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FORMULASI DAN PENILAIAN IN VITRO TAMOXIFEN GEL ETHOSOM 

UNTUK  PENYAMPAIAN TRANSDERMAL

ABSTRAK 

Kanser payudara menimbulkan kebimbangan kesihatan global yang ketara, 

menyumbang kepada 2.3 juta kes dan 685,000 kematian pada 2020. Antara kes ini, 

dua pertiga melibatkan tumor positif reseptor hormon dicirikan oleh reseptor estrogen 

yang mendorong pertumbuhan kanser. Tamoxifen merupakan terapi konvensional dan 

langkah pencegahan untuk wanita yang berisiko atau sudah mengalami kanser 

payudara positif reseptor hormon. Akan tetapi, tamoxifen oral menghadapi halangan 

seperti penyerapan terhad akibat hidrofobisiti dan kesan laluan pertama hati, bersama 

dengan kesan sampingan yang teruk termasuk penyakit hati berlemak, darah beku dan 

peningkatan risiko kanser endometrium. Untuk mengurangkan kesan buruk ini, kajian 

ini menganalisis penghantaran transdermal tamoxifen setempat menggunakan sistem 

etosomal sebagai laluan alternatif kepada pengambilan oral. Kerja penyelidikan ini 

melibatkan kajian tiga kelas ethosom yang berbeza: transethosom yang menggunakan 

Tween 20®, Span 20®, dan Span 80®, bilosom yang menggunakan natrium 

taurocholate dan natrium kolat, dan invasom yang menggabungkan limonene dan 

isophytol. Kajian ini merangkumi tujuh reka bentuk faktorial 24 yang berasingan untuk 

menilai kesan lipid, etanol, kepekatan penambah penembusan dan masa 

penyemperitan kepada parameter utama seperti saiz zarah (PS), penyebaran (Đ), dan 

potensi zeta (ZP). Hanya formulasi yang memenuhi kriteria tertentu disambung ke 

kajian seterusnya iaitu keberkesanan perangkap. Antara kepekatan tamoxifen (0.6, 1, 

dan 1.4 mg/ml) yang dikaji, 1 mg/g telah dipilih. Kepekatan ini dikenal pasti sesuai 

untuk menghasilkan ciri-ciri formulasi yang padan untuk penghantaran ubat 
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transdermal dan dicalonkan untuk kajian yang selanjutnya. Sistem etosomal yang 

optimum telah dibangunkan menjadi bentuk gel dan bereksperimen dengan pelbagai 

asas polimer, termasuk Carbopol 940®, Poloxamer 407®, dan HPMC. Antaranya, 

hanya HPMC 6% w/w berjaya menghasilkan gel dalam julat PS, Đ dan ZP yang 

dikehendaki dan mengekalkan tahap pH mesra kulit. Imej TEM telah mengesahkan 

integriti struktur vesikel etosomal dalam matriks gel. Penilaian reologi kelikatan dan 

kebolehtebaran memenuhi syarat gel yang berjaya bagi sistem etosomal. Kajian 

resapan kulit Tamoxifen ex vivo menunjukkan bahawa gel yang diformulasi dengan 

Span 20® (transethosomal) mempamerkan prestasi yang unggul, diikuti oleh gel 

berasaskan limonene (invasomal) dan gel berasaskan Tween 20® (transethosomal). 

Gel bilosomal secara perbandingan adalah kurang berkesan dalam menggalakkan 

penghantaran transdermal tamoxifen. Pada peringkat selular, ujian MTT pada garisan 

sel MCF-7 mendedahkan bahawa gel berasaskan Span 20® mempunyai sitotoksisiti 

dan nilai IC50 yang tertinggi, diikuti oleh gel berasaskan limonene (invasomal) dan 

gel berasaskan Tween 20® (transethosomal). Mengenai aktiviti antioksidan, hanya gel 

invasomal yang mengandungi bahan eksipien terpene seperti limonene dan isophytol 

telah menunjukkan potensi antioksidan. Akhir sekali, kajian kestabilan menunjukkan 

bahawa keadaan penyimpanan secara penyejukan adalah optimum untuk mengekalkan 

kestabilan fizikal gel, terutamanya dari segi PS, Đ, dan kandungan ubat yang sejajar 

dengan keperluan untuk penghantaran ubat transdermal. Penyelidikan ini 

menggariskan potensi gel transethosomal dan invasomal, terutamanya dengan Span 

20® dan limonene dalam meningkatkan kebolehtelapan ubat dan sitotoksisiti terhadap 

sel-sel kanser. Kajian ini telah menandakan satu langkah besar ke arah pengurusan 

kanser payudara yang lebih selamat dan berkesan. 
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FORMULATION AND IN VITRO EVALUATION OF TAMOXIFEN 

ETHOSOMAL GELS FOR TRANSDERMAL DELIVERY 

ABSTRACT 

Breast cancer (BC) poses a significant global health concern, accounting for 

2.3 million cases and 685,000 deaths in 2020. Among these cases, two-thirds involve 

hormone receptor-positive tumours, characterised by estrogen receptors that fuel 

cancer growth. Tamoxifen stands as the conventional therapy and preventive measure 

for women at risk or already afflicted by hormone receptor-positive BC. However, oral 

tamoxifen encounters obstacles such as limited absorption due to hydrophobicity and 

liver first-pass effect, along with severe side effects including fatty liver disease, blood 

clots, and a heightened risk of endometrial cancer. To mitigate these adverse effects, 

this work investigated the localised tamoxifen transdermal delivery utilising the 

ethosomal system as an alternative administration route to oral intake. The current 

research work has involved studying three distinct classes of ethosomes: 

transethosomes employing Tween 20®, Span 20®, and Span 80®, bilosomes using 

sodium taurocholate and sodium cholate, and invasomes incorporating limonene and 

isophytol. The study encompassed seven separate 24 factorial designs to assess the 

impact of lipid, ethanol, penetration enhancer concentrations, and extrusion times on 

key parameters like particle size (PS), dispersity (Đ), and zeta potential (ZP). Only 

formulations meeting specific criteria proceeded to entrapment efficacy studies. 

Among the investigated incorporated concentrations of tamoxifen (0.6, 1, and 1.4 

mg/ml), 1 mg/g was selected. The concentration was identified as suitable for 

producing ideal formulation characteristics for transdermal drug delivery and 

nominated for further investigation. The optimised ethosomal systems developed into 
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a gel dosage form by experimenting with various polymer bases, including Carbopol 

940®, Poloxamer 407®, and HPMC. Among these, only HPMC 6% w/w yielded gels 

within the desired PS, Đ, and ZP ranges, maintaining skin-friendly pH levels. TEM 

images confirmed the structural integrity of the ethosomal vesicles within the gel 

matrix. Rheological assessments of viscosity and spreadability met the requisites for 

successful gels of the ethosomal systems. Tamoxifen ex vivo skin permeation studies 

indicated that the gel formulated with Span 20® (transethosomal) exhibited superior 

performance, followed by the limonene-based gel (invasomal) and the Tween 20®-

based gel (transethosomal). Bilosomal gels were comparatively less effective in 

promoting tamoxifen transdermal delivery. At the cellular level, MTT assay on MCF-

7 cell lines revealed that the Span 20®-based gel had the highest cytotoxicity and IC50 

value, followed by the limonene-based gel (invasomal) and the Tween 20®-based gel 

(transethosomal). Regarding antioxidant activities, only invasomal gels containing 

terpene excipients like limonene and isophytol exhibited antioxidant potential. Lastly, 

stability studies indicated that refrigeration storage conditions were optimal for 

maintaining the physical stability of ageing gels, particularly in terms of PS, Đ, and 

drug content aligning with the requirements for transdermal drug delivery. The 

research underscores the potential of transethosomal and invasomal gels, particularly 

with Span 20® and limonene, in improving drug permeability and cytotoxicity against 

cancer cells, heralding a significant stride towards safer and more effective breast 

cancer management. 
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CHAPTER 1 

INTRODUCTION AND LITERATURE REVIEW 

1.1 Breast Cancer 

Breast cancer (BC) is currently the most commonly diagnosed cancer 

worldwide, and its burden has been rising over the past decades. BC affects women in 

every country around the world at any age after puberty but at an increasing rate in 

later life (Figure 1.1). Women lose more disability-adjusted life years to BC than any 

other type of cancer worldwide. According to the World Health Organization (WHO), 

as of the end of 2020, 7.8 million women had been diagnosed with breast cancer in the 

previous five years, with 2.3 million diagnosed cases and 685000 deaths in 2020 alone 

(World Health Organization, 2020). According to the Malaysian Study on Cancer 

Survival (MySCan) 2018, BC in Malaysia has the lowest survival rate among other 

countries such as Japan, USA, Korea, Australia and China (National Cancer Registry, 

2018). By 2040, the burden of breast cancer is predicted to increase to over 3 million 

new cases and 1 million deaths every year due to population growth and ageing 

(Arnold et al., 2022).  
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Figure 1.1 Top cancers affecting females globally per number of countries. 

Adopted online from The International Association of Cancers Registries, link:  

https://gco.iarc.fr/today/home  

1.1.1 Breast Cancer Classification 

Breast cancer can be classified based on hormone receptor status. Hormone 

receptor-positive (HR+) breast cancer cells have either estrogen (ER) or progesterone 

(PR) receptors or both. Thus, cancer cells are fueled by estrogen and/or progesterone 

due to special proteins inside the tumour cells called hormone receptors. When 

hormones attach to hormone receptors, the cancer cells grow. Hormone receptor-

positive cancers tend to grow slower than those that are hormone receptor-negative. 

Five subtypes of breast cancer are widely recognised based on hormone receptor 

status: luminal A, normal-like, luminal B, HER2-positive, and triple-negative as 

shown in Figure 1.2.  

https://gco.iarc.fr/today/home
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Figure 1.2 The classification of breast cancer. Adapted from Hanusek et al., 2022. 

Approximately two out of every three BC cases ( 80%) are estrogen hormone 

receptor-positive (Özdemir et al., 2018; Zattarin et al., 2020). In 1936, Professor 

Antoine Lacassagne was the first researcher who suggested that breast cancer might 

be caused by a special sensitivity to estrogen (Bentrem et al., 2003). He conducted 

laboratory experiments to prevent estrogen replacement to enhance tumorigenesis in 

strains of mice with a high incidence of mammary cancer. Such an approach led to the 

idea of using a chemical to prevent breast cancer (Maximov et al., 2013). The timeline 

of the major landmarks in estrogen action and antiestrogens for the treatment and 

prevention of breast cancer is illustrated in Figure 1.3. 
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Figure 1.3 The timeline of the major landmarks in estrogen action and 

antiestrogens for the treatment and prevention of breast cancer. Adapted from 

Maximov et al., 2013.  
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1.1.2 Development of Estrogen Receptor (ER) Positive Breast Cancer 

To understand the development of ER-positive breast cancer, it is important to 

start with normal breast tissue. In the female breast, estrogen plays a critical role in the 

development and maintenance of the breast ducts and lobules. Estrogen receptors are 

naturally present in these tissues (Elliott & Cescon, 2022). The development of ER-

positive breast cancer is strongly influenced by hormonal factors. Estrogen, a female 

sex hormone, can bind to the estrogen receptors on breast cells and trigger various 

cellular processes. Under normal circumstances, this hormonal signalling helps 

maintain healthy breast tissue (Osborne & Schiff, 2011).  

The development of ER-positive breast cancer is influenced by both genetic 

and environmental factors. Up to 25% of BC hereditary cases are due to a mutation in 

one of the few identified rare, but highly penetrant genes (BRCA1, BRCA2, PTEN, 

TP53, CDH1, and STK11), which confer up to an 80% lifetime risk of breast cancer.  

Notably, BRCA1 and BRCA2 mutations are particularly implicated in estrogen-

dependent subtypes of breast cancer (Shiovitz & Korde, 2015). Additionally, exposure 

to environmental factors like diet, lifestyle and endocrine-disrupting chemicals may 

affect estrogen signalling and contribute to cancer development (Guo et al., 2017; 

Martin & Weber, 2000). 

The mechanisms underlying the initiation of ER-positive breast cancer are 

complex and typically involve genetic mutations or alterations that lead to 

uncontrolled cell growth. These mutations can affect the estrogen receptors themselves 

or other genes involved in the regulation of cell growth. Once initiated, ER-positive 

breast cancer cells continue to grow and divide in response to estrogen stimulation. 

Such a reaction leads to the formation of a tumour within the breast tissue. The cancer 
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can progress from early stages to more advanced stages if left untreated (Scabia et al., 

2022). ER-positive breast cancer tends to have a relatively favourable prognosis 

compared to some other breast cancer types, as it responds well to hormone therapy. 

However, the prognosis can vary depending on factors such as the stage of diagnosis 

and the response to treatment (Bae et al., 2015). 

1.1.3 Drug of Choice for Estrogen Receptor (ER)-Positive Breast Cancer 

The model drug for treating estrogen receptor (ER)-positive breast cancer is 

tamoxifen. Tamoxifen (TXN) is a selective estrogen receptor modulator (SERM), and 

it has been widely used for decades in the treatment of ER-positive breast cancer 

(Farrar & Jacobs, 2018). Besides, oral tamoxifen dosage form (tablet or solution) 

action and role in the treatment and prevention of this type of breast cancer is addressed 

as follows: 

i. Anti-Estrogenic Action: Tamoxifen works by binding to the estrogen 

receptors on breast cancer cells. However, unlike natural estrogen, 

tamoxifen does not stimulate cell growth. Instead, it acts as a 

competitive inhibitor, blocking estrogen from binding to its receptors. 

Such anti-estrogenic action helps to slow down or halt the growth of 

ER-positive breast cancer cells (Ali et al., 2016). 

ii. Adjuvant Therapy: Tamoxifen is often used as adjuvant therapy, which 

means it is given after the primary treatment of breast cancer, such as 

surgery or radiation therapy. It helps to reduce the risk of recurrence or 

the development of new breast cancers in the same or contralateral 

breast (Plowman, 1993). 
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iii. Treatment Duration: The duration of tamoxifen therapy can vary but is 

typically prescribed for 5 to 10 years. The decision on the duration of 

treatment is made based on individual factors and the specific 

characteristics of the breast cancer (Gupta et al., 2018). 

iv. Preventive Use: Tamoxifen may also be considered for women at high 

risk of developing breast cancer, as it has been shown to reduce the risk 

of developing ER-positive breast cancer in some cases (Cuzick et al., 

2015). 

1.2 Skin as Route of Drug Administration  

The skin, as a route of drug administration, plays a pivotal role in the field of 

pharmaceuticals and healthcare. Understanding how drugs interact with the skin is of 

paramount importance, as it offers a non-invasive and convenient means of delivering 

medications for various therapeutic purposes (Jeong et al., 2021). The skin, our body's 

largest organ, serves as a protective barrier against external physical, chemical, and 

biological agents, making it a formidable yet versatile interface for drug absorption 

(Sengar et al., 2018). 

Such a natural barrier comprises three distinct layers: the epidermis, dermis, 

and subcutaneous tissue. The epidermis, the outermost layer, consists primarily of 

keratinocytes that synthesis keratin, a protective protein. Beneath the epidermis lies 

the dermis, primarily composed of collagen, a structural protein that imparts strength 

and resilience to the skin. The dermis houses essential structures such as blood vessels, 

nerves, and hair follicles. Finally, the subcutaneous tissue, also known as the 

panniculus, contains adipose tissue or fat cells, contributing to energy storage (Yousef 

et al., 2017). These three layers together create a dynamic environment that influences 
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drug permeation  (Y.-Q. Yu et al., 2021) and, therefore, plays a critical role in 

transdermal drug delivery (Alkilani et al., 2015; Prausnitz & Langer, 2008). 

The stratum corneum is the outermost layer of the epidermis, and it is made up 

of 10 to 30 thin layers of continually shedding, dead cells named keratinocytes and 

corneocytes (Murphrey et al., 2018). As illustrated in Figure 1.4, drug penetration 

across the stratum corneum is limited primarily by the lipids organised in bilayer 

structures (L) that fill the intercellular spaces between corneocytes (C). Thus, every 

drug molecule that is intended for transdermal drug delivery must pass through the 

stratum corneum layer, to reach the localised application site, and/or the systemic 

circulation (Prausnitz & Langer, 2008).  

 

Figure 1.4 The histological structure of mammalian skin demonstrates the skin 

structure. Adopted from Prausnitz & Langer, 2008. 

 

Various routes exist for delivering drugs via the skin, each offering a distinct 

path for medications to enter the body as shown in Figure 1.5. One such route is the 

transappendageal route, which involves drug absorption through hair follicles 

(follicular) and sweat glands. Such a route is often referred to as the "shunt route" 
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because it allows drugs to bypass the tough outer layer of the skin, the stratum 

corneum, and directly access the bloodstream (N'Da, 2014; Y.-Q. Yu et al., 2021).  

Additionally, drugs can take the intracellular route, diffusing through and 

across the corneocytes, which are the specialised skin cells that make up the epidermis 

(Pizzimenti et al., 2016). Lastly, there is the intercellular route, where drugs permeate 

through the organised regions of intercellular skin lipids, effectively navigating the 

spaces between skin cells (Szunerits & Boukherroub, 2018). These various routes offer 

pharmaceutical researchers and formulators valuable options for designing drug 

delivery systems tailored to specific therapeutic needs, whether for localised 

treatments or systemic drug administration. 

 

 

Figure 1.5 The mechanisms of penetration of drugs through the skin. Adapted 

from Bolzinger et al., 2012. 
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1.3 Technologies of Transdermal Drug Delivery Formulations  

Transdermal drug delivery is a pharmaceutical approach designed to 

administer medications through the skin's surface, allowing for systemic absorption 

into the bloodstream. Its primary purpose is to provide a non-invasive and controlled 

means of delivering drugs over an extended period, ensuring steady and sustained 

therapeutic levels (Alkilani et al., 2015). Unlike other drug delivery methods like oral 

ingestion, transdermal delivery avoids the gastrointestinal tract and liver's first-pass 

metabolism, reducing the risk of digestive side effects, and improving bioavailability 

(Jeong et al., 2021).  

1.3.1 First Technology  

The concept of transdermal drug delivery dates back to ancient times when 

various cultures used plant extracts and ointments for medicinal purposes. However, 

it was not until the 20th century that modern transdermal drug delivery systems 

emerged. The first significant development came in the initial technology form of 

transdermal delivery products of patches in the 1970s. Precisely, this was with the 

introduction of the scopolamine patch to combat motion sickness (Pastore et al., 2015). 

Such technology offered limited transdermal effect and was applicable only for certain 

molecules of specific characteristics such as very low molecular weight. Thus there 

was a need to develop the second technology (Prausnitz & Langer, 2008). 

1.3.2 Second Technology 

The second Technology of transdermal drug delivery systems is characterised 

by a shift towards the utilisation of small molecules as nanocarriers. Such innovative 

approach is used to revolutionise drug delivery, finding applications in localised 
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treatments, dermatological solutions, cosmetic formulations, and even some systemic 

therapies (Prausnitz & Langer, 2008). The key factor in this category of formulation 

is the employment of penetration enhancers. Such technology had limited transdermal 

delivery for macromolecules (Guy, 2010; Prausnitz & Langer, 2008) 

By employing nanocarriers, these advanced systems enhance the efficiency 

and precision of drug delivery through the skin. These nanocarriers are carefully 

designed to facilitate the transport of therapeutic agents across the skin barrier while 

minimising systemic absorption, thus reducing the risk of unwanted side effects (Z. 

Yu et al., 2021). 

Various types of nanocarriers have been developed for skin permeation 

enhancement and targeted delivery to skin organelles. Such types include polymeric 

nanoparticles, metallic nanoparticles, dendrimers, micelles, lipid-based nanoparticles, 

and quantum dot nanocarriers (Liu et al., 2023). Their small size and tailored properties 

make them ideal for encapsulating drugs and releasing them at specific sites within the 

skin or even deeper into the body when necessary. Such precision allows for the 

development of highly effective dermatological treatments, cosmetic products, and 

localised therapies (Zeb et al., 2019).  

1.3.3 Third Technology  

The third technology for transdermal delivery systems involves the use of 

medical devices and novel microneedle technologies to enhance drug delivery. Such 

technology offered a new approach to delivering macromolecules (including proteins 

and DNA) and vaccines. It also includes device development for enhancing 

transdermal drug delivery (Peña-Juárez et al., 2022). Examples of third technology for 

transdermal delivery systems include microneedle patches and iontophoretic devices 
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as well as technologies of thermal ablation, microdermabrasion, electroporation and 

cavitational ultrasound (Joshi et al., 2023; Prausnitz & Langer, 2008).  

Examples of milestones achieved by each technology as a form of transdermal 

delivery systems are shown in Table 1.1. 
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Table 1.1 Examples of main formulations achieved by first, second, and third technologies of transdermal drug delivery systems.  

Transdermal Drug 

Delivery Technology 

Name of 

Formulation/Nanocarrier/Device 
Drug Application Reference 

First technology  Patch 

Nicotine Smoking cessation  (Mancuso et al., 1999) 

Estradiol Hormone replacement  (Guichard et al., 1999) 

Fentanyl Pain management  (Bhatt, 2005) 

Lidocaine Pain management  (Gammaitoni et al., 2003) 

Nitroglycerin Angina treatment  (Peppas & Robinson, 1995) 

Rivastigmine Anti-Alzheimer's Disease  (Winblad & Machado, 2008) 

Second technology 

Liposomes 
Amphotericin B Fungal infections treatment  (Akbarzadeh et al., 2013) 

Lidocaine Local Anesthesia  (Sinico & Fadda, 2009) 

Ethosomes  
5-Fluorouracil Skin cancers treatment  (Gu et al., 2015) 

Minoxidil Anti-hair loss (Alopecia)  (Builders et al., 2014) 

Microemulsions 
Clonidine Anti-Hypertension  (Paudel et al., 2010) 

Ketoprofen Pain Management  (Date & Patravale, 2007) 

Nanoparticles 
Doxorubicin Skin cancers treatment  (Huber et al., 2015) 

Sumatriptan Migraine relief  (Ahmed Kassem, 2016) 

Third technology 

Dermal Microneedles 
Insulin Diabetes management  (Darvishha & Amiri, 2019) 

Sumatriptan Migraine relief  (Ita, 2015) 

Microparticles 
Vaccine Breast cancer control  (Zaman et al., 2022) 

Vaccine Melanoma cancer control  (Bhowmik et al., 2011) 

Ultrasound-based transdermal drug 

delivery 
Insulin Diabetes management  (Seah & Teo, 2018) 

Ablative laser Vaccine Measles prevention  (Joshi et al., 2021) 
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1.3.4 Advantages and Disadvantages of Transdermal Delivery Route 

Transdermal administration presents a range of advantages in comparison to 

the oral route. It is particularly utilised when there exists a substantial first-pass effect 

by the liver, which can lead to the premature metabolism of drugs. Additionally, 

transdermal delivery holds benefits over hypodermic injections, which can be painful, 

generate hazardous medical waste, and pose the risk of disease transmission through 

needle reuse (Sabbagh & Kim, 2022). Furthermore, transdermal systems can be cost-

effective by offering options that can reduce healthcare expenses. Such characteristics 

can be observed through the transdermal formulations that are non-intrusive, self-

administered, can offer sustained release for extended durations (up to a week), or 

short-term release for a few days (e.g., patches), and enhance patient adherence (Hou 

et al., 2023; Sabbagh & Kim, 2022).  

1.3.5 Drugs Compatibility with Transdermal Delivery Route 

When looking forward to utilising the transdermal route of administration for 

any drug, this drug should fulfil a list of terms and conditions related to its 

physicochemical properties and dosage requirements respectively. For example, the 

molecular weight of a drug is a significant factor. For some nanocarriers drugs with 

lower molecular weights (500-600 g/mol and below) tend to be more suitable for 

transdermal delivery (Alkilani et al., 2015). Furthermore, lipophilic drugs (log P from 

1 to 5) can more readily penetrate the stratum corneum and are preferred for 

transdermal delivery (Bird & Ravindra, 2020). Besides, drugs with lower melting point 

are more suitable for the transdermal route as it will have greater solubility in the 

stratum corneum, potentially resulting in a higher amount of drug permeating into the 

skin (Ramadon et al., 2022).  
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Moreover, the required effective dose for the drug intended to be targeted 

transdermally should be within a few milligrams per day, ideally < 25 mg (Benson & 

Roberts, 2021; Hasan & Farooqui, 2021). Drugs with high doses may not be suitable 

for transdermal delivery due to the difficulty in formulating nanocarriers or dosage 

forms that contain enough doses at the effective level (Prausnitz & Langer, 2008; 

Margetts & Sawyer, 2007).  

1.4 Lipid-Based Formulation for Transdermal Drug Delivery  

Lipid-based formulations are a type of drug delivery system that uses lipids as 

the main component to improve the solubility, stability, and bioavailability of drugs 

for transdermal drug delivery (Akombaetwa et al., 2023). Lipid-based formulations 

can be used to deliver drugs through the skin and/or into the bloodstream, providing a 

non-invasive and controlled means of drug delivery (Stefanov & Andonova, 2021). 

Lipid-based formulations for transdermal drug delivery represent a versatile approach 

that can be applied to a wide range of drugs, from hydrophobic molecules to 

hydrophilic compounds. Their ability to enhance drug permeation through the skin 

makes them valuable tools in the development of effective and patient-friendly 

transdermal delivery systems (Sguizzato et al., 2021).  

In a lipid-based delivery system, there are main parent classes namely 

liposomes, lipid nanocapsules, polymeric nanoparticles, solid lipid nanoparticles 

(SLNs), nanostructured lipid carriers (NLCs) and microemulsion drug delivery 

systems. From these parent classes (Figure 1.6) different subclasses have emerged 

based on the various excipients used, and the method of preparation employed. In 

terms of lipid-based formulation, this thesis will focus on the liposomes subclass 

namely ethosomes. The subclassing is further discussed in the next section  
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Figure 1.6 The schematic illustration of the lipid-based formulations parent 

classes. Adapted from de Almeida et al., 2017. 

1.4.1 Ethosomal Systems  

Liposomes, which belong to one of the parent categories of lipid-based 

formulations, were initially introduced in the 1960s. They predominantly consist of 

phospholipids and an aqueous medium (Nsairat et al., 2022). In 1995, a novel class 

emerged from liposomes known as “ethosomes”, by the addition of an ethanol (etho) 

phase to the liposomal vesicular carrier (somes). Since then ethosomes have led to a 

revolutionary development in topical and transdermal drug delivery  (Pilch & Musiał, 

2018; Touitou, 1995). Figure 1.7 shows a simple representation of the structure of 

ethosomes. Precisely, ethosomes consist of lipid bilayer vesicles, similar in structure 

to cell membranes. Such lipid bilayer is composed of phospholipids. Within the lipid 
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bilayer, there is an aqueous or water core. The core can encapsulate drugs, both 

lipophilic and hydrophilic, allowing them to be carried within the vesicles. Ethanol is 

typically a key component of ethosomes. It is present in the aqueous core and also 

interacts with the lipid bilayer. Ethanol acts as a penetration enhancer, disrupting the 

stratum corneum's lipid structure and promoting drug permeation through the skin 

(Verma & Pathak, 2010).  

Ethosomes are nanometer-sized vesicles, which means they are very small 

structures. Their small size contributes to their ability to penetrate the skin effectively. 

Ethosomes are known for their flexibility and deformability. Such property is due to 

the inclusion of ethanol in their composition. Such key component alters the properties 

of ethosomes, making them highly flexible and deformable. Ethanol interacts with the 

phospholipid bilayers in ethosomes, leading to a fluidising effect that enhances their 

flexibility. The fluidising impact of ethanol on the vesicles' structure allows ethosomes 

to adapt and deform easily, enabling better penetration through the skin and enhancing 

their stability (Abu-Huwaij & Zidan, 2024). Such property allows them to adapt to the 

skin's surface and squeeze through the narrow gaps between skin cells, enhancing drug 

delivery (Niu et al., 2019). 
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Figure 1.7 The diagram of ethosomes. Adapted from Misbah Ul Haq et al., 2021 

 

The mechanism of skin permeation for ethosomes is illustrated in Figure 1.8 

and involves several key steps that facilitate the passage of drug-loaded ethosomes 

through the skin's barrier, primarily the stratum corneum. Ethanol acts as a penetration 

enhancer by disrupting the tightly packed lipid structure of the stratum corneum by 

interacting with the lipid molecules in the skin barrier. Ethanol's small and hydrophilic 

nature allows it to diffuse into the core of the ethosomes and influence the lipid bilayer. 

By disrupting the packing of phospholipids within the bilayer, ethanol increases the 

fluidity of the membrane. Such appraoch enhanced fluidity contributes to the 

flexibility and deformability of ethosomes, enabling them to adapt to the skin surface 

more effectively and improve drug delivery (Emanet & Ciofani, 2023). Besides, 

ethanol's permeation-enhancing effect also arises from its superior ability to form 

hydrogen bonds with headgroup atoms of skin lipids (Gupta et al., 2020). Such 

disruption creates temporary gaps or fluidizes the lipids, increasing the permeability 

of the stratum corneum (Niu et al., 2019). Once within the stratum corneum, ethosomes 

can transport drug molecules across the skin layers by diffusing through the 
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intercellular spaces between skin cells. The lipid bilayer of the ethosomes interacts 

with the skin lipids, facilitating drug transfer (Y.-Q. Yu et al., 2021). Ethosomes 

continue to transport the encapsulated drug through the various skin layers until they 

reach the target site, such as the dermis or deeper tissues, where drug absorption 

occurs. The drug can then be released and enter the bloodstream or exert its therapeutic 

effect locally (Kesharwani et al., 2015).   

 

Figure 1.8 Schematic representation of ethosome penetration through stratum 

corneum. Adapted from Emanet & Ciofani, 2023. 

1.4.1(a) Ethosomal Classification  

The development of the basic ethosomal formulation which was initially 

composed of phospholipid, ethanol and water (current Chapter, Section 1.4.1) relies 

on the addition of the penetration enhancer.  Ethosomal systems can be classified based 

on the penetration enhancer type used, generating emerging classes of this nanocarrier. 

These subclasses of ethosomes are developed to address specific challenges or 

requirements in drug delivery. These classes vary in terms of their ability to 

encapsulate different types of drugs, their skin penetration capabilities, and their 
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release kinetics. The ethosomal classes that are of interest in this research work scope 

are illustrated below.  

Transethosomes  

Transethosomes have the same composition as the basic ethosomal system in 

addition to penetration enhancers, mostly non-ionic surfactants (Ascenso et al., 2015). 

Transethosomes class was first reported in 2012 for the enhanced skin delivery of 

voriconazole (Song et al., 2012). Transethosomes are ultra-deformable nanovesicles 

that can deliver drugs into deeper tissues and have particle sizes (PS) ranging from 69 

nm to 250 nm (Allam et al., 2022; Bajaj et al., 2021). Transethosomes have a dispersity 

(Đ) of less than 0.3, indicating a narrow size distribution (Ferrara et al., 2022). The 

zeta potential (ZP) of transethosomes ranges from -11.6 to -26.5 mV, indicating good 

stability of the colloidal dispersions (e.g., transethosomes) (Guillot et al., 2023; Mita 

et al., 2022). A higher magnitude of zeta potential (either positive or negative) 

indicates greater electrostatic repulsion between particles, which helps prevent 

aggregation and enhances the stability of the formulation (Cristiano et al., 2021). 

Based on the physicochemical nature of the penetration enhancer (aka, non-ionic 

surfactant), increasing its concentration can impact the PS and ZP values respectively.  

Transethosomes improve the stability of the drug inside the tissues and have a 

high content of ethanol (up to 30%) together with a penetration enhancer (Raj et al., 

2023). The presence of such a concentration of ethanol in transethosomes confers 

greater elasticity to the vesicles, allowing them to interact effectively with both skin 

and vesicle lipids. Such interaction promotes the passage of the entrapped drug through 

the stratum corneum, the outermost layer of the skin. Additionally, ethanol improves 

the thermodynamic stability and loading capacity of lipophilic drugs within 
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transethosomes, making them more efficient carriers for drug delivery (Esposito et al., 

2022). Thus, transethosomes are very flexible, resulting in a high flux rate and skin 

permeation rate compared to other vesicular systems such as liposomes. They can 

deliver drugs ranging from low molecular weight to high molecular weight into deeper 

layers of the skin (Adnan et al., 2023).  

Transethosomes are mainly used for the delivery of a wide range of 

hydrophobic drugs (e.g., olmesartan, voriconazole and apigenin) but it was reported in 

delivering hydrophilic drugs too (e.g., valsartan). Such nanocarrier offers entrapment 

efficiency of up to 90.5% where the drug is entrapped in either the hydrophilic or 

hydrophobic region of the nanocarrier as illustrated in Figure 1.7 (Albash et al., 2019; 

Farooq et al., 2022; Ahad et al., 2013). They are a promising approach for both topical 

and transdermal drug delivery, with a wide range of applications such as psoriasis and 

acne treatment respectively (Adnan et al., 2023; Munir et al., 2023). 

Bilosomes  

Bilosomes have the same composition as the basic ethosomal system in 

addition to penetration enhancer, which is a bile salt. Bilosomes were first reported in 

2001 for the enhancement of oral drug solubility and bioavailability (Conacher et al., 

2001). It was not until 2015 that the bilosomes were used for the transdermal delivery 

of tenoxicam (Al-mahallawi et al., 2015).  Bilosomes have PS ranges from 90 nm to 3 

µm (Palekar-Shanbhag et al., 2020), with a low Đ < 0.2 (Kharouba et al., 2022; 

Waglewska et al., 2022). The zeta potential of bilosomes is reported to be negatively 

charged with values close to - 30 mV. Due to the anionic nature of the bile salts, 

increasing their concentration in the formulation will lead to the increment of ZP and 

PS (Zarenezhad et al., 2023). In terms of entrapment efficiency, bilosomal systems' 
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entrapment efficacy (EE%) is usually not less than 86% but also reaches higher values 

of > 90% (Kharouba et al., 2022; Salem et al., 2022).  

Overall, the anionic nature of bile salts is a key characteristic that allows them 

to enhance transepithelial permeability for different drugs (e.g., salmon calcitonin and 

insulin) (Moghimipour et al., 2015). However, the transdermal application of bile salts 

is still an area of active research and investigation (Alvarez-Figueroa et al., 2019). 

Bilosomes offered successful transdermal delivery mostly for enhancing the anti-

inflammatory effects of lornoxicam (Ahmed et al., 2020), and tenoxicam (Al-

mahallawi et al., 2015), as well as the antidiabetic transdermal delivery of metformin 

hydrochloride (Salem et al., 2022). 

Invasomes  

Invasomes vesicular system contains phospholipids, ethanol, and terpenes in 

their structures, which confer suitable transdermal penetration properties to the 

vesicles. Invasomes were reported in 2002 for their abilities to enhance topical drug 

delivery (Verma, 2002). Later in 2009, they were explored for transdermal delivery by 

using radiolabeled mannitol (Badran et al., 2009). Such class of ethosomal system 

offers a PS ranging from 100 nm to 819 nm (Amnuaikit et al., 2018; Jain et al., 2021), 

and Đ < 0.3 (Nangare & Dugam, 2020). In terms of ZP values, invasomes are known 

for their ZP values that can start from - 20 mV (Nangare & Dugam, 2020) and reach 

up to – 73 mV (Tawfik et al., 2020), based on the employed drug. The entrapment 

efficiency of invasomes can vary depending on the type of terpene used in the 

formulation, and their physicochemical compatibility with the drug used (Nangare & 

Dugam, 2020).  
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The main advantage of invasomes is their ability to increase the permeability 

of the drug into the skin, with the opportunity for a localised transdermal drug delivery 

profile (e.g. into the breast tissue or glands) (Babaie et al., 2020). Furthermore, the 

advanced performance of invasomes in systemic transdermal drug delivery has opened 

doors to new approaches in treating cardiovascular (Babaie et al., 2020), and 

autoimmune diseases (Verma & Pal, 2022), as well as skin and colorectal cancers 

(Dragicevic-Curic et al., 2010; Dragicevic-Curic et al., 2009). Besides, invasomes also 

offer cosmetic solutions for acne with their high skin deposition properties (El-

Nabarawi et al., 2018). 

1.4.1(b) Ethosome Preparation Methods 

Different techniques can be utilised in the formulation of ethosomes, and they 

vary in terms of processing duration, the employment of organic solvents, complexity, 

and cost, depending on the specific requirements and optimisation studies of the 

research. These methods are delineated below. 

Thin-Film Hydration Method 

 In this method, the lipid mixture is dissolved in an organic solvent (e.g., 

chloroform) to form a thin lipid film on the walls of a round-bottom flask via a rotary 

evaporator. The solvent is then removed under reduced pressure to create a dry lipid 

film. Ethanol or an aqueous solution (Figure 1.7) containing the drug is then added to 

hydrate the film and form ethosomes (Jain et al., 2007).  

Cold Method 

Such technique involves the direct mixing of preformed ethosome components 

at room temperature, thus reducing the risk of drug degradation due to heat exposure. 
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Phospholipids, ethanol, and water are blended under stirring at a speed of 700–2000 

rpm for 5–30 minutes to create ethosomes (Satyam et al., 2010). 

Hot Method  

Here, the lipids, water, and the drug are heated together at an elevated 

temperature (40 °C) to form a homogenous mixture. The mixture is then hydrated with 

an aqueous solution, typically containing ethanol, while maintaining the elevated 

temperature under stirring. The heating helps in the incorporation of the drug into the 

lipid bilayers (Aute et al., 2012). 

Sonication Method 

Ultrasonic energy is applied to a mixture of lipids and drugs to generate 

ethosomes. The mechanical energy produced by ultrasonic waves disrupts the lipid 

bilayers and forms vesicles. This method is useful for producing small-sized 

ethosomes (Patrekar et al., 2015). 

Reverse Phase Evaporation Method 

Such method, designed specifically for generating large unilamellar vesicles, 

is the least commonly employed. It involves the formation of a water-in-oil (W/O) 

emulsion by adding an aqueous phase containing the drug to a lipid phase and the 

organic phase (e.g., diethyl ether, chloroform, ethanol). The emulsion (W/O) is then 

converted into ethosomes by evaporation of the organic solvent under reduced pressure 

(e.g., rotary evaporator instrument) (Esposito et al., 2004). 




