CHEMICAL CONSTITUENTS AND CYTOTOXICITY OF THE STEM BARK Calophyllum lanigerum var. austrocoriaceum (Whitemore) P. F. STEVENS AND Calophyllum andersonii P. F. STEVENS

NORISHA BINTI MOKHTAR

UNIVERSITI SAINS MALAYSIA

2024

CHEMICAL CONSTITUENTS AND CYTOTOXOCITY OF THE STEM BARK Calophyllum lanigerum var. austrocoriaceum (Whitemore) P. F. STEVENS AND Calophyllum andersonii P. F. STEVENS

by

NORISHA BINTI MOKHTAR

Thesis submitted in fulfilment of the requirements for the Degree of Master of Science

April 2024

ACKNOWLEDGEMENT

In the name of Allah, the Merciful and Compassionate, praise to Allah, the lord of the universe and peace be upon Muhammad, His servant and messenger.

First and foremost, I would like to express the Almighty God my sincere gratitude and endless praise for allowing me to continue my studies in a profession I never thought I could succeed in. Almighty God has blessed me innumerably during the entire voyage, and I am grateful for that.

Secondly, I am grateful to have Dr. Thiruventhan Karunakaran, a great chemist as my main supervisor, who are always spend his time to understand my problems, share his knowledge, particularly in Chemistry, and always available to offer advice and guidance as I work to complete my project. It is really a pleasure to work with him because he is one of the best people with excellent minds that I have ever encountered. Additionally, I would like to express my gratitude to Dr. Mohamad Hafizi Abu Bakar, my co-supervisor, for his time and assistance in helping me to complete this project, particularly with the cell culture work. Also, towards my second co-supervisor, PM Dr. Vivien Jong Yi Mian from UiTM Kuching, Sarawak for her kind assistance especially in providing the plant samples for this project to be carried out.

Thirdly, I would like to express my sincere gratitude to my lab mates, Noor Syarafana Firouz, Nurul Najwa Rusmadi, and Ahmad Alif Danial Zailan for lending me a hand whenever I need them and for maintaining a positive lab environment throughout the duration of the project's completion. I also want to thank all the USM's staffs of the Centre for Drug Research, School of Chemical Sciences, and Analytical Biochemistry Research Centre (ABrC) for their assistance in operating equipment, instruments and software.

Last but not least, I want to thank my parents, Mokhtar b. A Rahim and Hadijah binti Md Sah, who are also wonderful people who never stop praying for my success, believing in me, and always being there for me despite all of my unsuccessful experiments. I sincerely appreciate it.

TABLE OF CONTENTS

ACK	NOWL	EDGEMENT	ii
TABI	LEOF	CONTENTS	iii
LIST	OF TA	BLES	v
LIST	OF FI	GURES	vii
LIST	OF SY	MBOLS AND ABBREVIATIONS	xiii
LIST	OF AP	PENDICES	xvii
ABST	FRAK .		xviii
ABST	FRACT	·	XX
CHA	PTER 1		
1.1 1.2	Plants	as sources of new chemical entities	1
1.2	Proble	time of the station	
1.5	Objec	tives of the studies	
1.4 СЦА	Signii DTFD 2	I ITEDATUDE DEVIEW	
2 1	Rotan	v of plants studied	0
2.1	2 1 1	The genus Calonkyllum	
	2.1.1	The species C laniaarum	
	2.1.2	The species C. and arsonii	, Q
2.2	2.1.5 Dbuto	shamistry of Calonhullum aposion	
2.2		Chamistry (Commerciae)	
	2.2.1	Chemistry (Coumarins)	
	2.2.2	Chemistry (Chromanones)	
	2.2.3	Chemistry (Xanthones)	
	2.2.4	Chemistry (Triterpenoids)	
2.3	Biolog	gical activities of <i>Calophyllum</i> species	
	2.3.1	Cytotoxic activities	
CHA	PTER 3	3 MATERIALS AND METHODS	
3.1	Plant	materials	
3.2	Chem	ical reagents and solvents	
3.3	Gener	al experimental procedures	
	3.3.1	Extraction methods	
	3.3.2	Isolation and purification methods	
	3.3.3	Instruments	
3.4	Extrac	ction, isolation, and purification procedures	

	3.4.1	Extraction on the stem bark of C. lanigerum and C. andersonii 54
	3.4.2	Isolation, and purification of phytochemicals from the stem bark of
		C. lanigerum
	3.4.3	Isolation, and purification of phytochemicals from the stem bark of
		C. andersonii
3.5	Cytote	oxicity assay 64
CHA	PTER 4	RESULTS AND DISCUSSION
4.1	Chara	cterisation of isolated phytochemicals
	4.1.1	Characterisation of caloteysmannic acid (A)
	4.1.2	Characterisation of isocalolongic acid (B)
	4.1.3	Characterisation of calolongic acid (C)
	4.1.4	Characterisation of euxanthone (D)
	4.1.5	Characterisation of calanone (E)
	4.1.6	Characterisation of friedelin (F)
	4.1.7	Characterisation of stigmasterol (G)145
	4.1.8	Characterisation of isocalanone (H)
	4.1.9	Characterisation of soulattrolide (I)
4.2	Bioas	say results
	4.2.1	Cytotoxic activities (Plant extracts)
	4.2.2	Cytotoxic activities (Isolated pure compounds)185
CHA	PTER 5	5 CONCLUSION
5.1	Summ	nary
5.2	Future	e
REFI	ERENC	ES
APPI	ENDICI	ES
LIST	OF PU	BLICATIONS

LIST OF TABLES

Table 1	Taxonomy of <i>C. lanigerum</i> 7
Table 2	Taxonomy of <i>C. andersonii</i> 9
Table 3	Coumarins isolated from the <i>Calophyllum</i> species13
Table 4	Chromanones isolated from the <i>Calophyllum</i> species24
Table 5	Xanthones isolated from the <i>Calophyllum</i> species29
Table 6	Triterpenoids isolated from the <i>Calophyllum</i> species
Table 7	Cytotoxic activities of crude extracts from the Calophyllum species
Table 8	Cytotoxic activities of isolated compounds from the <i>Calophyllum</i> species
Table 9	The weight and the percentage yield of <i>C. lanigerum</i> and <i>C. andersonii</i>
Table 10	¹ H NMR (700 MHz, acetone- d_6), ¹³ C NMR (175 MHz, acetone- d_6) for caloteysmannic acid (A)
Table 11	¹ H NMR (700 MHz, acetone- d_6), ¹³ C NMR (175 MHz, acetone- d_6) for isocalolongic acid (B)
Table 12	¹ H NMR (700 MHz, acetone- d_6), ¹³ C NMR (175 MHz, acetone- d_6) for calolongic acid (C)
Table 13	¹ H NMR (700 MHz, acetone- d_6), ¹³ C NMR (175 MHz, acetone- d_6) for euxanthone (D)
Table 14	¹ H NMR (700 MHz, CDCl ₃), ¹³ C NMR (175 MHz, CDCl ₃) for calanone (E)
Table 15	¹ H NMR (700 MHz, CDCl ₃), ¹³ C NMR (175 MHz, CDCl ₃) for friedelin (F)

Table 16	¹ H NMR (400 MHz, CDCl ₃), ¹³ C NMR (100 MHz, CDCl ₃) for
	stigmasterol (G)147
Table 17	¹ H NMR (500 MHz, CDCl ₃), ¹³ C NMR (125 MHz, CDCl ₃) for
	isocalanone (H)154
Table 18	¹ H NMR (500 MHz, CDCl ₃), ¹³ C NMR (125 MHz, CDCl ₃) for
	soulattrolide (1)
Table 19	IC ₅₀ values of the extracts of <i>n</i> -hexane, chloroform, and ethyl
	acetate against HeLa Chang liver, and HL-7702 cell lines184
Table 20	IC ₅₀ values of pure compounds of caloteysmannic acid (A),
	isocalolongic acid (B), calanone (E), isocalanone (H) against HeLa
	Chang liver, and HL-7702 cell lines

LIST OF FIGURES

Figure 1	Stem barks and leaves of <i>C. lanigerum</i> tree8
Figure 2	Stem bark and leaves of <i>C. andersonii</i> 10
Figure 3	Basic structure of coumarin11
Figure 4	Basic structure of chromanone11
Figure 5	Basic structure of xanthone11
Figure 6	The chemical structures of coumarins isolated from the species mentioned in Table 3
Figure 7	The chemical structures of chromanones isolated from the species mentioned in Table 4
Figure 8	The chemical structures of xanthones isolated from the species mentioned in Table 5
Figure 9	The chemical structures of triterpenoids isolated from the species mentioned in Table 6
Figure 10	The flow chart of isolation and purification of phytochemicals from <i>n</i> -hexane extract of <i>C. lanigerum</i>
Figure 11	The flow chart of isolation and purification of phytochemicals from chloroform extract of <i>C. lanigerum</i>
Figure 12	The flow chart of isolation and purification of phytochemicals from ethyl acetate extract of <i>C. lanigerum</i>
Figure 13	The flow chart of isolation and purification of phytochemicals from <i>n</i> -hexane extract of <i>C. andersonii</i>
Figure 14	The flow chart of isolation and purification of phytochemicals from chloroform extract of <i>C. andersonii</i>
Figure 15	The flow chart of isolation and purification of phytochemicals from ethyl acetate extract of <i>C. andersonii</i>

Figure 16	UHPLC-ESI-QTOF-MS [M-H] ⁻ spectrum of caloteysmannic acid (A)
Figure 17	UV-Vis spectrum for caloteysmannic acid (A)71
Figure 18	FT-IR spectrum for caloteysmannic acid (A)72
Figure 19	Peak purity UV spectrum (HPLC-DAD) for caloteysmannic acid (A)
Figure 20	¹ H-NMR spectrum (700 MHz, acetone- <i>d</i> ₆) for caloteysmannic acid (A)
Figure 21	Expansion of ¹ H-NMR spectrum (700 MHz, acetone- d_6) of caloteysmannic acid (A) from δ_H 1.1 to 7.5 ppm
Figure 22	¹³ C-NMR spectrum (175 MHz, acetone- <i>d</i> ₆) for caloteysmannic acid (A)
Figure 23	¹ H- ¹ H correlation of COSY spectrum for caloteysmannic acid (A)77
Figure 24	HSQC spectrum for caloteysmannic acid (A)78
Figure 25	Expansion 1 of HMBC spectrum for caloteysmannic acid (A) from $\delta_{\rm H}$ 1.1 to 2.1 ppm
Figure 26	Expansion 2 of HMBC spectrum for caloteysmannic acid (A) from $\delta_{\rm H}$ 2.5 to 5.8 ppm80
Figure 27	Expansion 3 of HMBC spectrum for caloteysmannic acid (A) from $\delta_{\rm H}$ 6.5 to 13.0 ppm81
Figure 28	UHPLC-ESI-QTOF-MS [M+H] ⁺ spectrum of isocalolongic acid (B)
Figure 29	UV-Vis spectrum of isocalolongic acid (B)87
Figure 30	FT-IR spectrum of isocalolongic acid (B)
Figure 31	Peak purity UV spectrum (HPLC-DAD) for isocalolongic acid (B)
Figure 32	¹ H-NMR spectrum (700 MHz, acetone- <i>d</i> ₆) for isocalolongic acid (B)

Figure 33	Expansion 1 of ¹ H-NMR spectrum (700 MHz, acetone- d_6) of isocalolongic acid (B) from $\delta_H 0.9$ to 7.0 ppm91
Figure 34	¹³ C-NMR spectrum (175 MHz, acetone- d_6) for isocalolongic acid (B)
Figure 35	1 H- 1 H correlation of COSY spectrum for isocalolongic acid (B)93
Figure 36	HSQC spectrum for isocalolongic acid (B)94
Figure 37	Expansion 1 of HMBC spectrum for isocalolongic acid (B) from $\delta_{\rm H}$ 5.1 to 7.4 ppm
Figure 38	Expansion 2 of HMBC spectrum for isocalolongic acid (B) from $\delta_{\rm H}$ 1.0 to 4.5 ppm
Figure 39	Expansion 3 of HMBC spectrum for isocalolongic acid (B) from $\delta_{\rm H}$ 1.2 to 3.8 ppm
Figure 40	Expansion 4 of HMBC spectrum for isocalolongic acid (B) from $\delta_{\rm H}$ 1.2 to 3.8 ppm
Figure 41	EI-MS spectrum of calolongic acid (C)103
Figure 42	UV-Vis spectrum of calolongic acid (C)104
Figure 43	FT-IR spectrum of calolongic acid (C)105
Figure 44	Peak purity UV spectrum (HPLC-DAD) for calolongic acid (C)106
Figure 45	¹ H-NMR spectrum (700 MHz, acetone- d_6) for calolongic acid (C) 107
Figure 46	Expansion of ¹ H-NMR spectrum (700 MHz, acetone- d_6) for calolongic acid (C) from $\delta_H 1.0$ to 4.0 ppm108
Figure 47	¹³ C-NMR spectrum (175 MHz, acetone- <i>d</i> ₆) for calolongic acid (C)
Figure 48	¹ H- ¹ H correlation of COSY spectrum for calolongic acid (\mathbf{C})110
Figure 49	HSQC spectrum for calolongic acid (C)111
Figure 50	HMBC spectrum for calolongic acid (C)112
Figure 51	UHPLC-ESI-QTOF-MS [M-H] ⁺ spectrum of euxanthone (D)116

Figure 52	UV-Vis spectrum of euxanthone (D)117
Figure 53	FT-IR spectrum of euxanthone (D)118
Figure 54	Peak purity UV spectrum (HPLC-DAD) for euxanthone (D)119
Figure 55	¹ H-NMR spectrum (700 MHz, acetone- d_6) for euxanthone (D)120
Figure 56	¹³ C-NMR spectrum (175 MHz, acetone- d_6) for euxanthone (D)121
Figure 57	1 H- 1 H correlation of COSY spectrum for euxanthone (D) from δ_{H} 6.7 to 7.9 ppm
Figure 58	HSQC spectrum for euxanthone (D) from δ_H 6.5 to 8.1 ppm123
Figure 59	HMBC spectrum for euxanthone (D)124
Figure 60	UHPLC-ESI-QTOF-MS [M-H] ⁻ spectrum of calanone (E)129
Figure 61	UV-Vis spectrum of calanone (E)130
Figure 62	FT-IR spectrum of calanone (E)131
Figure 63	Peak purity UV spectrum (HPLC-DAD) for calanone (E)132
Figure 64	¹ H-NMR spectrum (700 MHz, CDCl ₃) for calanone (E)133
Figure 65	Expansion of ¹ H-NMR spectrum (700 MHz, CDCl ₃) of calanone (E) from $\delta_{\rm H}$ 7.25 to 7.65 ppm
Figure 66	¹³ C-NMR spectrum (175 MHz, CDCl ₃) for calanone (E)135
Figure 67	HSQC spectrum for calanone (E) from δ_H 5.3 to 7.7 ppm136
Figure 68	HMBC spectrum for calanone (E)137
Figure 69	Expansion of HMBC spectrum for calanone (E) from $\delta_H 0.0$ to 7.5 ppm
Figure 70	EI-MS spectrum of friedelin (F)142
Figure 71	¹ H-NMR spectrum (700 MHz, CDCl ₃) for friedelin (F)143
Figure 72	¹³ C-NMR spectrum (175 MHz, CDCl ₃) for friedelin (F)144
Figure 73	EI-MS spectrum of stigmasterol (G)148
Figure 74	¹ H-NMR spectrum (400 MHz, CDCl ₃) for stigmasterol (G)149
Figure 75	¹³ C-NMR spectrum (100 MHz, CDCl ₃) for stigmasterol (G)150

Figure 76	UHPLC-ESI-QTOF-MS [M+H] ⁺ spectrum of isocalanone (H)155
Figure 77	UV-Vis spectrum of isocalanone (H)156
Figure 78	FT-IR spectrum of isocalanone (H)157
Figure 79	Peak purity UV spectrum (HPLC-DAD) for isocalanone (H)158
Figure 80	¹ H-NMR spectrum (500 MHz, CDCl ₃) for isocalanone (H)159
Figure 81	¹³ C-NMR spectrum (125 MHz, CDCl ₃) for isocalanone (H)160
Figure 82	HSQC spectrum for isocalanone (H)161
Figure 83	Expansion of HSQC spectrum for isocalanone (H) from δ_H 5.4 to 7.6 ppm
Figure 84	HMBC spectrum for isocalanone (H)163
Figure 85	Expansion of HMBC spectrum for isocalanone (H) from $\delta_H 0.0$ to 7.5 ppm
Figure 86	EI-MS spectrum for soulattrolide (I)
Figure 87	UV-Vis spectrum for soulattrolide (I)170
Figure 88	FT-IR spectrum for soulattrolide (I)
Figure 89	Peak purity UV spectrum (HPLC-DAD) for soulattrolide (I)172
Figure 90	¹ H-NMR spectrum (500 MHz, CDCl ₃) for soulattrolide (I)173
Figure 91	¹³ C-NMR spectrum (125 MHz, CDCl ₃) for soulattrolide (I)174
Figure 92	1 H- 1 H correlation of COSY spectrum for soulattrolide (I)175
Figure 93	HSQC spectrum for soulattrolide (I)176
Figure 94	HMBC spectrum for soulattrolide (I)177
Figure 95	Percentage of Cell Viability (HeLa Chang liver) against concentration of extracts from <i>C. lanigerum</i>
Figure 96	Percentage of Cell Viability (HL-7702) against concentration of extracts from <i>C. lanigerum</i>
Figure 97	Percentage of Cell Viability (HeLa Chang liver) against concentration of extracts from <i>C. andersonii</i>

Figure 98	Percentage of Cell Viability (HL-7702) against concentration of
	extracts from C. andersonii
Figure 99	Percentage of Cell Viability (HeLa Chang liver) against
	concentration of isolated compounds from C. lanigerum
Figure 100	Percentage of Cell Viability (HL-7702) against concentration of
	isolated compounds from C. lanigerum187
Figure 101	Percentage of Cell Viability (HeLa Chang liver) against
	concentration of isolated compounds from C. andersonii
Figure 102	Percentage of Cell Viability (HL-7702) against concentration of
	isolated compounds from C. andersonii

LIST OF SYMBOLS AND ABBREVIATIONS

C-H	Alkane
C=C	Alkene
AR Grade	Analytical Research Grade
&	And
APG	Angiosperm Phylogeny Group
٤,	Apostrophe
*	Asterisk
β	Beta
br tt	Broad triplet of triplets
С	Carbon
CO ₂	Carbon Dioxide
¹³ C NMR	Carbon Nuclear Magnetic Resonance
C-0	Carbonyl
CHCl ₃	Chloroform
cm	Centimetre
:	Colon
,	Comma
COSY	Correlation spectroscopy
J	Coupling constant
°C	Degree Celcius
δ	Degree Celcius Delta

DMSO	Dimethyl Sulfoxide
d	Doublet
dd	Doublet of doublets
ddq	Doublet of doublet of quartets
dq	Doublet of quartets
DMEM	Dulbecco's Modified Eagle Medium
EMEM	Eagle's Minimum Essential Medium
EI-MS	Electron-Impact Mass Spectrometry
EA	Ethyl Acetate
=	Equal
FBS	Fetal Bovine Serum
FT-IR	Fourier Transform Infrared
	Full stop
GC-MS	Gas Chromatography-Mass Spectrometry
g	Gram
GCC	Gravity Column Chromatography
IC ₅₀	Half-Maximal Inhibitory Concentration
Hz	Hertz
НМВС	Heteronuclear Multiple-Bond Coherence
HSQC	Heteronuclear Single Quantum Coherence
HIV	Human Immunodeficiency Virus
HPLC	High Performance Liquid Chromatography
HL-7702	Human Normal Liver cell line
Н	Hydrogen

О-Н	Hydroxyl
-	Hyphen
IR	Infrared
kg	Kilogram
λ	Lambda
LC-MS	Liquid Chromatography-Mass Spectrometry
L	Litre
MS	Mass Spectrometer
m/z	Mass-to-charge ratio
MHz	Mega Hertz
MeOH	Methanol
m	Metre
µg/mL	Microgram per millilitre
μL	Microlitre
μΜ	Micromole
mg	Milligram
mg/mL	Milligram per millilitre
mm	Millimetre
-	Minus
M^+	Molecular mass (positive charge)
m	Multiplet
nm	Nanometre
NMR	Nuclear Magnetic Resonance
0	Oxygen

()	Parentheses
ppm	Parts per million
Pen-Strep	Penicillin-Streptomycin
%	Percent
PBS	Phosphate-Buffered Saline
+	Plus
±	Plus-Minus
¹ H NMR	Proton Nuclear Magnetic Resonance
qd	Quartet of doublet
" "	Quotations marks
cm ⁻¹	Reciprocal centimetre
C-18	Reversed-Phase Chromatography
;	Semicolon
S	Singlet
/	Slash
SD	Standard Deviation
TLC	Thin Layer Chromatography
t	Triplet
tt	Triplet of triplets
UV-Vis	Ultraviolet-Visible
UiTM	Universiti Teknologi Mara
2D	2-Dimensional
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide

LIST OF APPENDICES

- Appendix A Certificate of appreciation for oral presentation participation at Indo-Malaysian Two-Day International E-Conference (Recent Trends in Natural Products Research and their Applications)
 Appendix B Certificate of appreciation for "First Prize" in oral presentation at Indo-Malaysian Two-Day International E-Conference (Recent Trends in Natural Products Research and their Applications)
- Appendix C Research article publication

SEBATIAN KIMIA DAN KESITOTOKSIKAN DARI KULIT BATANG

KAYU Calophyllum lanigerum var. austrocoriaceum (Whitemore) P. F. STEVENS DAN Calophyllum andersonii P. F. STEVENS

ABSTRAK

Tumbuhan dari genus *Calophyllum*, telah menarik minat ahli fitokimia kerana penemuan baharu yang menarik tentang konstituen bioaktifnya. Fitokonstituen seperti kumarin, kromanon, xanton, dan triterpenoid ialah kumpulan fitokimia yang kerap ditemui dalam genus ini. Fitokimia ini terbukti mempunyai potensi kepentingan farmakologi yang penting bagi saintis untuk aplikasi farmakoterapeutik dalam merawat penyakit yang disasarkan. Sebagai contoh, digunakan untuk tujuan farmakoterapeutik dalam merawat HIV, kanser, dan penyakit berkaitan keradangan. Dalam kajian ini, kulit batang Calophyllum lanigerum dan Calophyllum andersonii telah dikaji dengan mengekstrak, mengasing, dan mencirikan fitokimia yang berkemungkinan terdapat di dalamnya serta menilai aktiviti sitotoksik masing-masing. Lima fenolik dan dua triterpenoid telah diasingkan daripada kulit batang kayu C. lanigerum. Sebatian fenolik telah dikenalpasti sebagai caloteysmannic acid (A), isocalolongic acid (**B**), calolongic acid (**C**), euxanthone (**D**), calanone (**E**), dan dua triterpenoid biasa, friedelin (F) dan stigmasterol (G). Sementara itu, calanone (E) dan isomer konstitusi, isocalanone (\mathbf{H}) serta soulattrolide ($\mathbf{1}$) dan friedelin (\mathbf{F}) telah diperoleh dari kulit batang C. andersonii. Asid kromanon (sebatian A dan B) telah dilaporkan buat kali pertama di dalam C. lanigerum di Sarawak. Struktur kimia sebatian-sebatian ini telah dikenalpasti menggunakan teknik spektroskopi terperinci

seperti NMR (1D dan 2D), MS, UV-Vis, FTIR. Ekstrak-ekstrak mentah (n-heksana, kloroform, etil asetat) dan sebatian tulen (A, B, E dan H) daripada kedua-dua spesis Calophyllum telah diuji sitotoksisitinya terhadap sel hati HeLa Chang (karsinoma serviks manusia) dan sel HL-7702 (hati normal manusia). Hanya ekstrak etil asetat dari C. lanigerum yang menunjukkan sitotoksisiti yang menjanjikan, dengan nilai IC₅₀ sebanyak $34.13 \pm 3.82 \,\mu\text{g/mL}$, manakala ekstrak *n*-heksana dan kloroform masingmasing menunjukkan sitotoksisiti sederhana terhadap sel hati HeLa Chang [93.84 ± 9.35 μ g/mL dan 81.33 \pm 2.41 μ g/mL]. Kesan sitotoksik yang diperhatikan daripada ekstrak etil asetat menunjukkan potensinya untuk pembangunan lanjut sebagai ejen antikanser. Penyelidikan yang meluas ke atas sifat farmakologi dan toksikologi ekstrak ini adalah penting untuk menerangkan aplikasi farmakoterapeutik optimalnya. Penyelidikan ke atas spesies ini boleh dilihat dan dipelajari dalam pelbagai domain penyelidikan, termasuk fitokimia, biologi, dan farmakologi. Pendekatan yang melibatkan pelbagai bidang ini bukan hanya membantu dalam mendapatkan data tambahan, tetapi juga berfungsi sebagai pemangkin untuk memberi inspirasi kepada penyelidik masa depan untuk membangunkan cara-cara inovatif dan praktikal untuk merungkai lebih lanjut misteri di sebalik spesies ini.

CHEMICAL CONSTITUENTS AND CYTOTOXICITY OF THE STEM BARK Calophyllum lanigerum var. Austrocoriaceum (Whitemore) P. F. STEVENS AND Calophyllum andersonii P. F. STEVENS

ABSTRACT

Plants from the genus *Calophyllum*, have gained the interest of phytochemists due to the exciting new discoveries of its bioactive constituents. Phytoconstituents such as coumarins, chromanones, xanthones, and triterpenoids are frequently discovered phytochemical groups in this genus. These phytochemicals proven to possess potential pharmacological importance that are essential for scientists to subject it in pharmacotherapeutic applications in treating targeted diseases. For example, used for pharmacotherapeutic purpose in treating HIV, cancer, and inflammatory related diseases. In this study, the stem bark of *Calophyllum lanigerum* and *Calophyllum* andersonii were investigated by extracting, isolating, and characterising the possible phytochemicals that present and assessing their cytotoxic activity, respectively. Five phenolics and two triterpenoids have been isolated from the stem bark of C. lanigerum. The phenolic compounds were identified as caloteysmannic acid (A), isocalolongic acid (B), calolongic acid (C), euxanthone (D), calanone (E), and two common triterpenoids, friedelin (\mathbf{F}) and stigmasterol (\mathbf{G}) . Meanwhile, calanone (\mathbf{E}) and its constitutional isomer, isocalanone (\mathbf{H}) together with soulattrolide (\mathbf{I}) and friedelin (\mathbf{F}) were isolated from the stem bark of C. andersonii. Chromanone acids (Compounds A and **B**) were reported for the first time in *C. lanigerum* in Sarawak region. The chemical structures of these isolated compounds were elucidated using detailed spectroscopic techniques including NMR (1D, 2D), MS, UV-Vis, FTIR. Extracts (nhexane, chloroform, ethyl acetate) and compounds (**A**, **B**, **E**, and **H**) from both *Calophyllum* species were subjected for their cytotoxicity against HeLa Chang liver (human cervix carcinoma) and HL-7702 (human normal liver) cell lines. Only ethyl acetate extract from *C. lanigerum* exhibited promising cytotoxicity, with IC₅₀ value of $34.13 \pm 3.82 \ \mu g/mL$, while *n*-hexane and chloroform extracts showed moderate cytotoxicity against Hela Chang liver cell line [IC₅₀: 93.84 ± 9.35 $\mu g/mL$ and 81.33 ± 2.41 $\mu g/mL$, respectively]. The observed cytotoxic effects of the ethyl acetate extract suggest its potential for further development as an anticancer agent. Extensive research on the pharmacological and toxicological properties of this extract is essential to elucidate its optimal pharmacotherapeutic applications. The investigation of these species can be viewed and learned various research domains, including phytochemical, biological, and pharmacological properties. This multi-faceted approach not only aids in the acquisition of additional data but also serves as a catalyst for inspiring future researchers to develop innovative and practical ways to unravel the mystery behind these species.

CHAPTER 1

INTRODUCTION

1.1 Plants as sources of new chemical entities

When asking the elder generation for advice on how to keep healthy and look younger than their age, they frequently remarked that they are used to consuming certain plants to stay young-looking and fit. They even mentioned that their advice had been handed down through the generations. Scholars have been curious on how these elder people learned that some plants have "special ingredients" to aid with their bodies' issues, even before the existence of modern technologies like what is being used today. According to statistics reported by the World Health Organization (WHO), primary healthcare for around 65% of the world's population is provided by medicines derived from plant (Srivastav et al. 2020). As time passes, more technologies are developed, and people are utilizing them to study in more detail.

Research has consistently demonstrated that plants create a significant variety of chemical constituents known as secondary metabolites, many of which have been linked to defence mechanisms against pathogens and predators. For instance, through creating colour (which draws pollinators and shields plants from animal attack), signalling, and controlling the primary metabolic processes, all of which aid the plant in maintaining balance with its surroundings (Priya and Satheeshkumar 2020). The chemical constituents found in some plants interest chemists from all over the world, inspiring them to conduct numerous studies to learn more about the fascinating structural variations, stereochemical configurations, conformations, and molecular structures of these compounds. Plants producing secondary metabolites have a

complex structure, as well as provide a significant pharmaceutical value such as glycoside, alkaloids, flavonoids, volatile oils, and more (Srivastay et al. 2020).

Novel chemical entities were found and thoroughly explored for their phytochemistry and biological activities until today. Since environmental factors play a significant role in isolating lead compounds, new chemical entities may also be identified in previously discovered plant species in addition to new species. The ability to establish new chemical entities isolated from plants is what makes this field of study fascinating. Scientists need to use their analytical, spectroscopic, as well as biology knowledge in order to confirm it chemical and physical properties of these novel chemical entities. It is undeniably tough, yet the importance of these studies towards future generations are incredibly invaluable.

Calophyllum was once recognised as a member of the Guttiferae/Clusiaceae family but is now recategorised in Calophyllaceae family. It is placed under the APG Ill system, the Angiosperm Phylogeny Group's third iteration of floral plant categorisation. There are 14 genera and about 475 species updated so far (Christenhusz et al. 2016). Calophyllaceae is a family of tropical tree with simple opposite leaves with delicately parallel lateral veins and yellow-coloured latex. The flowers have a variety of stamens. The current family were discovered for a long time, and there have been phytochemical and pharmacological investigations conducted for some of the species. Examples of extant species from this family that could be beneficial the the world and have been successfully documented in the phytochemical database are *C. lanigerum* and *C. andersonii*.

The characterisation and elucidation of the isolated pure compounds can be accomplished by advanced spectroscopic methods including NMR, MS, and X-ray crystallographic analyses. To pinpoint the biological activities such as anti-cancer, anti-inflammatory, and antibacterial, more research can be conducted, and all the knowledge in this field can be updated for future reference.

1.2 Problem statements

The anti-HIV activity of calanolides A and B was initially documented in 1992 by Kashman and colleagues in their first study on *C. lanigerum* (Kashman et al. 1992). Subsequently, Tee and colleagues conducted the pioneering investigation on *C. andersonii*, reporting the discovery of several known xanthones (Tee et al. 2018a). Despite Steven's initial report on the existence of this species in 1980, no comprehensive reports on its phytochemical composition or biological activities were available until 2018.

We live in a time where both technology and human knowledge are advancing rapidly. Hence, we must take advantage of the opportunity to research more about the phytochemistry of plants. This offers a platform to unravel the chemical constituents of numerous yet undiscovered plants, encouraging the identification of novel chemical entities with distinct capabilities. This persuit is important, especially for burgeoning future researchers to contribute to the field, as it not only boosts the progression of ongoing research but also enriches the reservoir of phytochemical knowledge.

Despite being from the same species, published information shows that they are not identical to one another, making it impossible to continue ongoing research on specific isolated phytochemicals from these species. Thus, it is possible that the diverse geographical distribution of the same species led to the discovery of different groups of phytochemicals. Due to the limited research on the genus *Calophyllum*, the discovery of new phytochemical with bioactive qualities from *C. lanigerum* and *C. andersonii* will be of enormous value not only to the development of new drugs but as well benefits in updating the phytochemical database for scientific exploration. In addition, the findings from the methods employed to isolate the phytochemicals and assess their bio-activity would be highly helpful, especially to phytochemists for further research projects. Therefore, due to their limitations, it is necessary to explore the phytochemistry of these kinds.

1.3 Objectives of the study

The objectives of this study are as below:

1. To extract and isolate the phytochemicals from the stem bark of *C. lanigerum* and *C. andersonii*.

2. To characterise and elucidate the chemical structures of the isolated pure compounds by advanced spectroscopic methods (NMR, MS, UV-Vis, FTIR & HPLC).

3. To determine the potential of selected compounds (caloteysmannic acid, isocalolongic acid, calanone, isocalanone) and extracts (*n*-hexane, chlororform, ethyl acetate) for cytotoxic activities against cancerous and non-cancerous cell lines using MTT colorimetric assay technique.

1.4 Significance of Study

The significance of this study are as below:

1. To provide more information on *C. lanigerum* and *C. andersonii* especially on the phytochemistry, as well as methods used in extraction and isolation parts. These species might have much more capabilites that have not been discovered yet.

2. Younger generation can access to this study easily, which could help them understand the characterisation and elucidation of phytochemicals better. They will indirectly be parts of future generations that have the ability to spread awareness about the benefits of herbal plants in the future.

3. The information provided from this study can be referred by other scientist of similar field. The outcomes from the cytotoxic activities part in this study is crucial, especially for further applications such as in the pharmaceutical and medicinal fields.

CHAPTER TWO

LITERATURE REVIEW

2.1 Botany of plants studied

2.1.1 The genus *Calophyllum*

Calophyllum has taxonomic features including red colour cracks in diamond-shaped outer bark. The leaves consist of opposite narrow and tight parallel veins. The flowers appear at the end of branches or in the axils of leaves and produce white or yellow latex. The hermaphrodite floral arrangement is made up of the sepals and petals of species from this genus. This genus's fruit is a drupe with a big seed and a thin covering of flesh areas (Gupta and Gupta 2020).

Trees and shrubs in this genus are exceptionally tall, but majority are medium-sized trees. Many species in this genus live in the moist tropical rainforest's lowlands. Some species, however, can be found at higher altitudes, in flooded areas, and in drier areas (Gupta and Gupta 2020).

Some of the species in this genus have been discovered in the tropical rainforest of Sarawak, Malaysia. Genus *Calophyllum* has attracted a lot of attention because of its unique biological and chemical profiles. The phytochemistry of *Calophyllum* species has shown a number of secondary metabolites, including xanthones (Mah et al. 2015), coumarins (Spino et al. 1998), chromanone (Lim et al. 2015), and others.

2.1.2 The species C. lanigerum

The Greek words *kalos* and *phyllon* imply "beautiful" and "leaf" respectively. As a result, it is referring to the plant's finely veined leaf blades. *Lanigera*, on the other hand, comes from the Latin word that means woolly, which refers to the species' delicate hairs. *Bentangur pasir* is the Indonesian name for this species. The tree can reach a height of 21 m tall. It has densely leathery leaf blades that are narrowly egg-shaped to oblong, and long-stalked leaves. Its flowering branches are 3-7 cm long and contain 7-21 white blooms apiece. Green-yellow fruits range in size from spherical to egg-shaped, measuring 18-29 by 17-24 mm. it has 11-21 mm long seeds (NParks Flora & Fauna 2022).

C. lanigerum is a tropical forest tree native to Borneo, particularly in the Malaysian state of Sarawak. Anti-HIV active calanolides have been discovered in this species. Calanolide A, for example, was isolated from this species and has been shown to impede HIV-1 replication (Kashman et al. 1992).

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Malpighiales
Family	Calophyllaceae
Genus	Calophyllum
Species	Calophyllum
	lanigerum

 Table 1. Taxonomy of C. lanigerum.

Taken from natureloveyou.sg

Taken from Global Biodiversity Information Facility

Figure 1. Stem barks and leaves of *C. lanigerum*

2.1.3 The species C. andersonii

C. andersonii is a tropical forest tree found on the island of Borneo with a local name of *Kayu mahadingan*. The tree can grow to be 18 m tall, 12 cm wide, free branching, and 12 m above the ground. The bark is brownish-grey on the outside and reddishbrown on the interior, with a thickness of 0.3 mm. It has a golden sap and a gleaming green leaf, according to the Global Biodiversity Information Facility website.

Tee and his colleagues have reported the isolation of many novel xanthones from *C*. *andersonii* in 2018. The compounds are caloxanthone I, pyrnojacareubin, macluraxanthone, caloxanthone C, and euxanthone (Tee et al. 2018a).

Table 2. Taxonomy of C. andersonii.

Kingdom	Plantae
Phylum	Tracheophyta
Class	Magnoliopsida
Order	Malpighiales
Family	Calophyllaceae
Genus	Calophyllum
Species	Calophyllum
	andersonii

Taken from Global Biodiversity Information Facility

Figure 2. Stem bark and leaves of *C. andersonii*

2.2 Phytochemistry of Calophyllum species

A significant number of studies on the phytochemicals of *Calophyllum* species have been conducted. Numerous phytochemicals, including coumarins, chromanones, and xanthones have been found as a result of the research conducted. The basic structure of coumarin, chromanone, and xanthone are shown below as **Figures 3-5**, respectively.

Figure 3. Basic structure of coumarin

Figure 4. Basic structure of chromanone

Figure 5. Basic structure of xanthone

2.2.1 Chemistry (Coumarins)

Coumarin (2H-1-benzopyran-2-one) is a chemical compound originating from plants with molecular formula of C₉H₆O₂. It is made up of α -pyrone rings and fused benzene (Venugopala et al. 2013). According to Sarker and Nahar (2017), coumarins can be categorised as simple, simple geranylated, simple prenylated, pyrano, furano, sesquiterpenyl, and oligomeric. There are various substitutions in the core structure of coumarins that results in diverse structures which affect the chemical and physical properties as well as biological activities (Ruiz-Marcial et al. 2007; Srivastav et al. 2020). For instance, calanolides A and B, which belong to the pyrano type of coumarin (angular type) are the first isomers identified and extracted from *C. lanigerum* leaves in 1992, have progressed to clinical development and have been shown to be protective against HIV-1 replication (Venugopala et al. 2013; Zailan et al 2022). The other published data on the *Calophyllum* species from numerous research, as well as the chemical structures and derivatives of coumarins are shown in **Table 3** and **Figure 6**.

Calophyllum species	Compounds	Part of	References
		plants	
C. austraiianum	Calaustralin (10)	Stem bark	Breck et al. 1969
C. benjaminum	Benjaminin (11)	Stem bark	Sahimi et al. 2015
C. blancoi	Isorecedensolide (12) Recedesolide (13)	Seeds	Shen et al. 2004
C. brasiliense	(-) mammea A/BB (14)	Leaves,	Pires et al. 2014
	(-) mammea B/BB (15)	stem bark	Ito et al. 2003
	Brasimarins A (16)		
	Brasimarins B (17)		
	Brasimarins C (18)		
	Calocoumarin A (19)		
C. cordato-oblongum	Cordatolides A (20)	Leaves,	Dharmaratne et al.
	Cordatolides B (21)		1984
	Oblongulide (22)		
C. dispar	Isodispar B (23)	Fruits,	Guilet et al. 2001a
	Disparinol D (24)	stem bark	Guilet et al. 2001b
	Disparpropylinol B (25)		
	Dispardiol B (26)		
	Mammea A/AB cyclo E (27)		
	Mammea A/AB dioxalanocyclo		
	F (28)		
	Mammea A/BA cyclo F (29)		
	Mammea A/BB cyclo F (30)		
	Mammea A/BC cyclo F (31)		
	Isodisparfuran A (32)		
	Disparfuran B (33)		
	Disparacetylfuran A (34)		
	Mammea A/AA deshydrocyclo		
	F (35)		
	Mammea A/AA methoxycyclo		
	F (36)		
	Mammea A/AA cyclo F (37)		
	Mammea A/AB cyclo F (38)		
	Mammea A/AC cyclo F (39)		
C. ferrugineum	Isocalanone (40)	Stem bark	Noh et al. 2020
C. hosei	Hoseimarin (41)	Stem bark	Daud et al. 2014
C. incrassatum	Incrassamarin A (42)	Stem bark,	Aminudin et al.
	Incrassamarin B (43)	leaves	2016
	Incrassamarin C (44)		
	Incrassamarin D (45)		

Table 3. Coumarins isolated from Calophyllum species

 Table 3. Continued

Calophyllum species	Compounds	Part of plants	References
C. inophyllum	 (-)-12-methoxyinophyllum A (46) (+)-12-methoxyinophyllum H-1 (47) (-)-12-methoxyinophyllum H-2 (48) Inophyllum J (49) Inophyllum A (50) Inophyllum B (51) Inophyllum B (51) Inophyllum C (52) Inophyllum E (53) Soulattrolide (54) Inophyllum P (55) Inophyllum G-1 (56) Inophyllum G-2 (57) Calophyllolide (58) Inophyllum D (59) Calocoumarin-A (60) 	Leaves, nut, aerial part, seeds	Li et al. 2016 Patil et al. 1993 Yimdjo et al. 2004 Itoigawa et al. 2001 Shen et al. 2003
	Calocoumarin-B (61) Calocoumarin-C (62) Inocalophyllin A (63)		
C. lanigerum	Inocalophyllin B (64) Calanolide A (65) Calanolide B (66) Calanolide C (67) Calanolide D (68) 12-Acetoxycalanolide A (69) 12-Methoxycalanolide A (70) 12-Methoxycalanolide B (71) Calanolide E1 (72) Calanolide E2 (73) Cordatolide E (74)	Fruits, twigs, stem bark	Kashman et al. 1992 McKee et al. 1996
C. moonii	Inophyllum A (50)	Leaves	Bandara et al. 1986
C. mucigerum	Mucigerin (75)	Stem bark	Ee et al. 2004
C. polyanthum	Calopolyanolide C (76) Calopolyanolide D (77)	Seeds	Ma et al. 2004
C. soulattri	Soulamarin (78) Soulattrolide (54)	Stem bark	Ee et al. 2011 Gunasekera et al. 1977

Table 3. Continued

Calophyllum species	Compounds	Part of plants	References
C. symingtonianum	Inophyllum D (59)	Stem bark,	Aminudin et al.
	Inophyllum H (79)	leaves	2015
C. teysmannii	Calanone (80)	Latex,	Gustafson et al.
	Costatolide (81)	stem bark	1994
	Soulattrolide (54)		Cao et al. 1997a
	Teysmanone A (82)		
	Teysmanone B (83)		
C. wallichianum	Wallimarin T (84)	Stem bark	Tee et al. 2018b
	Calanolide E (85)		

(10)

(12)

(13)

(16)

(17)

(18)

in Table 3

(22)

(24)

(25)

(26)

(27)

(30)

(33)

HO

in Table 3 (continued)

(34)

(35)

(36)

(37)

(40)

(41)

(42)

(46)

(47)

0 \cap ОН i

(48)

(49)

(51)

(54)

0 ОН

(59)

(60)

(58)

(61)

(64)

(66)

Figure 6. The chemical structures of coumarins isolated from the species mentioned in Table 3 (continued)

(72)

(75)

(78)

Figure 6. The chemical structures of coumarins isolated from the species mentioned

in Table 3 (continued)

(83)

(85)

Figure 6. The chemical structures of coumarins isolated from the species mentioned

in Table 3 (continued)

2.2.2 Chemistry (Chromanones)

Chromanone, with the molecular formula of $C_9H_6O_2$ is also a part of phenolic compounds that has been isolated before from genus *Calophyllum*. It comprises of two stereocenters at carbon positions of C-2 & C-3 (2,3-dimethylchromanone ring) as well as stereocenters on the associated alkyl side chain (5 to 8 carbons), along with a linked carboxyl group (acidic side chain) (Nugroho et al. 2017). For example, in the case of apetalic acid (Ha et al. 2012), blancoic acid (Plattner et al. 1974), and caloteysmannic acid (Lim et al. 2015). Phytochemists tend to focus primarily on the configuration of chromanones, particularly at the two carbons (C-2 &C-3) in 2,3-dimethylchromanone ring, and may overlook the carbon from the acidic side chain, which could cause confusion (Nugroho et al. 2017).

In 2015, Lim and colleagues isolated several chromanone acids including caloteysmannic acid, and diastereoisomers named isocalolongic acid, and calolongic acid from the stem bark of *C. teysmannii*. The difference regarding the chemical structures between caloteysmannic acid and both diastereoisomers is at the configuration of C-2 and C-3, as well as the existence of 3-phenylpropanoic acid instead of hexanoic acid. Caloteysmannic acid was found for the first time in the same study and in comparison to other chromanone acids, it has the strongest inhibitory activity against HeLa Chang liver cell line (Lim et al. 2015). Other chromanones that were isolated from *Calophyllum* species were tabulated in **Table 4** and **Figure 7** below, to show their chemical structures and its derivatives, along with references from previous studies.

Calophyllum	Compounds	Part of	References
species		plants	
C hlangoi	Anotalia agid (86)	Saada	Shap at al. 2004
C. Diancoi	Apetalic acid (87)	Seeus	Shell et al. 2004
	A potalic acid mothyl astar (88)		
	Apetalic acid 5 () acetata (80)		
	Apetalic actu 5-0-acetate (89)		
	Isoapetalic acid 5 () acetate (01)		
C hrasiliansa	Prosilionsonbullic acid A (02)	Dorla	Cottiglia at al
C. Drasmense	Isobrasiliansophyllia acid A (92)	Dalk	2004
	Brasiliansophyllia acid P (04)		2004
	Isobrasiliansophyllia acid B (95)		
	$ \begin{array}{c} \text{Isobiasinensophyllic acid B (95)} \\ \text{Presiliensophyllic acid C (96)} \end{array} $		
	Jachragiliangonhyllia agid C (97)		
<u>C</u> agatan ayun	Isoblashensophylic acid C (97)	Stom hould	Lim at al. 2010a
C. castaneum	Isoblancolc acid (98)	Stelli Dark	Lini et al. 2019a
C. decipiens	Apetalic acid (86)	Bark	Ajithabai et al.
Ĩ	Decipic acid (99)		2012
	12-acetyl apetalic acid (100)		
C. incrassatum	Calofolic acid B (101)	Stem bark	Hasanah et al.
	Apetalic acid (86)		2019
C. inophyllum	Caloinophyllin A (102)	Root	Ponguschariyagul
			et al. 2018
C. polyantum	Calopolyanic acid (103)	Pericarps	Wang et al. 2010
	Isocalopolyanic acid (104)		
	Isorecedensic acid (105)		
	Apetalic acid (86)		
	Blancoic acid (106)		
	Chapelieric acid (107)		
	Methyl isoapetalate (108)		
	Isoapetalic acid (87)		
	Isocalolongic acid (109)		
C. scriblitifolium	Calofolic A (110)	Stem bark	Nugroho et al.
	Calofolic B (101)		2017
	Calofolic C (111)		
	Calofolic D (112)		
	Calofolic E (113)		
	Calofolic F (114)		
C. symingtonianum	Isocordato-oblongic acid (115)	Stem bark	Aminudin et al.
			2015
C. teysmannii	Isocalolongic acid (109)	Stem bark	Lim et al. 2015
	Caloteysmannic acid (116)		
	Calolongic acid (117)		

 Table 4. Chromanones isolated from Calophyllum species