosis and without proper 

evidence of autoimmunity (Saraco et al., 2021). 

T2DM is complicated in nature and usually leads to gradual decline in 

production of insulin by beta cell accompanied by insulin resistance. T2DM is also 

known as non-insulin dependent and accounts for 90 to 95% of overall diabetic 

population. T2DM usually does not have a specific aetiology but unlike T1DM it is 
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not caused by autoimmune destruction of beta cells. Overweight or obesity is one of 

the prime factors of most of the diabetic patients and it has been known as excess 

weight itself can lead to some degree of insulin resistance. Certain individuals may not 

exhibit obesity or overweight status according to conventional standards, such as 

BMI estimates. However, they may possess a higher proportion of body fat, mostly 

concentrated in the abdomen area (Karpe et al.,, 2011). T2DM often remains 

undetected for extended periods due to the slow progression of hyperglycaemia, which 

seldom reaches a severity that leads to the manifestation of diabetic symptoms.  

Patients with T2DM may appear to have normal or elevated insulin levels, but 

if their beta cell function were normal, an increase in blood glucose levels would 

have resulted in even higher insulin levels (Saraco et al., 2021). This finding illustrates 

that the insulin secretion in these individuals is inadequate in counteracting insulin 

resistance. Weight reduction and/or the use of anti-hyperglycaemic medications have 

the potential to ameliorate insulin resistance; nonetheless, it is uncommon for 

individuals to fully restore normal insulin levels. Obesity, age, and sedentary lifestyle 

all augment the likelihood of developing T2DM (Saraco et al., 2021).  

Based on the findings of the International Diabetes Federation Diabetes Atlas 

2019, it has been projected that the worldwide incidence of diabetes in the year 2019 

is around 463 million individuals, with a potential escalation to 578 million by the year 

2030 (Saeedi et al., 2019). Furthermore, it has also been observed that one in two 

diabetic patients are unaware of their condition (Saeedi et al., 2019). According to the 

National Health and Morbidity Survey (NHMS 2019) one in five adults have diabetes 

which equal a whooping 3.9 million Malaysians aged 18 and above (Chong et al., 

2022).  
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Similarly, the National Diabetes Registry of Malaysia 2020, which was 

introduced in 2009, reported in their recent survey that a mere 0.59% of patients were 

diagnosed with T1DM, 0.06% had other forms of diabetes, and the remaining 99.33% 

of patients were found to be associated with T2DM (Chandran et al., 2019). The bulk 

of the patients fell between the age range of 50 to 54 years, constituting 17.16% of the 

total sample. Additionally, the reported mean age at diagnosis was 53 years. In terms 

of comorbidities, hypertension was the most prevalent (80.0%) followed by 

dyslipidaemia (75.72%).  In addition, diabetic nephropathy (DN) was the most 

prevalent complication associated with T2DM in Malaysian population, increasing 

from 8.8% in 2013 to 14.6% in 2019 while a slight decrease was observed in 2020 

(14.38%) (National Diabetes Registry Report, 2020). The escalating surge in the 

prevalence of DN is closely associated with the concurrent growth in the prevalence 

of end-stage renal disease (ESRD), necessitating the implementation of appropriate 

measures to tackle this issue (Chandran et al., 2019). 

 T2DM Disease Progression 

T2DM is progressive and is associated with complications related to 

hyperglycaemia, which includes cardiovascular disorders (CVD), microvascular 

complications, and mortality. The progression of T2DM is characterised by a gradual 

reduction in beta cell function and an exacerbation of insulin resistance. This 

progression is accompanied by the deterioration of many indices, including HbA1c 

levels, FBS levels, and postprandial glucose levels (Nichols et al, 2007).  

The progression from a state of normal beta cells’ function to the onset of 

diabetes may be elucidated by the five phases of gradual reduction in beta cell 

functionality. The first phase, sometimes referred to as the compensation phase, is 
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distinguished by an elevation in the production of insulin by beta cells as a reaction to 

an escalation in insulin resistance, with the objective of preserving optimal levels of 

blood glucose. During this stage beta cells mass either remains normal or increased. 

An illustrative instance of this phase is the presence of insulin resistance linked to 

obesity, characterised by an elevated rate of insulin secretion and a sudden rise in 

insulin secretion in response to glucose stimulation after an intravenous glucose 

infusion (Qu et al., 2018). In stage 2, the compensatory mechanism of beta cells cannot 

maintain the normoglycaemia, hence the glucose level rise and alterations in beta cell 

functioning manifest as a decrease in acute glucose-stimulated insulin production. 

Individuals in this stage may not develop diabetes for many years. In the subsequent 

phase (unstable early decompensation), beta cell mass decreases significantly 

and insulin resistance increases in the cells and therefore, the glucose level no longer 

remains in the prediabetic range.  

Once an individual reaches the unambiguous diabetes of stage 4, although 

insulin secretion is sufficient to prevent ketoacidosis, the beta cell mass decreases by 

nearly 50 %. In most of T2DM cases, this stage remains lifelong while those with rapid 

autoimmune destruction of beta cells in T1DM may progress rapidly to stage 5. 

Marked loss of beta cells occur in the 5th stage (severe decompensation) and 

individuals become ketotic and truly dependent on insulin. Typically, this condition 

affects patients with T1DM, where beta cells have been destroyed by autoimmune 

response and very rarely occurs in T2DM patients (Weir & Bonner, 2004). 

 Microvascular and Macrovascular Complications 

The pathophysiology of vascular complications in diabetes patients is primarily 

influenced by hyperglycaemia, dyslipidaemia, epigenetic regulation, and genetics. 
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Vascular complications may be categorized into two main types: macrovascular 

complications, such as coronary artery disease and CVD, and microvascular, including 

neuropathy, nephropathy, and retinopathy. Elevated level of blood sugar leads to the 

aforementioned complications and intense management of blood sugar with anti-

diabetic agents decrease the onset as well as the progression of diabetic vascular 

complications (Barrett et al., 2017; Paneni et al., 2013). Barret et al. (2017) have 

underscored the notion that hyperglycaemia may not be the only instigator of diabetic 

vascular problems, since lesser-known variables such as hereditary and endogenous 

protective factors also play a significant role. Furthermore, it has been observed that 

multiple contributing factors like cellular signalling, environmental phenotypes and 

epigenetic regulations may play their role in diabetes associated vascular 

complications (Burg et al., 2015). As a matter of fact, endothelial, mesangial and 

retinal cells are better adapted than other cells to handle hyperglycaemia. Even with 

glucose level below the diagnostic threshold of diabetes, the detrimental effects exist 

which can be explained by the concept of glycaemic continuum during prediabetes and 

then diabetes. The occurrence of elevated blood glucose levels in the early stages, 

caused by insulin resistance linked to obesity or impaired insulin production, is 

primarily correlated with changes in the structure and function of the blood vessel wall. 

These abnormalities contribute to the development of vascular problems in individuals 

with diabetes (Paneni et al., 2013).  

 Diabetic Nephropathy 

Diabetic nephropathy (DN), also known as diabetic kidney disease (DKD), is 

a very prevalent and commonly observed complication of diabetes mellitus. Diabetes 

mellitus is known to cause DN, which is characterised by the occurrence of 
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albuminuria and a progressive deterioration of renal function. DN is a highly prevalent 

complication associated with diabetes, with an incidence ranging from 30% to 40% 

among individuals. The prevalence of DN may vary across various populations (Sagoo 

& Gnudi, 2020). Not all individuals diagnosed with T2DM necessarily develop DN; 

nonetheless, among those who do develop DN, the progression exhibits variability. 

The onset of end-stage renal disease (ESRD) and the progression of DN are initiated 

by the synthesis and dissemination of advanced glycation end products (AGEs), as 

well as glomerular haemodynamic and hormonal changes linked to increased growth 

factor levels resulting from diabetes mellitus. The aforementioned alterations result in 

the production of reactive oxygen species (ROS) and inflammatory mediators, 

ultimately leading to glomerular hyperfiltration, renal hypertrophy, a modified 

glomerular filtration rate (GFR), and clinically evident albuminuria and hypertension. 

Furthermore, it is important to note that significant vascular consequences, including 

cardiac disease and mortality resulting from cardiac arrest, may manifest at any stage 

of the evolution of T2DM, ranging from diabetes mellitus to early DN (Umanath & 

Lewis, 2018). DN is often diagnosed by clinical assessment of many factors, including 

the estimated glomerular filtration rate (eGFR) level, albuminuria measures, and other 

clinical criteria such as the duration of diabetes and the existence of diabetic 

retinopathy (Ahmad, 2015 ; Levin et al., 2013). Based on KDIGO guidelines Clinically 

DN is characterised by the presence of continuously increased levels of albumin in the 

urine and/or a prolonged reduction in eGFR below60 ml/min/1.73m2. 

Microalbuminuria is operationally defined as the quantitative measurement of urine 

albumin excretion (UAE) falling within the range of 30–300 mg/day, 20–200 μg/min 

in timed urinary collection, or 30–300 mg albumin/g creatinine in a spot specimen. 

The urine albumin-to-creatinine ratio (ACR) is considered the optimal diagnostic test 
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for albuminuria and is recommended to be performed on a spot urine sample, ideally 

collected in the morning (Chugh & Bakris, 2007;Levin et al., 2013). The eGFR is 

calculated by evaluating the concentration of serum creatinine. Patients with 

T2DM who display the presence of microalbuminuria are acknowledged as having 

incipient nephropathy. However, the development of macroalbuminuria in these 

patients is indicative of the presence of clinical or overt nephropathy (Tuttle et al., 

2014). The natural progression of DN in T2DM patients is intricate due to challenges 

in accurately determining the precise onset of T2DM. Consequently, patients may 

exhibit proteinuria and diabetic nephropathy upon kidney biopsy prior to diagnosis of 

T2DM (Samsu, 2021 ; Umanath & Lewis, 2018).  

Diabetes has reached an epidemic state and the resulted DN has become the 

most frequent cause of ESRD in most part of the world. From 2009 till 2011, it has 

been estimated that 60% of patients in Singapore, Malaysia, and Mexico had diabetes 

associated ESRD. Similarly, the incidence of ESRD was 40-50% in countries like 

Korea, Hong Kong, Philippines, Japan, the US, Israel, and New Zealand (Narres et al., 

2016). Furthermore, older age diabetic patients are at a higher risk of developing 

ESRD as observed in the US, where the patients in age group 65-74 years had the 

highest incidence of 584 per million, which was in accordance with the Australian 

Diabetes, Obesity and Lifestyle Study (AusDiab), comprising of 11,247 diabetic 

patients (Lim, 2014).  

Accordingly, the prevalence of DN in Chinese and German population was 

found to be 20-30%, while the study using National Diabetes Registry of Saudi Arabia 

reported the prevalence of DN was10.8%. The difference in the prevalence can be 

associated with the racial and ethnical differences which may contribute to the 
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development of DN (Spanakis & Golden, 2013). Similarly, in Malaysian population, 

there was an observed rise in prevalence of CKD to 15.48% and diabetic nephropathy 

accounts for 58% of the new dialysis patients. Furthermore, the prevalence of 

microalbuminuria reported in Malaysia in a study was 25.4% among T2DM patients 

(Shahrir et al., 2022). The associated factors contributing to the differences in 

prevalence may involve the standards of living, BMI and prevalence of hypertension 

which can be associated to increased salt sensitivity in Blacks and Asians, low 

responsiveness to renin-angiotensin in blacks, decreased potassium excretion, and 

variations in renal vasculature and nephron number, although some postulated 

mechanisms remain controversial (Zhang et al., 2020;Young et al., 2005). 

1.4.1 Risk Factors Contributing to Development of DN 

The development of DN in individuals with T2DM exhibits considerable 

variability and complexity. In the context of DN, the development may be attributed 

to two main categories of risk factors: modifiable and non-modifiable. The modifiable 

risk factors consist of hyperglycaemia, hypertension, and dyslipidaemia, while the 

non-modifiable risk factors include age, race, and genetic profile (Lim, 2014).  

The presence of HbA1c in blood serves as an indicator of an individual's mean 

blood glucose concentrations over the preceding two to three months, a period 

approximating the half-life of erythrocytes. Presently, the HbA1c test is widely 

acknowledged as the preferred method for diagnosing and monitoring diabetes, 

particularly T2DM. HbA1c serves as a reliable indicator of chronic hyperglycaemia 

and exhibits a strong association with the likelihood of enduring diabetic 

complications, establishing it as the preferred diagnostic tool for ongoing monitoring 

and chronic management of diabetes. However, from a diagnostic standpoint, the 
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HbA1c cut-off value remains disputed (Sherwani et al., 2016). The bonding of glucose 

to the haemoglobin molecule has a concentration-dependent relationship, wherein the 

extent of bonding increases with elevated blood glucose levels in patients with 

diabetes. HbA1c is indicative of a person’s average blood glucose level and are directly 

associated, as glucose binds to haemoglobin and becomes glycated (Herman & Fajans, 

2010). 

HbA1c not only serves as a significant biomarker for assessing long-term 

glycaemic control, but also exhibits predictive capabilities for evaluating lipid profile 

(Kidwai et al., 2020); hence, using HbA1c for monitoring glycaemic control can have 

an added advantage of identifying the patients at risk of developing cardiovascular 

disorders. Thus, a single HbA1c test provides valuable insight for effective 

management of chronic conditions (Khan et al., 2007). 

In addition to aforementioned risk factors, susceptibility factors including age, 

gender, race, and family history, as well as initiation factors such as hyperglycaemia 

and acute kidney injury, and progression factors such as hypertension, dietary factors, 

and obesity, collectively contribute to the pathogenesis of DN. The most prevalent and 

well-established risk factors for DN are hypertension and hyperglycaemia. (Alicic et 

al., 2017).   

  Hyperglycaemia 

Hyperglycaemia is a key factor in the development of DN due to its effects on 

glomerular and mesangial cells; however, it is not the sole contributory factor. 

Mesangial cells are essential for the maintenance of glomerular capillary structure and 

smooth-muscle activity-mediated regulation of glomerular filtration. Hyperglycaemia 

is associated with increased mesangial cell proliferation and hypertrophy, as well as 
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increased matrix synthesis and thickness of basement membrane (Dronavalli et al., 

2008). Increased mesangial cell matrix production and mesangial cell apoptosis have 

been associated with hyperglycaemia.  The proliferation of mesangial cells appears to 

be partially mediated by an increase in the glucose concentration of mesangial cells. 

Overexpression of glucose transporters such as glucose transporter 1 (GLUT1) and 

GLUT4, which increases glucose entrance into the cells, can induce comparable 

alterations in mesangial function under normal glucose conditions (Lin et al., 2006; 

Mishra et al, 2005). Hyperglycaemia may also boost vascular endothelial growth 

factor (VEGF) expression in podocytes, resulting in a significant increase in vascular 

permeability (Chen et al., 2007). However, hyperglycaemia is not solely responsible 

for the development of diabetic nephropathy. Experiments in which non-diabetic 

kidneys were transplanted into diabetic patients revealed that nephropathy developed 

irrespective of glucose control. Thus, hyperglycaemia alone may be responsible but 

insufficient to produce renal injury (Thomas et al., 2015). To elucidate the pathogenic 

effects of hyperglycaemia on tissue, three distinct processes have been postulated: non-

enzymatic glycosylation leading to the formation of advanced glycosylation end 

products, activation of PKC, and augmentation of the aldose reductase pathway. 

Oxidative stress is shown as a common factor throughout all three pathways 

(Dronavalli et al., 2008). 

The glycosylation of tissue proteins has a role in the progression of diabetic 

nephropathy and associated microvascular complications. Chronic hyperglycaemia 

induces some of the excess glucose to bind to free amino acids on circulating or tissue 

proteins. Binding of glucose to amino acids leads to the development of advanced 

glycation end products (AGEs). AGEs can accumulate in the glomerular membrane 

and surrounding tissues, promoting inflammation, oxidative stress, and fibrosis, all of 
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which contribute to the progression of DN (Woodhams et al., 2021). These 

sophisticated products have the potential to impact the pathogenesis of diabetic 

nephropathy by altering signal transduction pathways via the modulation of soluble 

signals, including cytokines, hormones, and free radicals (Singh et al., 2014). As AGEs 

are normally eliminated in the urine, their levels in the blood are increased in patients 

with diabetes, particularly those with renal failure. The overall outcome is tissue 

accumulation of AGEs (partially via collagen cross-linking), which contributes to the 

associated renal and microvascular complications. Furthermore, AGEs products 

interact with the AGE receptor, resulting in a dose-dependent decrease in nitric oxide 

concentrations (Dronavalli et al., 2008; Yamagishi & Matsui, 2010). 

Polyols are thought to be involved in the pathogenesis of diabetic nephropathy. 

Multiple studies have demonstrated a reduction in urine albumin excretion in animals 

given aldose reductase inhibitors, however these agents have not been extensively 

examined in humans, and the results are ambiguous (Dronavalli et al., 2008). 

 Hypertension 

Patients with diabetes are almost twice as likely to have hypertension as the 

general population (Petrie et al., 2018). According to International society of 

Hypertension (ISH) in the presence of diabetes, hypertension is defined as systolic 

blood pressure ≥130 mmHg or diastolic blood pressure ≥80 mmHg (Unger et al., 

2020). In T2DM, hypertension frequently precedes renal dysfunction. The observed 

association between glucose intolerance and hypertension might potentially be 

elucidated by the presence of common risk factors, such as obesity. In a study, 58% of 

newly diagnosed T2DM patients (without proteinuria) were already hypertensive, 

while in other studies the proportion was as high as 70%. Hypertension accelerates the 
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progression of renal disease and contributes to the elevated prevalence of 

cardiovascular disease in diabetic population (Van Buren & Toto, 2011). The elevation 

of blood pressure and the onset of hypertension in individuals with diabetes and 

nephropathy may be attributed to a multitude of factors. The primary mechanisms 

contributing to hypertension in individuals with T2DM are the expansion of volume 

resulting from enhanced renal sodium reabsorption and the constriction of peripheral 

blood vessels owing to dysregulation of factors that regulate peripheral vascular 

resistance. In this context, hypertension is caused by the activation of the RAS, the 

overexpression of endothelin-1 (ET-1), the upregulation of reactive oxygen species, 

and the downregulation of nitric oxide (NO). Significantly, a number of these 

pathogenic variables have local non-haemodynamic effects that can exacerbate kidney 

disease and cardiovascular disease in diabetic and kidney disease patients (Sugahara 

et al., 2021). 

The RAS is vital for blood pressure and fluid homeostasis. Additionally, 

disruption of the system can increase tissue injury in chronic disorders such as 

hypertension, heart failure, and kidney disease. These mechanisms through which the 

RAS promotes disease development are most evident in diabetic nephropathy. The role 

of RAS is implicated in diabetic nephropathy based on animal model studies and 

randomised clinical trials demonstrating the effectiveness of angiotensin-converting 

enzyme inhibitors (ACEis) and angiotensin-receptor blockers (ARBs) in slowing the 

progression of renal disease (Gurley & Coffman, 2007). Angiotensin II (ANG II) 

produced locally exerts a variety of significant haemodynamic effects. Sodium 

reabsorption is enhanced in the proximal tubule, and predominantly causes efferent 

arteriolar vasoconstriction and raises the pressure and permeability of glomerular 

capillaries. Local, non-haemodynamic outcomes include increased cytokine 
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production; proliferation of glomerular and tubular cells; accumulation of extracellular 

matrix; and the generation of reactive oxygen species (ROS). When combined with 

the effects of hyperglycaemia, which itself promotes ANG II release, this provides a 

potent mix for the development and progression of diabetic kidney disease (Satirapoj 

& Adler, 2014).  

  Dyslipidaemia 

Additionally, there is substantial evidence that the atherogenic mixed 

dyslipidaemia profile associated with increased triglycerides and low high-density 

lipoprotein (HDL) plays a crucial role in the development and progression of diabetes-

related microvascular problems. Raised triglyceride levels and triglyceride-rich very 

low density lipoprotein (VLDL) appear to play a significant role in the progression of 

retinopathy and albuminuria (Kaysen & Eiserich, 2004). Additionally, elevated levels 

of apolipoprotein C-III, a non-competitive inhibitor of lipoprotein lipase activity, and 

increase in VLDL and impair arterial relaxation are predictive of renal disease and 

CVD development. Notably, it has been demonstrated that elevated plasma levels of 

apolipoprotein C-III are highly associated with proteinuria in individuals with T1DM 

(Klein et al., 2004). Microalbuminuria and decreased GFR associated with decreased 

renal function contribute to endothelial dysfunction as well. As the renal function 

declines, hepatic synthesis of apolipoprotein A-I that is the primary apo-lipoprotein in 

HDL, diminishes, leading to a decline in plasma HDL cholesterol level. 

Apolipoprotein A-I is also a significant activator of lecithin–cholesterol 

acyltransferase, which is required for HDL maturation, and hence substantially impairs 

the quality of HDL. Additionally, inflammation results in further structural and 

functional abnormalities in HDL. Thus, key atheroprotective properties of HDL are 
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compromised, increasing the risk of oxidative damage to the vasculature.  Oxidative 

stress plays a significant role in the pathogenesis DN by promoting inflammation, 

endothelial dysfunction, and fibrosis in the kidneys. (Brown, 2008; Misra et al., 2003). 

Furthermore, obesity has been linked to an increased incidence of diabetic 

nephropathy. Abdominal obesity, as measured by waist circumference, was linked 

with a greater prevalence of albuminuria but did not predict a reduction in GFR in the 

Diabetes Control and Complications Trial (DCCT). Weight loss, on the other hand, 

decreases urine albumin excretion and avoids GFR reduction (Saiki et al., 2005). In 

both T1DM and T2DM patients, smoking is related to an increase in albuminuria and 

a decrease in GFR (Chuahirun et al., 2004). Advanced age patients with T1DM and 

T2DM have an increased risk of nephropathy. This relationship appears to be unrelated 

to the duration of diabetes. Female sex was related to a lower risk of progression from 

mild to severe albuminuria or end-stage renal disease (ESRD) in the DCCT/EDIC 

(Epidemiology of Diabetes Interventions and Complications) trial. (De Boer et al., 

2011; Nathan, 2014).  

1.4.2  Diagnosis of Diabetic Nephropathy 

DN is clinically diagnosed using eGFR and albuminuria measures, in 

combination with clinical criteria including the duration of diabetes and the existence 

of diabetic retinopathy (Alicic et al., 2017). DN is defined clinically as the presence of 

a persistent albumin-to-creatinine ratio of ≥30 mg/g in the urine and/or a prolonged 

reduction in eGFR below 60 ml/min/1.73 m2 (Selby et al., 2020). DN screening should 

begin five years following diagnosis for individuals with T1DM and at the time of 

diagnosis for all individuals with T2DM. The prevalence of diabetic retinopathy in 

individuals with albuminuria is highly indicative of DN. The urine albumin-to-
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creatinine ratio is considered the optimal diagnostic test for detecting albuminuria, and 

it is recommended to be performed using a spot urine sample, ideally collected in the 

morning. The estimated glomerular filtration rate (eGFR) is determined using the 

serum creatinine concentration (Tuttle et al., 2014). Although the chronic kidney 

disease-Epidemiologic Prognosis Initiative (CKD-EPI) equation is more accurate, 

particularly for eGFR values in the normal or near-normal range, clinical laboratories 

commonly report the Modification of Diet in Renal Disease (MDRD) equation. 

(Johnson et al., 2012).  

The initial MDRD Study equation was created using 1628 participants with 

non-diabetic kidney disease predominately. It was based on six variables: age, gender, 

ethnicity, serum levels of creatinine, urea, and albumin. To ease clinical application, a 

4-variable equation comprised of age, sex, ethnicity, and serum creatinine levels was 

presented. This equation is now widely accepted, and numerous clinical laboratories 

publish GFR estimates using it (Levey et al., 2006). Extensive study of the MDRD 

Study equation reveals that it performs well in people with lower GFR levels but 

performs inconsistently in populations with higher GFR levels. Variability between 

clinical laboratories in the calibration of blood creatinine assays contributes error in 

GFR estimates, particularly at high levels of GFR, and may partially account for the 

inferior performance in this range (Michels et al., 2010).  

The accuracy of the MDRD equation in predicting GFR is most reliable for 

individuals with modest renal impairment, considering that the equation was 

developed using a population characterised by suboptimal kidney function. In 

individuals with a normal eGFR >90 mL/min/1.73m2, MDRD tends to underestimate 

renal function. In 2009, the CKD-EPI developed and verified a novel equation with 
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the aim of achieving comparable precision to the MDRD equation for GFR values 

below 60 mL/min/1.73m2, while also providing enhanced accuracy for higher GFR 

values. This was done in order to mitigate the issue of over-diagnosing CKD by 

employing the MDRD equation (Florkowski & Harris, 2011). The revised CKD-EPI 

equation was derived from 8254 data points collected from six trials and four clinical 

populations, with original serum creatinine values recalibrated using the Roche 

enzymatic approach. The CKD-EPI equation consists of log serum creatinine 

(modelled as a 2-slope linear spline with sex-specific knots at 62 mol/L in women and 

80 mol/L in men), with gender, race, and age on the natural scale. Therefore, there are 

effectively four equations for whites (men, women, above the knot value, below the 

knot value) and four equations for African-Americans, where a separate component is 

applied. In the subgroup with eGFR <60 ml/min/1.73m2, the CKD-EPI equation was 

found to be as accurate as MDRD, and much more accurate in the subgroup with eGFR 

>60 ml/min/1.73m2 (Levey et al., 2009; Florkowski & Harris, 2011). In certain 

scenario CKD-EPI may be superior over MDRD especially when eGFR is above 60 

mL/min/1.73 m² or in populations without significant kidney impairment, but still 

literature is suggestive of the equality in overall performance of MDRD when 

compared to CKD-EPI. CKD-EPI has demonstrated superior accuracy in estimating 

eGFR in individuals with normal to near-normal kidney function, reducing the risk of 

overestimating kidney function compared to MDRD. CKD-EPI has been shown to 

perform better in estimating eGFR in older adults compared to MDRD (Matsushita et 

al., 2012; Matsushita et al., 2010; Michels et al., 2010; Stevens et al., 2010). Present 

study incorporated MDRD for the measurement of eGFR. The reason behind using 

MDRD was that the equation has been in use for a longer time and has been extensively 

validated in various populations. Furthermore, the study centres mostly used MDRD 
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for calculating eGFR. Lastly, in stable eGFR MDRD and CKD-EPI offer almost the 

same accuracy.  

To confirm albuminuria or a low eGFR, two abnormal readings must be taken 

at least three months apart. If characteristics not associated with DN are present, 

alternative causes of renal disease must be investigated. Atypical characteristics 

include an instant onset of low eGFR or a rapid decline in eGFR, an abrupt rise in 

albuminuria or the development of nephrotic or nephritic syndrome, refractory 

hypertension, and signs or symptoms of another systemic disorder, as well as a 

decrease in eGFR of up to 30% within two to three months following the initiation of 

RAS inhibitors. (Alicic et al., 2017; Rocco & Berns, 2012). 

1.4.3  Biomarkers for Detecting DN 

Albuminuria as a measure of DN has limitations since many individuals exhibit 

GFR decline without change in albuminuria or even normo-albuminuria (Perkins et 

al., 2010). Moreover, despite normo-albuminuria, histologically established advanced 

diabetic glomerular lesions can form.  Likewise, macroalbuminuria is a better predictor 

of disease progression than low-grade albuminuria (Perkins et al., 2007). As a result, 

there is interest in developing biomarkers that might be used to detect DN sooner and 

to assess progression risk. Urine micro ribonucleic acid (RNA) profiling is also of 

relevance, however studies in that field is still very preliminary (Distefano et al., 

2013). Currently, the most promising biomarker is serum Tumour Necrosis Factor 

Alpha (TNF-α) receptor levels, which may be used to predict the development of CKD 

and ESRD in type 1 and type 2 diabetic patients. Along with albuminuria, the TNF-

α receptor level was of particular importance in patients with T2DM (Niewczas et al., 

2012). Serum uric acid is another indicator that may be pathogenic. Conflicting results 
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have been obtained from studies using tubular biomarkers. These biomarkers have not 

been shown to contribute value to traditional prediction models in the larger studies. 

Additional research is required to elucidate the clinical relevance of biomarkers (Lim, 

2014). 

1.4.4  Management of Diabetic Nephropathy  

The development of DN is influenced by multiple risk factors, necessitating 

the use of multifactorial interventional techniques for the management of patients with 

DN. The multifactorial strategy includes aggressive approaches in the reduction of 

blood glucose and blood pressure level, reduction of level of cholesterol along with 

dietary approaches and smoking cessation (Fineberg et al., 2013).  

The major emphasis in mitigating the development of DN has always been on 

intense treatment of hyperglycaemia. Certain drugs, such as PPAR- γ inhibitors 

(pioglitazone, rosiglitazone), have shown antifibrotic and anti-inflammatory properties 

in the renal tissue of diabetic rats, with their ability to reduce glucose levels. In 

addition, the incorporation of rosiglitazone into metformin treatment for T2DM has 

shown improvements in albuminuria and blood pressure, regardless of glycaemic 

control. (Ko et al., 2008; Zhang et al., 2008). In certain DN model, it has been shown 

that DPP-4 inhibitors have properties that might potentially mitigate inflammation and 

apoptosis. Similarly, it has been shown that sitagliptin has efficacy in decreasing 

albuminuria in individuals with T2DM, regardless of HbA1c levels. Conversely, 

algoliptin has been linked to a decrease in oxidative stress but does not exhibit any 

beneficial effects on renal function. (Kodera et al., 2014; Mori etal., 2014). Lastly, 

empagliflozin, sodium glucose cotransporter-2 (SGLT-2) inhibitor ) has effects on 



 

19 

tubuloglomerular feedback and may be efficient in reducing hyperfiltration (Cherney 

et al., 2014).  

Additional comprehensive studies are required to determine the comparative 

efficacy of atypical therapy alternatives which are not implied in clinical settings on 

conventional basis such as vitamin D in managing hyperglycaemia, in order to 

ascertain their potential superiority or inferiority to conventional treatment choices. 

The use of different vitamin D derivatives in the management of renal diseases has 

been extensively documented throughout history. Several studies have shown that 

vitamin D compounds may potentially reduce overall death rates in individuals with 

chronic kidney disease (Yeung et al., 2023). There are many potential mechanisms 

that might explain the ability of vitamin D to reverse the progression of DN. These 

mechanisms include enhanced glucose metabolism, diminished stimulation of the 

RAS, and reduced fibrosis. Moreover, the underlying processes that explain the cross-

sectional correlation between vitamin D and DN are yet to be elucidated. Animal 

studies have shown a correlation between the knockout of the vitamin D receptor in 

diabetic mice and the development of severe albuminuria and glomerulosclerosis. On 

the other hand, it is possible that vitamin D has the potential to mitigate the 

advancement of DN via its ability to augment insulin production, impede the 

deterioration of beta-islet cells, modulate osteocalcin, and therefore promote glucose 

metabolism (Derakhshanian et al., 2015). 

The various effects of the RAS on the development of DN necessitate the early 

administration of RAS inhibitors as a crucial step in avoiding the onset and progression 

of nephropathy in individuals with diabetes mellitus. This therapy is already used in 

clinical practise and should be a part of every diabetes patient's optimal management 
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(Wolf, 2004). Table 1.1 provides a comprehensive summary of the various 

pharmacological alternatives to antidiabetic medications, along with their effects on 

proteinuria and renal function. 

Table 1.1 Pharmacological treatment of DN 

Drug (s) Antiproteinuric 
Preserve 

GFR 
Diabetes type 

ACEi ++ ++ T1/T2DM 

ARB ++ ++ T2DM 

ACEi + ARB +++ - T1/T2DM 

Aldosterone Antagonist + ? T2DM 

Aldosterone Antagonist + 

ARB/ACEi 
+++ ? T1/T2DM 

Renin Inhibitor ++ ? T2DM 

Renin Inhibitor + 

ACEi/ARB 
+++ - T2DM 

Non-dihydropyridine CCB + ? T2DM 

Non-Dihydropyridine CCB 

+ACEi/ARB 
++ ? T2DM 

Dihydropyridine CCB - - T2DM 

Allopurinol ? ? T2DM 

Statin + ? T2DM 

Vitamin D + ? T2DM 

+ data exist to indicate benefit; − data exist to indicate lack of benefit or harm;? insufficient data for 

conclusion, possible benefit.  ACEi (angiotensin converting enzyme inhibitors), ARBs (angiotensin 

receptor blockers), CCB (calcium channel blocker)  

Adapted from Lim, A. (2014). Diabetic nephropathy – Complications and treatment. International 

Journal of Nephrology and Renovascular Disease, 7, 361–381.  

Samsu, N. (2021). Diabetic Nephropathy: Challenges in Pathogenesis, Diagnosis, and Treatment. 

BioMed Research International, 2021. 

 

1.4.5  Regression of Proteinuria 

As a matter of fact, when morphological changes associated with diabetic 

nephropathy develop i.e., glomerulosclerosis or interstitial fibrosis, the chances of 

regression seem very theoretical and the progression to ESRD seems obvious. 

However, there are a few evidences from certain clinical studies, which indicates that 
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aggressive control of blood pressure with RAS inhibitors may lead to remission of 

overt proteinuria. Furthermore, aggressive approaches by incorporating ACE have 

been found to induce regression in experimental nondiabetic models of 

glomerulosclerosis (Adamczak et al., 2003; Hovind et al., 2004). Nonetheless, proper 

understanding of the complex pathophysiology of DN and instigating multifactorial 

management strategies may effectively help in minimizing the development of DN or 

inducing regression.  

  Pharmacometrics 

Pharmacometrics refers to the scientific discipline that involves the 

development and utilization of mathematical and statistical techniques. Its primary 

objectives include: (a) the characterization, comprehension, and prediction of the 

pharmacokinetics and pharmacodynamics behaviour of drugs, (b) the quantification of 

uncertainty associated with information pertaining to that behaviour, and (c) the 

rationalization of data-driven decision-making within the contexts of drug 

development and pharmacotherapy (Williams & Ette, 2006). In a subsequent study 

conducted in 2008, Barret et al. proposed an expanded conceptualization of 

pharmacometrics as a scientific discipline that encompasses the development of 

mathematical models to characterise and quantify the interactions between xenobiotics 

and patients. These models encompass various aspects such as biology, pharmacology, 

disease, and physiology, and aim to elucidate both the positive therapeutic effects and 

potential adverse reactions that arise from these interactions (Barrett et al., 2008). 

Furthermore, the Unites States (US) Food and Drug Administration (FDA) has 

concisely described pharmacometrics as an emerging science that quantify drug, 

disease, and trail information to aid efficient drug development or regulatory decision. 
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Drug models is a description of relationship between exposure (pharmacokinetics 

(PK)), response (pharmacodynamics (PD)), for both desired and undesired effects, as 

well as characteristics of the patients. On the other hand, disease models describe the 

association between biomarkers (covariates) and clinical outcome, disease 

progression, and placebo effects. In addition, trial models define inclusion and 

exclusion criteria, patient dropout and adherence. These description shows that 

pharmacometrics is a broad term, and not necessarily related only on the typical focus 

of pharmacokinetics/pharmacodynamic and clinical pharmacology (Bhavatharini et 

al., 2022). 

Pharmacometrics analysis often integrates non-linear mixed effect models 

(NLME), which enable simultaneous estimate of mean and variance of parameters 

derived from individuals within the research population describing a biological 

process. (Sheiner & Ludden, 1992). These models provide a means to account for 

inter-individual variabilities and estimate the mean values of parameters within the 

populations under investigation. However, it is important to note that these models 

may also be incorporated into the analysis of joint modelling, particularly in the 

context of PK and PD data, which pertain to biological responses. All these analyses 

using NLME models provide significant contributions to the population approach. 

Maximum likelihood estimation is widely recognized as the primary approach used to 

get parameter estimates. (Davidian & Giltinan, 2003; Karlsson et al., 1995).  

The population approach in pharmacometrics encompasses the use of 

multilevel modelling or mixed effects modelling techniques. The objective of these 

models is to estimate the parameter values by leveraging observed data and known 

covariates  (Standing, 2017). Variabilities are inevitable due to the fact that PKPD data 
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frequently consists of multiple data points from numerous individuals. To explain all 

of these variations and reduce bias in parameter estimates, mixed effect modelling 

must be incorporated. In mixed effects models, parameter level variability exists, 

permitting parameters to vary between individuals. (Upton & Mould, 2014). Random 

effects consist of three levels of variability, namely interindividual variability (IIV), 

residual variability, and inter-occasion variability (IOV). IIV refers to the variation in 

parameter values observed among different individuals. Residual variability represents 

the differences between individual predictions of parameter values and actual 

observations. IOV describes the variation in parameter values observed between 

different occasions within the same individual (Mats O Karlsson et al., 1995). 

1.5.1  Population Modelling 

As explained above, utilizing data obtained from clinical trials, 

pharmacometrics modelling aims to develop mathematical models that characterise 

and quantify drug behaviour and action, as well as disease progression. As humans 

(patients and healthy volunteers) vary, it is necessary to account for these differences 

in pharmacometrics models. The integration of population modelling into the 

discipline of PK-PD analysis necessitated the adoption of a two-stage approach for 

defining PK-PD interactions. The estimation of model parameters is conducted 

separately for each individual, after which summary statistics are computed on these 

individual parameters to evaluate population parameters, namely the mean, as well as 

the variability of the data  (Karlsson et al., 2010). 

Mixed effects modelling is an alternative to the conventional two-stage 

method, in which data from all individuals are used simultaneously to calculate 

population parameters (means and variances) (Dingemanse & Dochtermann, 2013). 
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The term "mixed" pertains to the use of both fixed effects, which characterise average 

individual (i.e., the mean), and random effects, which define the components of 

variability in the data. In theoretical terms, random effects include two distinct levels: 

the residual error, which represents the disparity between individual predictions and 

observations, and the inter-individual variability (IIV), which denotes the variance 

seen among individuals. Inter-occasion variability (IOV) is a third degree of variability 

that can be introduced if individual parameters vary between occasions arbitrarily or 

as a result of an unknown physiological process. Additional causes of variability, such 

as inter-study variability, may be accounted for in the same manner as IOV (Zuur et 

al., 2009). 

Nonlinear mixed effects modelling is a sort of population-based analysis used 

to analyse biologically derived data with nonlinear patterns between dependent and 

independent variables, example as the nonlinear relationship between hyperglycaemia 

and eGFR in a disease progression model. NLME models typically have three model 

components: the structural model, the stochastic model, and the covariate model. 

Model development often adheres to a fundamental methodology in which the 

structural and stochastic model is determined first, followed by the construction of 

covariate models that link relevant elements to model parameters (Owen & Fiedler, 

2014). 

There are several software packages available for NLME modelling. The use 

of different estimation methods is the primary difference between the packages. 

NONMEM (Nonlinear Mixed Effects Modelling) is the most frequently applied 

software package for population PK/PD/DP modelling (Smith, 2003). It permits model 

construction and parameter estimation using a population-based method. NONMEM 


