PHYTOCHEMICAL STUDIES AND CYTOTOXICITY ASSESSMENT OF STEM BARK EXTRACTS FROM Calophyllum macrocarpum HOOK. F. AND Calophyllum recurvatum P. F. STEVENS

NOOR SYARAFANA BINTI FIROUZ

UNIVERSITI SAINS MALAYSIA

2024

PHYTOCHEMICAL STUDIES AND CYTOTOXICITY ASSESSMENT OF STEM BARK EXTRACTS FROM Calophyllum macrocarpum HOOK. F. AND Calophyllum recurvatum P. F. STEVENS

by

NOOR SYARAFANA BINTI FIROUZ

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

April 2024

ACKNOWLEDGEMENT

First and foremost, praises and thanks to the God, the Almighty, for His showers of blessings throughout my research work to complete my master study successfully. To be able successfully completed this research project was absolutely a great achievement of milestone for me. Of course, it was never an individual accomplishment, as this project would not have been possible with the support of many people.

I would like to express my deep and sincere gratitude to my main supervisor, Dr Thiruventhan Karunakaran, from Centre for Drug Research, Universiti Sains Malaysia, for giving me the opportunity and providing me invaluable guidance throughout this research. His dynamism, vision, sincerity, and motivation have deeply inspired me. It was a great privilege and honour to work and study under his guidance. I am extending my heartfelt thanks to his family as well for their acceptance and patience during the laboratory work that I had with him and thesis writing.

My gratitude extends to the Centre for Drug Research, Universiti Sains Malaysia for the funding opportunity to undertake my studies, research facilities and also technical supports. I would like to thank my co-supervisor, Dr Mohamad Hafizi Abu Bakar for providing me with a lot of helps and his mentorship. Also, my field supervisor, Prof Madya Dr Vivien Yi Mian Jong, thank you so much for providing me plant samples.

In the meantime, I cherish all the memories of those happy and hard times with my fellow lab mates, seniors, and juniors. I express my special thanks of gratitude to all of them for their kindness shown along the way to complete my study. I would also like to express gratitude to all staff at Centre for Drug Research, School of Chemical Sciences and School of Industrial Technology, Universiti Sains Malaysia for their contribution and kindness.

A million thanks to my family for their motivation, enduring love, and financial supports. I am extremely grateful to my parents for their prayers, sacrifices, kind understanding and continuous supports to complete my study and prepare me for the future. Their encouragement was in the end what made this thesis possible.

May God bless all of us.

TABLE OF CONTENTS

ACKN	OWLEI	DGEMENT	ii
TABL	E OF CO	ONTENTS	iii
LIST	OF TAB	LES	vi
LIST	OF FIGU	JRES	viii
LIST	OF SCH	EMES	xvi
LIST	OF ABB	REVIATIONS AND SYMBOLS	xvii
LIST	OF APPI	ENDICES	xxii
ABST	RAK		xxiii
ABST	RACT		XXV
CHAF	TER 1	INTRODUCTION	
1.1	Evolutio	onary History of Phytochemistry	1
1.2	Bridging	g Phytochemistry Knowledge for Human Health Benefits .	3
1.3	Problem	Statement	6
1.4	Objectiv	ve of study	7
CHAF	PTER 2	LITERATURE REVIEW	
2.1	Taxonor	ny of Calophyllaceae	8
	2.1.1	Taxonomy of Genus Calophyllum and its ethnobotanical	
		and ethnomedicinal uses	9
		2.1.1(a) Taxonomy of <i>Calophyllum macrocarpum</i>	18
		2.1.1(b) Taxonomy of <i>Calophyllum recurvatum</i>	19
2.2	Chemist	ry of xanthones	20
2.3	Xanthones from genus Calophyllum		28
2.4	Chemistry of coumarins		70
2.5	Coumar	ins from genus Calophyllum	74
2.6	Biologic	cal activity of genus Calophyllum	100
CHAF	PTER 3	METHODOLOGY	
3.1	Plant ma	terials	125
3.2	Chemica	als & reagents	125
3.3	Instrume	entation	126
	3.3.1	Melting Point	126

	3.3.2	Gas Chromatography – Mass Spectrometry (GCMS)	12
	3.3.3	Nuclear Magnetic Resonance (NMR)	12
	3.3.4	Fourier Transform – Infrared Spectroscopy (FTIR)	12
	3.3.5	Ultraviolet – Visible Spectrophotometer (UV-Vis)	12
	3.3.6	High – Performance Liquid Chromatography (HPLC)	12
3.4	Extract	ion	13
3.5	Isolatio	on of phytochemical from C. macrocarpum	13
3.6	Isolatio	on of phytochemical from C. recurvatum	13
3.7	Cytotoz	xic evaluation	14
	3.7.1	Cell culture	14
	3.7.2	Sample preparation	14
	3.7.3	MTT Assay	14
3.8	Statistic	cal analysis	14
CHA	PTER 4	RESULTS AND DISCUSSION	
4.1	Extract	ion Yield from Calophyllum macrocarpum	14
4.2	Extract	ion Yield from Calophyllum recurvatum	14
4.3	Charact	terisation and structure elucidation of phytochemical	
	constitu	uents from Calophyllum macrocarpum	14
	4.3.1	Characterisation of compound A	14
	4.3.2	Characterisation of compound B	16
	4.3.3	Characterisation of compound C	17
	4.3.4	Characterisation of compound D	19
	4.3.5	Characterisation of compound E	20
4.4	Charact	terisation and structure elucidation of phytochemical	
	constitu	uents from Calophyllum recurvatum	20
	4.4.1	Characterisation of compound \mathbf{F}	20
	4.4.2	Characterisation of compound G	22
	4.4.3	Characterisation of compound H	24
	4.4.4	Characterisation of compound I	26
4.5	Cytotox	cicity activity	27
	4.5.1	Cytotoxicity activity of C. macrocarpum	27
	4.5.2	Cytotoxicity activity of C. recurvatum	28
	4.5.3	Discussion	28

CHAPTER 5 CONCLUSION

LIST OF PUBLICATION			
APPENDICES			
REFERENCES		296	
5.2	Future Recommendation	295	
5.1	Conclusion	293	

LIST OF TABLES

Table 2.1	The Taxonomy of genus Calophyllum	9
Table 2.2	Ethnobotanical and ethnomedicinal uses of selected Calophyllum	
	species	13
Table 2.3	The Taxonomy of <i>Calophyllum macrocarpum</i>	18
Table 2.4	The Taxonomy of Calophyllum recurvatum	19
Table 2.5	Xanthones isolated from Calophyllum species	29
Table 2.6	Coumarins isolated from Calophyllum species	75
Table 2.7	Bioactivity of extracts/fractions from Calophyllum species	101
Table 2.8	Bioactivity of constituents isolated from Calophyllum species	110
Table 4.1	Extraction Yield of Crude Extracts from Calophyllum	
	macrocarpum	142
Table 4.2	Extraction Yield of Crude Extracts from Calophyllum	
	recurvatum	142
Table 4.3	¹ H NMR (700 MHz, Acetone-d ₆), ¹³ C NMR (175 MHz, Acetone-	
	d ₆) for ananixanthone (1)	160
Table 4.4	¹ H NMR (700 MHz, Acetone-d ₆), ¹³ C NMR (175 MHz, Acetone-	
	d ₆) for trapezifolixanthone (2)	177
Table 4.5	¹ H NMR (700 MHz, CDCl ₃), ¹³ C NMR (175 MHz, CDCl ₃) for 8-	
	deoxygartanin (3)	194
Table 4.6	¹ H NMR (400 MHz, CDCl ₃), ¹³ C NMR (100 MHz, CDCl ₃) for	
	stigmasterol (4)	201
Table 4.7	¹ H NMR (700 MHz, CDCl ₃), ¹³ C NMR (175 MHz, CDCl ₃) for	
	friedelin (5)	208
Table 4.8	¹ H NMR (700 MHz, CDCl ₃), ¹³ C NMR (175 MHz, CDCl ₃) for	
	thwaitesixanthone (6)	225
Table 4.9	¹ H NMR (700 MHz, Acetone-d ₆), ¹³ C NMR (175 MHz, Acetone-	
	d ₆) for teysmanone A (7)	242
Table 4.10	¹ H NMR (700 MHz, Acetone-d ₆), ¹³ C NMR (175 MHz, Acetone-	
	d ₆) for soulattrolide (8)	259

Table 4.11	¹ H NMR (700 MHz, CDCl ₃), ¹³ C NMR (175 MHz, CDCl ₃) for	
	calanone (9)	276
Table 4.12	IC ₅₀ values of <i>n</i> -hexane extract, CHCl ₃ extract, EtOAc extract,	
	ananixanthone (1) and trapezifolixanthone (2) against HeLa	
	Chang liver and HL-7702 cell lines	283
Table 4.13	IC ₅₀ values of <i>n</i> -hexane extract, CHCl ₃ extract, EtOAc extract,	
	teysmanone A (7) and soulattrolide (8) against HeLa Chang liver	
	and HL-7702 cell lines	288

LIST OF FIGURES

Page

Figure 2.1	Parts of <i>Calophyllum</i> plants	8
Figure 2.2	Herbarium sample of <i>C. macrocarpum</i>	18
Figure 2.3	Herbarium sample of <i>C. recurvatum</i>	19
Figure 2.4	Basic skeleton of xanthone	20
Figure 2.5	Example of mono-oxygenated xanthone	21
Figure 2.6	Example of di-oxygenated xanthone	21
Figure 2.7	Example of tri-oxygenated xanthone	21
Figure 2.8	Example of tetra-oxygenated xanthone	21
Figure 2.9	Example of penta-oxygenated xanthone	22
Figure 2.10	Example of hexa-oxygenated xanthone	22
Figure 2.11	Example of miscellaneous xanthone (4,5-dichloro-6-O-	
	methylnorlichexanthone)	23
Figure 2.12	Biosynthetic mechanism of ravelenin, by acetate polymalonic	
	pathway (for lower plants - microorganisms and	
	lichens)	25
Figure 2.13	Biosynthesis pathways leading to the xanthones A and B, by	
	mixed shikimate acetate pathway (for higher	
	plants)	26
Figure 2.14	The chemical structure of xanthones isolated from the species	
	mentioned in Table 2.5	52
Figure 2.15	Scaffold of coumarin	70
Figure 2.16	The Biosynthetic Pathway of Coumarins (Bruneton 1995,	
	Brown et. al. 1979, Floss et. al. 1979)	71
Figure 2.17	Three basic structural types of pyranocoumarins (Su et al.	
	2008)	72
Figure 2.18	Five new structural types of pyranocoumarins (Su et al.	
	2008)	73
Figure 2.19	The chemical structure of coumarins isolated from the species	
	mentioned in Table 2.6	88
Figure 4.1	Mass Spectrum of ananixanthone (1)	144

Figure 4.2	FTIR Spectrum of ananixanthone (1)	146
Figure 4.3	UV-Vis Spectrum of ananixanthone (1)	147
Figure 4.4	Peak purity UV spectrum (HPLC-DAD) of ananixanthone	
	(1)	148
Figure 4.5	¹ H-NMR Spectrum of ananixanthone (1)	150
Figure 4.6	COSY Spectrum of ananixanthone (1) from δ_H 3.00 to 8.00	
	ppm	152
Figure 4.7	¹³ C-NMR Spectrum of ananixanthone (1)	154
Figure 4.8	HSQC Spectrum of ananixanthone (1)	155
Figure 4.9	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 1 of HMBC Spectrum of	
	ananixanthone (1) from $\delta_{\rm H}$ 6.90 to 7.90 ppm	157
Figure 4.10	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 2 of HMBC Spectrum of	
	ananixanthone (1) from $\delta_{\rm H}$ 4.90 to 6.30 ppm	158
Figure 4.11	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 3 of HMBC Spectrum of	
	ananixanthone (1) from бн 1.20 to 3.75 ppm	159
Figure 4.12	Mass Spectrum of trapezifolixanthone (2)	162
Figure 4.13	FTIR Spectrum of trapezifolixanthone (2)	164
Figure 4.14	UV-Vis Spectrum of trapezifolixanthone (2)	165
Figure 4.15	Peak purity UV spectrum (HPLC-DAD) of	
	trapezifolixanthone (2)	166
Figure 4.16	¹ H-NMR Spectrum of trapezifolixanthone (2)	168
Figure 4.17	COSY Spectrum of trapezifolixanthone (2) from $\delta_H 2.00$ to	
	8.00 ppm	170
Figure 4.18	¹³ C-NMR Spectrum of trapezifolixanthone (2)	172
Figure 4.19	HSQC Spectrum of trapezifolixanthone (2)	173
Figure 4.20	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 1 of HMBC Spectrum of	
	trapezifolixanthone (2) from $\delta_{\rm H} 6.70$ to 7.70 ppm	175
Figure 4.21	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 2 of HMBC Spectrum of	
	trapezifolixanthone (2) from $\delta_H 3.20$ to 6.00 ppm	176
Figure 4.22	Mass Spectrum of 8-deoxygartanin (3)	179
Figure 4.23	FTIR Spectrum of 8-deoxygartanin (3)	181
Figure 4.24	UV-Vis Spectrum of 8-deoxygartanin (3)	182

Figure 4.25	Peak purity UV spectrum (HPLC-DAD) of 8-deoxygartanin (3)	18.
Figure 4.26	¹ H-NMR Spectrum of 8-deoxygartanin (3)	18:
Figure 4.27	COSY Spectrum of 8-deoxygartanin (3) from δ_H 3.50 to 8.00	
	ppm	18′
Figure 4.28	¹³ C-NMR Spectrum of 8-deoxygartanin (3)	189
Figure 4.29	HSQC Spectrum of 8-deoxygartanin (3)	190
Figure 4.30	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 1 of HMBC Spectrum of	
	8-deoxygartanin (3) from $\delta_H 1.50$ to 8.00 ppm	192
Figure 4.31	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 2 of HMBC Spectrum of	
	8-deoxygartanin (3) from $\delta_H 1.50$ to 5.50 ppm	193
Figure 4.32	Mass Spectrum of stigmasterol (4)	190
Figure 4.33	¹ H-NMR Spectrum of stigmasterol (4)	198
Figure 4.34	¹³ C-NMR Spectrum of stigmasterol (4)	200
Figure 4.35	Mass Spectrum of friedelin (5)	203
Figure 4.36	¹ H-NMR Spectrum of friedelin (5)	205
Figure 4.37	¹³ C-NMR Spectrum of friedelin (5)	207
Figure 4.38	Mass Spectrum of thwaitesixanthone (6)	210
Figure 4.39	FTIR Spectrum of thwaitesixanthone (6)	212
Figure 4.40	UV-Vis Spectrum of thwaitesixanthone (6)	213
Figure 4.41	Peak purity UV spectrum (HPLC-DAD) of	
	thwaitesixanthone (6)	214
Figure 4.42	¹ H-NMR Spectrum of thwaitesixanthone (6)	210
Figure 4.43	COSY Spectrum of thwaitesixanthone (6) from δ_H 5.00 to	
	8.50 ppm	218
Figure 4.44	¹³ C-NMR Spectrum of thwaitesixanthone (6)	220
Figure 4.45	HSQC Spectrum of thwaitesixanthone (6)	22
Figure 4.46	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 1 of HMBC Spectrum of	
	thwaitesixanthone (6) from $\delta_{\rm H}$ 5.30 to 8.50 ppm	223
Figure 4.47	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 2 of HMBC Spectrum of	
	thwaitesixanthone (6) from $\delta_{\rm H}$ 5.30 to 8.50 ppm	224
Figure 4.48	Mass Spectrum of teysmanone A (7)	22
Figure 4.49	FTIR Spectrum of teysmanone A (7)	22

Figure 4.50	UV-Vis Spectrum of teysmanone A (7)	230
Figure 4.51	Peak purity UV spectrum (HPLC-DAD) of teysmanone A (7)	231
Figure 4.52	Full ¹ H-NMR Spectrum of teysmanone A (7)	233
Figure 4.53	COSY Spectrum of teysmanone A (7) from δ H 5.00 to 8.00	
	ppm	235
Figure 4.54	¹³ C-NMR Spectrum of teysmanone A (7)	237
Figure 4.55	HSQC Spectrum of teysmanone A (7)	238
Figure 4.56	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 1 of HMBC Spectrum of	
	teysmanone A (7) from $\delta_{\rm H}$ 5.40 to 8.00 ppm	240
Figure 4.57	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 2 of HMBC Spectrum of	
	teysmanone A (7) from δ_H 5.40 to 8.00 ppm	240
Figure 4.58	Mass Spectrum of soulattrolide (8)	244
Figure 4.59	FTIR Spectrum of soulattrolide (8)	246
Figure 4.60	UV-Vis Spectrum of soulattrolide (8)	247
Figure 4.61	Peak purity UV spectrum (HPLC-DAD) of soulattrolide (8)	248
Figure 4.62	¹ H-NMR Spectrum of soulattrolide (8)	250
Figure 4.63	COSY Spectrum of soulattrolide (8) from $\delta_H 1.00$ to 8.00 ppm	252
Figure 4.64	¹³ C-NMR Spectrum of soulattrolide (8)	254
Figure 4.65	HSQC Spectrum of soulattrolide (8)	255
Figure 4.66	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 1 of HMBC Spectrum of	
	soulattrolide (8) from $\delta_H 4.20$ to 8.20 ppm	257
Figure 4.67	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 2 of HMBC Spectrum of	
	soulattrolide (8) from $\delta_H 4.20$ to 8.20 ppm	258
Figure 4.68	Mass Spectrum of calanone (9)	261
Figure 4.69	FTIR Spectrum of calanone (9)	263
Figure 4.70	UV-Vis Spectrum of calanone (9)	264
Figure 4.71	Peak purity UV spectrum (HPLC-DAD) of calanone (9)	265
Figure 4.72	¹ H-NMR Spectrum of calanone (9)	267
Figure 4.73	COSY Spectrum of calanone (9) from $\delta_H 5.40$ to 7.80 ppm	269
Figure 4.74	¹³ C-NMR Spectrum of calanone (9)	271
Figure 4.75	HSQC Spectrum of calanone (9)	272
Figure 4.76	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 1 of HMBC Spectrum of	
	calanone (9) from $\delta_H 4.20$ to 8.20 ppm	274

Figure 4.77	Selected ${}^{2}J$ and ${}^{3}J$ from Expansion 2 of HMBC Spectrum of	
	calanone (9) from $\delta_H 4.20$ to 8.20 ppm	275
Figure 4.78	Percentage viability of HeLa Chang liver cells against various	
	concentration of treatment C. macrocarpum extracts. Data	
	shown as mean \pm SEM (n = 6). *P < 0.05, **P < 0.01, ***P	
	<0.001 compared with DMSO as blank (one-way	
	ANOVA)	279
Figure 4.79	Percentage viability of HL-7702 cells against various	
	concentration of treatment C. macrocarpum extracts. Data	
	shown as mean \pm SEM (n = 6). *P < 0.05, **P < 0.01, ***P	
	<0.001 compared with DMSO as blank (one-way	
	ANOVA)	280
Figure 4.80	Percentage viability of HeLa Chang liver cells against various	
C	concentration of treatment with ananixanthone (1),	
	trapezifolixanthone (2), and curcumin. Data shown as mean	
	\pm SEM (n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 compared	
	with DMSO as blank (one-way ANOVA, followed by	
	Dunnett's test)	281
Figure 4.81	Percentage viability of HL-7702 cells against various	-
8	concentration of treatment with ananixanthone (1).	
	trapezifolixanthone (2) and curcumin Data shown as mean	
	+ SEM ($n = 6$) *P < 0.05 **P < 0.01 ***P < 0.01 compared	
	with DMSO as blank (one-way ANOVA followed by	
	Dunnett's test)	282
Figure 4 82	Percentage viability of HeI a Chang liver cells against various	202
1 iguie 4.02	concentration of treatment <i>C</i> recurvatum extracts Data	
	shown as mean + SEM $(n - 6)$ *P < 0.05 **P < 0.01 ***P	
	shown as mean \pm SEW (ii = 0). If < 0.03, If < 0.01, IF =	
	ANOVA)	201
	ANOVA)	204
Figure 4.83	Percentage viability of HL-7702 cells against various	
	concentration of treatment C. recurvatum extracts. Data	

xii

shown as mean \pm SEM (n = 6). *P < 0.05, **P < 0.01, ***P

	<0.001 compared with DMSO as blank (one-way	
	ANOVA)	285
Figure 4.84	Percentage viability of HeLa Chang liver cells against various	
	concentration of treatment with teysmanone A (7),	
	soulattrolide (8), and curcumin. Data shown as mean \pm SEM	
	(n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 compared with	
	DMSO as blank (one-way ANOVA, followed by Dunnett's	
	test)	286
Figure 4.85	Percentage viability of HL-7702 cells against various	
	concentration of treatment with teysmanone A (7),	
	soulattrolide (8), and curcumin. Data shown as mean \pm SEM	
	(n = 6). *P < 0.05, **P < 0.01, ***P < 0.001 compared with	
	DMSO as blank (one-way ANOVA, followed by Dunnett's	
	test)	287

LIST OF SCHEMES

		Page
Scheme 3.1	Flow chart of the general experimental steps	129
Scheme 3.2	Flow chart of isolation and purification process carried out in	
	<i>n</i> -hexane extract of <i>C</i> . <i>macrocarpum</i>	132
Scheme 3.3	Flow chart of isolation and purification process carried out in	
	chloroform extract of <i>C. macrocarpum</i>	133
Scheme 3.4	Flow chart of isolation and purification process carried out in	
	<i>n</i> -hexane extract of <i>C</i> . <i>recurvatum</i>	137
Scheme 3.5	Continuation of flow chart of isolation and purification process	
	carried out in <i>n</i> -hexane extract of <i>C</i> . <i>recurvatum</i>	138
Scheme 3.6	Flow chart of isolation and purification process carried out in	
	chloroform extract of C. recurvatum	139

LIST OF SYMBOLS & ABBREVIATIONS

°C	Degree Celsius
μg	Microgram
μL	Microlitre
μΜ	Micromolar
¹³ C-NMR	Carbon-13 Nuclear Magnetic Resonance
1D	1-Dimension
¹ H-NMR	Proton Nuclear Magnetic Resonance
2D	2-Dimension
A. aegypti	Aedes aegypti
A. fumigatus	Aspergillus fumigatus
A. salina	Artemia salina
A549	Lung Carcinoma Epithelial cell
AChE	Acetylcholinesterase
APR III	Angiosperm Phylogeny Group III
AR	Analytical Reagent
B. cereus	Bacillus cereus
B. malayi	Brugia malayi
B. megaterium	Bacillus megaterium
B. pumilus	Bacillus pumilus
B. subtilis	Bacillus subtilis
BChE	Butyrylcholinesterase
C. difficile	Clostridioides difficile
C. macrocarpum	Calophyllum macrocarpum
C. perfringens	Clostridium perfringens
C. recurvatum	Calophyllum recurvatum
С	Carbon
C2	Carbon-2
C3	Carbon-3
C4	Carbon-4
C-C	Carbon-carbon
CA, USA	California, United States of America

Caco-2	Immortalized Human Colorectal Adenocarcinoma cell
CC	Column Chromatography
CC50	Concentration of Test Compound required to reduce cell
	viability by 50%
CHCl ₃	Chloroform
CM-C	C. macrocarpum Chloroform extract
CM-EA	C. macrocarpum Ethyl acetate extract
СМ-Н	C. macrocarpum n-Hexane extract
CM-M	C. macrocarpum Methanol extract
CNE1	Human nasopharyngeal Carcinoma cell
СО	Carbonyl
COSY	Correlated Spectroscopy
COX	Cyclooxygenase
CO ₂	Carbon dioxide
CR-C	C. recurvatum Chloroform extract
CR-EA	C. recurvatum Ethyl acetate extract
CR-H	C. recurvatum n-Hexane extract
CR-M	C. recurvatum Methanol extract
CYP2E1	Cytochrome P450 2E1 - member of the cytochrome P450
	mixed-function oxidase system
CyQuant	A highly sensitive fluorescence-based method for
	quantifying cells and assessing cell proliferation and
	cytotoxicity
d	Doublet
dd	Doublet of doublet
DENV-2	Dengue Virus 2
DMEM	Dulbecco's Modified Eagle's Medium
DMSO	Dimethyl Sulfoxide
DNA	Deoxyribonucleic Acid
DPPH	2,2-diphenyl-1-picrylhydrazyl
E. coli	Escherichia coli

ED 50	Dose of Medication that produces desired pharmacologic
	effect in 50% of the studied population that takes the
	medication
EIMS	Electron Ionization Mass Spectrometry
EMEM	Eagle's Minimum Essential Medium
EtOAc	Ethyl acetate
FBS	Fetal Bovine Serum
FTIR	Fourier-Transform Infrared Spectroscopy
g	Gram
G. trabeum	Gloeophyllum trabeum
GCMS	Gas Chromatography – Mass Spectrometry
H. pylori	Helicobacter pylori
Н	Hydrogen
H37Rv	Mycobacterium tuberculosis strain
HBOC	Hereditary Breast and Ovarian Cancer
HCT-116	Human Colon Cancer cell
HEK-293	Human Embryonic Kidney Cell
HeLa	Henrietta Lacks Cervical Cancer Cell
Hela S-3	Clonal derivative of HeLa cell
Hep-G2	Immortalized Liver Hepatocellular Carcinoma cell
HIV	Human Immunodeficiency Virus
HIV-1 RT	HIV-1 Reverse Transcription
HK1	Hexokinase-1 enzyme
HL-60	Promyelocytic Human Leukimia cell
HMBC	Heteronuclear Multiple Bond Coherence Spectroscopy
HPLC	High-Performance Liquid Chromatography
HSQC	Heteronuclear Single Quantum Coherence Spectroscopy
HT-29	Human Colon Cancer cell
HTS	High-Throughput Screening
IC50	The Half Maximal Inhibitory Concentration
IMR-32	Human Caucasian Neuroblastoma cell
IUPAC	International Union of Pure and Applied Chemistry
J774G8	Mouse Macrophages cell

K562	Human Chronic Myeloid Leukimia cell		
KB	Human Epithelial Carcinoma cell		
L. amazonensis	Leishmania amazonensis		
L. infantum	Leishmania infantum		
L. monocytogenes	Listeria monocytogenes		
L1210	Mouse Lymphotic Leukimia cell		
LOX	Lipooxygenase		
LPS	Lipopolysaccharides		
LS147T	Colorectal Tumor cell		
LS174T	Human Colon Carcinoma cell		
m	Multiplet		
MCF-7	Human Breast Cancer cell		
MD, USA	Maryland, United States of America		
MDA-MB-231	Triple-negative Breast Cancer cell		
mg	Milligram		
MHz	Mega-Hertz		
MIC	Lowest Concentration of Antibiotic at which bacterial		
	growth completely inhibited		
mL	Millilitre		
mM	Millimolar		
Molt-4	Human T Lymphoblast cell		
MRC-5	Human Fetal Lung Fibroblast cell		
MS	Mass Spectrometry		
MTT	(3-(4,5-dimethylthiazol-2-yl)-2–5-diphenyltetrazolium		
	bromide) assay		
NCI-H23	Human non-small cell lung carcinoma		
NCI-H460	Hypotriploid human cell		
nm	Nanometre		
nMol	Nanomoles		
NMR	Nuclear Magnetic Resonance		
0	Oxygen		
ОН	Hydroxyl		
P. aeruginosa	Pseudomonas aeruginosa		

P. falciparum	Plasmodium falciparum
P. sanguineus	Pycnoporus sanguineus
P-388	Lymphoma cell
P-450	Cytochromes P450
PBS	Phosphate Buffered Saline
PC3	Human prostate cancer cell
ppm	Part per million
Raji cell	Human B lymphoblastoid cell
RAW 264.7	Macrophage cell
Rf	Retention Factor
RPMI-8226	B lymphocytes
RXRa	Retinoid X Receptor Alpha
S. aureus	Staphylococcus aureus
S	Singlet
SC 50	Sample Concentration Reducing DPPH Concentration to
	its Initial Value
SGC-7901	Human gastric cancer cell
SK-MEL-28	Human melanoma cell
SNU-1	Near-diploid cell (modal chromosome no. 47)
T. brucei	Trypanosoma brucei
T. cruzi	Trypanosoma cruzi
T. rubrum	Trichophyton rubrum
t	Triplet
TLC	Thin Layer Chromatography
TNF-α-U1	Tumor necrosis factor alpha in U1 cell
tt	Triplet of triplet
TW01	Nasopharyngeal carcinoma cell
U251	Glioma stem cell
VERO	COVID-19 Vaccine
WHO	World Health Organization

LIST OF APPENDICES

- Appendix ACertificate of Participation for Oral Presentation (Asian
Symposium on Medicinal Plants and Spices XVII 2021 Virtual
Conference).
- Appendix BCertificate of Participation for Oral Presentation (8th International
Conference for Young Chemist 2022).
- Appendix CCertificate of Best Oral Presentation Award in Oral Presentation
(8th International Conference for Young Chemist 2022).
- Appendix D Research Article Publication.

KAJIAN FITOKIMIA DAN PENILAIAN KESITOTOKSIAN DARIPADA KULIT BATANG KAYU *Calophyllum macrocarpum* HOOK. F. DAN *Calophyllum recurvatum* P. F. STEVENS

ABSTRAK

Spesies daripada genus *Calophyllum* telah digunakan sekian lamanya dalam bidang perubatan tradisional Asia, terutamanya di Malaysia. Penyelidikan hasilan semula jadi ke atas genus *Calophyllum* telah mengenalpasti pelbagai fungsi biologi yang dipamerkan oleh tumbuhan ini, contohnya, perencatan HIV, antioksidan dan juga aktiviti sitotoksik. Spesies daripada genus Calophyllum mempunyai kandungan sebatian fenolik yang tinggi terutamanya xanton dan kumarin. Namun, Calophyllum macrocarpum dan Calophyllum recurvatum daripada genus Calophyllum adalah antara spesies yang masih memerlukan pendokumentasian saintifik terutamanya tentang aspek fitokimia dan farmakologi. Dalam kajian ini, kulit batang kayu pokok Calophyllum macrocarpum dan Calophyllum recurvatum telah menjalani kajian fitokimia yang berfokus ke arah proses pemencilan sebatian kimia. Teknik kromatografi dalam pengasingan dan pemurnian terperinci ke atas kulit batang kayu C. macrocarpum (ekstrak n-hexana dan kloroform) telah mengasingkan xanton-xanton prenil; ananixanton (1), trapezifolixanton (2), 8-dioksigartanin (3) serta triterpenoid seperti stigmasterol (4) dan juga friedelin (5). Malah sebatian kimia seperti thwaitesixanton (6), teysmanon A (7), soulattrolid (8), kalanon (9), dan juga friedelin (5) telah berjaya dikenalpasti daripada ekstrak kulit batang kayu C. recurvatum (ekstrak *n*-hexana dan kloroform). Struktur-struktur sebatian kimia ini telah dicirikan dan ditentukan menggunakan teknik spektroskopi canggih. Aktiviti sitotoksik ekstrak, sebatian 1-2 dan 7-8 daripada kedua-dua pokok C. macrocarpum dan C. recurvatum

dinilai dan diuji terhadap sel kanser hati manusia (hati HeLa Chang) dan juga sel normal hati manusia (HL-7702). Antara kesemua ekstrak daripada C. macrocarpum, ekstrak *n*-heksana dan kloroform mempamerkan aktiviti sitotoksik yang bagus terhadap sel hati HeLa Chang. Sebatian ananixanton yang ditemui dalam kedua-dua ekstrak C. macrocarpum tersebut mempamerkan aktiviti sitotoksik yang tinggi terhadap sel hati HeLa Chang, berbanding dengan sebatian trapezifolixanton. Hal ini mungkin kerana kehadiran kumpulan prenil dan pirano yang melekat di posisi C-2, C-3 dan C-4 di ananixanton (1). Di samping itu, kesemua ekstrak dan kompaun-kompaun terpencil yang telah diuji terhadap sel normal hati manusia, HL-7702 tidak mempamerkan sebarang aktiviti sitotoksik. Daripada C. recurvatum pula, ekstrak nheksana mempamerkan aktiviti sitotoksik yang baik terhadap sel hati HeLa Chang, manakala kedua-dua sebatian teysmanon A (7) dan soulattrolid (8) tidak mempamerkan sebarang aktiviti sitotoksik terhadap sel hati HeLa Chang. Kesemua ekstrak dan kompaun-kompaun terpencil daripada C. recurvatum juga tidak mempamerkan aktiviti sitotoksik terhadap sel normal hati manusia, HL-7702. Berdasarkan penemuan awal hasil aktiviti biologi yang dijalankan ke atas ekstrakekstrak dan sebatian-sebatian fitokimia yang dipencilkan, ekstrak *n*-heksana (daripada C. macrocarpum dan C. recurvatum), ekstrak kloroform (daripada C. *macrocarpum*), dan ananixanton (1) daripada C. *macrocarpum* perlu diuji dalam kajian praklinikal yang lebih lanjut untuk mengkaji potensi aplikasi terapeutik mereka terhadap aktiviti antikanser dan kesitotoksian yang bersasarkan mahupun tidak bersasarkan.

PHYTOCHEMICAL STUDIES AND CYTOTOXICITY ASSESSMENT OF STEM BARK EXTRACTS FROM Calophyllum macrocarpum HOOK. F. AND Calophyllum recurvatum P. F. STEVENS

ABSTRACT

Numerous Calophyllum sp. have long been valued widely in Asian traditional medicine especially in Malaysia. The modern natural product-based research on the genus *Calophyllum* has further revealed a variety of biological functions exhibited by these plants, such as inhibition of HIV, antioxidant, and cytotoxicity. Species from the genus *Calophyllum* are also abundant in phenolic compounds especially xanthones and coumarins. However, Calophyllum macrocarpum and Calophyllum recurvatum are among the species that still need more scientific documentation on the phytochemistry and pharmacological aspects. In this research project, the stem bark of Calophyllum macrocarpum and Calophyllum recurvatum were being subjected for phytochemical investigation, which led to the isolation of various phytochemicals such as xanthones and coumarins. Extensive chromatographic separations and purifications on the stem bark of C. macrocarpum (n-hexane and chloroform extracts) resulted in isolation of prenylated xanthones; ananixanthone (1), trapezifolixanthone (2), 8-deoxygartanin (3), well as triterpenoid; stigmasterol (4) and friedelin (5). Furthermore, as thwaitesixanthone (6), teysmanone A (7), soulattrolide (8), calanone (9), as well as friedelin (5) were successfully being isolated from the stem bark of C. recurvatum (nhexane and chloroform extracts). The structures of the compounds were characterised and elucidated using advanced spectroscopic techniques. The cytotoxic activities of the extracts, compounds 1-2 and 7-8 from both C. macrocarpum and C. recurvatum were evaluated against cancerous human liver (HeLa Chang liver) and normal human

liver (HL-7702) cell lines. Among the extracts from C. macrocarpum, n-hexane and chloroform extracts offer significant cytotoxic effect against HeLa Chang liver cell line. Ananixanthone (1) presented in both extracts of *C. macrocarpum* exhibited high cytotoxicity towards HeLa Chang liver cell line, compared to trapezifolixanthone (2). This might be due to the presence of prenyl and pyrano group attached in the C-2, C-3 and C-4 positions of ananixanthone (1), respectively. Meanwhile, all of the tested extracts and isolated compounds from C. macrocarpum offer no cytotoxicity activities against normal human liver, HL-7702 cell line. From C. recurvatum, n-hexane extract portrayed good cytotoxicity activities against HeLa Chang liver cell line, while both of compounds, teysmanone A (7) and soulattrolide (8) did not portrayed any cytotoxicity activities against HeLa Chang liver cell line. All of the tested extracts and isolated compounds from C. recurvatum also offer no cytotoxicity activities against normal human liver, HL-7702 cell line. Taken into consideration from the outcome of these preliminary biological activities conducted on the extracts and isolated phytochemicals, n-hexane extract (from C. macrocarpum and C. recurvatum), chloroform extract (from C. macrocarpum), and ananixanthone (1) from C. macrocarpum need to be assigned to undergo more preclinical studies in studying their potential therapeutic applications towards targeted and non-targeted anticancer and cytotoxicity activities.

CHAPTER 1 INTRODUCTION

1. General Introduction

1.1 Evolutionary History of Phytochemistry

Phytochemicals are important because they play a crucial role in societal well-being and world health. Customarily, nearly all medicinal prescriptions have been derived from natural products, and phytochemicals have persisted to submit clinical studies; to serve as leading agents, especially as antibacterial and also anticancer agents (Harvey et. al. 2015). The pursuit of novel natural product-based drugs for pharmaceutical industry is indeed a continuous research that calls for constant optimisation in investigations and researches of the phytochemicals in plants which encompasses their metabolism (biosynthesis and biodegradation), phytochemical structures, natural variation in plants, biological significance, extraction, and both qualitative as well as quantitative assessment (Mendoza et. al. 2018). In phytochemistry, various methods and techniques have been evolved and employed including utilising advanced techniques for plant sample preparation, and also identifying structural elucidation of the phytochemical constituents. Phytochemical investigations of natural products include several features; extraction of the phytochemical constituents to be analysed from a plant, separation and isolation of the phytochemical constituents, identification and characterisation of the isolated phytochemical constituents, study of the biosynthesis pathway of selected phytochemical constituent, and also quantitative evaluation (Mendoza et. al. 2018). In fact, in the current millennium, the emerging discipline of genome sequencing and mining of microorganisms in this area of study

is being driven by developments in computational biology, spectrometry, gene expression, metabolomics and a few others (Katz and Baltz. 2016).

What has intrigued phytochemists are the variety and complexity of phytochemical constituents themselves. In addition to the wide range of molecular weights of the phytochemicals in plants, a considerable number of phytochemical constituents contain significant stereo-specific carbon centres, which intrigued synthetic organic chemists in flourishing pathways as well as chemical reaction schemes. Cell biologists investigated for anticancer and other pharmacological properties while biochemists as well as molecular biologists established biosynthesis, genetics, and regulation of enzyme synthesis. Meanwhile, the industrial demand for large amount of natural product-based drugs has piqued interests of chemists, pharmacists and pharmacologist. The collaborative efforts from academic and industrial researchers had founded the field; natural products, specifically phytochemistry (Katz and Baltz. 2016).

1.2 Bridging Phytochemistry Knowledge for Human Health Benefits

Dating back to the dawn of civilisation, people have utilised different plants and their derivatives for medicinal treatment, for instance, the treatment of infectious diseases. There are many traditional healing practices that use different salves or concoctions that are extracted from plants to treat different diseases. Many of these conventional approaches are still in used until today. On top of that, some widely used medications in modern medicine had a rudimentary crude form taken from conventional medicine (Gorlenko et. al. 2020). This is because, plants provide not just vital nutrients required by us human, but also health-promoting bioactive phytochemicals that contribute to greater longevity, and disease treatment (Yoo et. al. 2018). In this recent age of pharmaceutical industry, plants are a valuable source to obtain various active chemical constituents as these active secondary metabolites exhibit a wide range of pharmaceutical effects to remedy bacterial and fungal related illnesses, and also some chronic degenerative illnesses namely diabetes and cancer (Mendoza et. al. 2018).

As phytochemists, one of the top questions that we often ask ourselves is whether the secondary metabolites derived from plants are good or bad. Do they have the chance on becoming a panacea against disease, or do they do harm to us instead? Chemical substances known as natural products typically have applications that benefit human health. Yet, the same chemical substances may also generate poisonous properties. Secondary metabolites have been suggested to be biosynthesized as waste or even detoxification products (Madariaga-Mazón et. al. 2019). Additionally, it has been proposed that secondary metabolites play important metabolic roles. It is interesting to note who these substances are hazardous to (Madariaga-Mazón et. al. 2019), as the chemical composition and characteristics of plant secondary metabolites determine how they work (Gorlenko et. al. 2020).

With recent studies have shown the effects of phytochemical-abundant supplements on health, it is firmly emphasized that ingesting these phytochemicals can enhance health (Yoo et. al. 2018). Hence, many researchers conducted investigations to study the benefits of phytochemicals for health. Yet, studies on specific uses of phytochemicals encountered a number of complications.

Despite playing a significant part in the drug development process, certain phytochemicals are extremely hazardous. Toxicity in this context refers to the negative impact on an organism as a whole, as well as the impact on an organism's substructure, such as a cell or an organ. Toxic phytochemicals can, however, also be utilised to treat some diseases; for instance, cytotoxic phytochemicals are employed in the therapy of cancer. Thus, secondary metabolites may so have two distinct roles (Madariaga-Mazón et. al. 2019).

Of course, not every plant-derived phytochemical is immediately ready for use in standard clinical practise. Nevertheless, thanks to recent developments in bio-screening research, we will be able to both detect and identify even extremely limited amount of active phytochemicals and elucidate the precise molecular mechanisms underlying their effect(s) on targets. The chemical alteration of potentially beneficial phytochemicals in order to enhance their bioactive capabilities and lessen their harmful properties and side effects is another important and promising research.

Recognising the health perks of phytochemical constituents is indeed a crucial action in medicinal drugs and food development. Knowledge on the structural variety, sources, synthetic practicability, as well as its inherent toxicities of these plant phytochemicals will help expand their usages, for the benefit of mankind as well as the environment.

1.3 Problem Statement

The plants in genus *Calophyllum* are well known among locals for their usefulness and benefits in traditional medicines. This genus is also renowned for its vast structural diversity and prosperous foundation of pharmaceutical active phytochemicals. Yet nevertheless, until today, there are still many *Calophyllum* species that remain unexplored, especially in phytochemical aspects. Among them, *Calophyllum macrocarpum* and *Calophyllum recurvatum* still need more proper scientific documentation on the phytochemical and pharmacological investigations, as existed data do not provide enough knowledge on the phytochemical contents of both species. Thus, there is a necessity for us scientific community members to conduct phytochemical investigations on the species *C. macrocarpum* and *C. recurvatum*, at the same time, to study the structural diversity of the phenolic compounds present in it as well as its potency towards biological activities and pharmacological activities of both species.

Hence, phytochemical investigations were conducted to understand its chemistry, especially on identifying new and existing chemical entities with diverse chemical structures and potential bioactivities from *C. macrocarpum* and *C. recurvatum*. The discovery of potential bioactive constituents towards selected bioactivities apparently brings great importance to the medicinal field, as the helpful information would be essential for future references by natural product chemists. Also, the establishment and development of these prospective as drug towards selectivity can serve as alternatives or supplementary to the present existing drugs on demand.

6

1.4 Objective of Study

This project is conducted to isolate, purify, and characterise the structures of phytochemical constituents from *Calophyllum macrocarpum* and *Calophyllum recurvatum*. Structural identification and elucidation will be conducted using detailed spectroscopic techniques on the isolated phytochemicals. The key resolution of this research project is to understand the phytochemistry of the genus *Calophyllum* especially on these species, *C. macrocarpum* and *C. recurvatum*, along with their potential biological properties. Thus, the specific objectives of the research are:

- i. To extract and isolate chemical constituents from the stem barks of *Calophyllum macrocarpum* and *Calophyllum recurvatum*.
- To perform structural characterization and elucidation of isolated compounds using advance spectroscopic techniques.
- iii. To investigate the cytotoxic properties of the isolated phytochemicals and the extracts against HeLa Chang liver and HL-7702 cell lines by using MTT assay technique.

CHAPTER 2 LITERATURE REVIEW

2.1 Taxonomy of Calophyllaceae

Calophyllaceae (Order: Malpighiales) is one of flowering-plants families which is acknowledged by APG III classification system (Gupta & Gupta. 2020). The majority of 475 species and 14 genera that comprise this family were previously known to belong to the *Calophylleae* of the family *Clusiaceae* (Christenhusz et. al. 2016) but Angiosperm Phylogeny Group has concluded that it was essential to separate this branch of genera into its own family (Bremer et. al. 2009).

With the exception of *Calophyllum* L. and *Mammea* L., which are found in tropical rainforest of both Old and New World, most genera of *Calophyllaceae* are restricted to either the Old or New World tropics (Díaz. 2012). Furthermore, APG III classification system has reclassified that genus *Calophyllum*, which was formerly classified as part of the *Guttiferae* family into a part of *Calophyllaceae* family (Gupta & Gupta. 2020). Figure 2.1 shows some parts of *Calophyllum* plants.

Figure 2.1: Parts of *Calophyllum* plants.

(Left) Taken by Chitranshi Tewari, iNaturalist, <u>https://www.inaturalist.org/photos/34 5665984</u> (Right) Taken by Jmole, iNaturalist, <u>https://www.inaturalist.org/photos/254222939</u>

2.1.1 Taxonomy of Genus *Calophyllum* and its ethnobotanical and ethnomedicinal uses.

Calophyllum is a large genus that belongs to the *Calophyllaceae* family and has approximately 200 species (Nasir et al. 2013), with pantropical distribution. *Calophyllum* gets its name from Greek words; "*kalos*" that denotes "good" while "*phullon*" signifies "leaf" (Ismail et al. 2016).

Domain	Eukaryota
Kingdom	Plantae
Phylum	Tracheophyta
Subphylum	Angiospermae
Class	Magnoliopsida
Order	Malpighiales
Family	Calophyllaceae
Genus	Calophyllum

Table 2.1: The Taxonomy of genus *Calophyllum*.

Calophyllum species are quite tricky to categorise because of the obstacles in creating certain parameters (Gupta & Gupta. 2020). *Calophyllum* species range in height from very tall trees to small shrubs. The majority of the plants, however, are medium-sized trees. The species' habitation spans from wet tropical rainforest in the lowlands to drier environments at higher altitudes. Some of the species can also be found in zones that have been waterlogged (Gupta & Gupta. 2020).

Nevertheless, the species of this genus can be still distinguished through taxonomical features like the bark, wood, twigs, bud, leaves, inflorescence, flowers, fruit, germination, seedlings, and leaf anatomy (Stevens. 1980). Certain species can be identified by the appearance of the outer bark's inner surface, but most species cannot be identified in this way. All species' trunks have an inner bark that secretes latex,

which is often a clear yellowish colour. For some species, the colour of the latex that leaks from the trunk may differ. In a few larger *Calophyllum* species, the sapwood has a rippling surface at the cambium, however it is uncertain how many species possess this characteristic. Each species has a unique outer bark colour as well as surface and latex colours (Stevens. 1980).

Nearly every species of *Calophyllum* can be recognised merely by its leaves, both in its natural habitat and in the herbarium. The characteristics that give the leaf its particular appearance include the midrib and venation, along with size, prominence of the edge, toughness, form, and, to some extent, the colour of the dried leaf. Venation prominence is described subjectively and varies depending on the species (Stevens. 1980).

The inflorescence's position, size, and kind can all vary infra-specifically. All inflorescences have flowers at the ends of their main and lateral branches, and they are all cymose in character. The investigation of floral characteristics in *Calophyllum* is complicated by our lack of knowledge on its sex-forms. Some of the collections are hermaphrodite or perhaps polygamous, while others are dioecious. Some species' flowers are unknown, while the number of flowering specimens from other species is insufficient to say whether or not those species have sex-forms. Resurrected herbarium material is used to calculate the size of the tepals. The number of tepals varies between species. The optimal time to count stamens is just before a flower blooms, however in most cases, only a few blossoms were examined, thus the results are estimations (Stevens. 1980).

Despite the lack of ripe fruit material, the drupe-shaped fruit of *Calophyllum* frequently exhibits recognisable diagnostic traits. Both the mesocarp's thickness and

10

the dried fruit's surface's properties can be used to distinguish one dried fruit from another. Despite the fact that the majority of stones have an ovoid or subspherical shape with a rounded apex, some of them have angled or sharply pointed apexes. Trees can produce what appear to be regular fruits even when flowers are not pollinated; the corky layer fills the interior of the stone in these fruits (Stevens. 1980).

Even though only a small number of germination of *Calophyllum* species has been seen, their differences have a significant taxonomic impact. It takes 1-2 months for seeds to germinate (occasionally up to 4 months). The first leaves of seedlings are pseudo-verticillate or have well-developed internodes; intermediates have also been found. The rate of growth of the seedlings and the geotropism performance of each species' shoots seems to be identical. Seedling and sapling leaves are totally distinctive from those of mature trees in terms of size, form, and anatomy. They frequently have a longer, pointed, and bigger apex (Stevens. 1980).

Members of this genus are found in Eastern Africa, tropical America, Australia, Madagascar, the Pacific Islands, the Atlantic Forest and Brazil, in addition to South and Southeast Asia (Abbas et al. 2019), as the genus is restricted to the hot and humid tropics climate (Ismail et al. 2016). *Calophyllum* species are large hardwoods that grow in a variety of habitation from mountainous forests to coastal wetlands, but are only found in the hot and humid tropics (Noldin. 2006).

Furthermore, stem bark usually protects trees from weather conditions, insect pests, and browsing (Pásztory et. al. 2016). The stem barks are also the rich sources of tannins and other phenolic compounds (Singh et. al. 2010). In fact, the first ever chemical investigation being conducted on the genus was recorded back in 1950s by Polonsky and Ormancey-Potier (Polonsky. 1957). Coumarins and xanthones are quite

common in this genus and have been isolated from the wood and bark of several species of this genus (Gómez-Verjan et. al. 2017).

Moreover, parts of *Calophyllum* species have long been used for their numerous health benefits. Locals have long employed various parts of the genus *Calophyllum* plant; such as tree barks and seed oil, to aid more minor and persistent ailments. Despite the availability of ethnobotanical and ethnomedicinal knowledge for some *Calophyllum* species, some traditional uses for some of the species listed have yet to be documented or published. Table 2.2 summarises the ethnobotanical and ethnomedicinal uses for available species of the genus *Calophyllum*.

Species	Botanist	Ethnobotanical and ethnomedicinal uses (parts	References
		used)	
C. apetalum	Willd.	Traditionally used as an eye remedy in Asian medicine (leaf decoction); Used in the treatment of rheumatism, leprosy, scabies, as septic poison, and other cutaneous afflictions (seed oil) as well as gastric troubles (leaf juice); Good for construction of boats, furniture and suitable for plywood (timber)	Ruma et al. 2014; Joshi et al. 2013; Prakash et al. 1984; Nair & Seeni 2003
C. austroindicum	Kosterm. ex P.F.Stevens	The tree vields good timber	Stevens, 1980
C. biflorum	M.R.Hend. & Wyatt-Sm.	Used to make planks in Kuching (wood), the latex of S3802 was noted as being poisonous, but there may have been confusion between this plant and a member of the Anarcardiaceae	Stevens. 1980
C. blancoi	Planch. & Triana	Used as a source of dye and in the treatment of wounds (no mention of plant part used); Used to treat wounds, boils, tumours, swellings and also to alleviate asthma (latex)	Stout & Sears. 1968; Stevens. 1980
C. bracteatum	Thwaites	Used for buildings, masts, and plywood (wood)	Stevens. 1980
C. brasiliense	Cambess.	Used for construction, flooring, and furniture (timber); Used to treat cutaneous infections (seed oil), tea for pregnant women to clean the womb (bark), toothache or to prevent infections (latex); Used to treat rheumatism, varicose veins, haemorrhoids and ulcers (stem bark), whereas the leaves have anti-inflammatory properties; Used in the treatment of pain, diabetes, diarrhoea, hypertension, herpes, rheumatism and ulcer (latex exudated from inner bark)	Reyes-Chilpa et al. 1997; Silva-Castro 2020; Rea et al. 2013; Lemos et al. 2012

Table 2.2: Ethnobotanical and ethnomedicinal uses of selected Calophyllum species.

Species	Botanist	Ethnobotanical and ethnomedicinal uses (parts	References
		used)	
C. calaba	L.	Has been employed medicinally (latex of the trunk),	Crane et al. 2015
		and lamp oil is extracted (kernels that contained high	
		lipid content)	
C. caledonicum	Vieill. ex Planch. & Triana	Highly resistant towards fungi and termites	Morel et al. 2002;
		(heartwood); Used as a diuretic (latex)	Hay et al. 2003; Hay
			et al. 2004
C. canum	Hook.f. ex T.Anderson	Used as antibacterial, anticancer and antioxidant (no	Taher et al. 2020;
		mention of plant part used); Used to stupefy fish	Arifullah et al. 2014;
		(latex); Used for construction, masts, and spars (wood)	Kawamura et al.
			2012; Stevens. 1980
C. cerasiferum	Vesque	Used in construction (wood)	Stevens. 1980
C. chapelieri	Drake	Used in construction (wood), and oil is sometimes	Stevens. 1980
		extracted from the seed	
C. depressinervosum	M.R.Hend. & Wyatt-Sm.	Used as antimicrobial (latex)	Arifullah et al. 2014
C. dioscurii	P.F.Stevens	Used to treat fever and skin disease (decoction of	Tjahjandarie et al.
		leaves and stem bark)	2019
C. dryobalanoides	Pierre	Used as a purgative in traditional medicine (root) but	Ha et al. 2012
		chemical constituents have not been previously	
		investigated	
C. ferrugineum	Ridl.	Used as decoction for women who has just given birth	Stevens. 1980
		(wood; stem bark); Used for masts and house building	
		(wood); Used in making walls for native house (bark)	
C. incrassatum	M.R.Hend. & Wyatt-Sm.	Used as poultice to treat itching and other skin diseases	Eswani et al. 2010
		(no mention of plant part used)	

Table 2.2: Ethnobotanical and ethnomedicinal uses of Calophyllum species. (continued)

Species	Botanist	Ethnobotanical and ethnomedicinal uses (parts	References
		used)	
C. inophyllum	L.	Used as poultice to treat skin diseases, wounds, eye ailments, rheumatism, inflammations, and haemorrhoids (seed oil; leaves; stem resin); Used as dye for fish net (stem bark); Used as fuels for lighting purpose, vehicles and generate electricity (seeds oil); Used for building ship (wood)	Kainuma et al. 2016; Stevens. 1980
C. lanigerum	Miq.	Used for building house and ship making (wood)	Stevens. 1980
C. macrocarpum	Hook.f.	Used as antimicrobial (no mention of plant part used); Used for building houses and make furniture (wood)	Arifullah et al. 2014; Stevens. 1980
C. macrophyllum	Scheff.	Used for construction purposes (wood) and the fruit is edible	Frengki et al. 2013
C. membranaceum	Gardner & Champ.	Used in Chinese folk medicine for the treatment of rheumatism, arthritis, lumbago and wounds in Hainan Island, PR China (stem and bark); Used to reduce inflammation around bruises and to kill pain, relieve rheumatic joint pain, lumbago, and wound pain (no mention of plant part used)	Chen et al. 2011; Zou et al. 2005; Stevens. 1980
C. pinetorum	Bisse	Used by local populations as a cicatrisant agent at Pinar del Rio Province of Cuba (no mention of plant part used)	Alarcon et al. 2008
C. polyanthum	Wall. ex Choisy	Used to treat traumatic bleeding and to relieve pain in Chinese folk medicine (no mention of plant part used)	Zhong et al. 2010
C. recedens	Jum. & H.Perrier	Used in the manufacture of furniture and canoes (wood), and has been used in the local pharmacopeia (latex)	Stevens. 1980

Table 2.2: Ethnobotanical and ethnomedicinal uses of *Calophyllum* species. (continued)

Species	Botanist	Ethnobotanical and ethnomedicinal uses (parts	References
		used)	
C. rubiginosum	M.R.Hend. & Wyatt-Sm.	Used to treat itching, other skin diseases, as	Eswani et al. 2010;
		antimicrobial, and antioxidant (wood; latex); Used as	Arifullah et al. 2014;
		poison bait to kill rats (latex)	Stevens. 1980
C. sclerophyllum	Vesque	Used for construction (wood)	Stevens. 1980
C. soulattri	Burm.f.	Used as infusion for women who has just given birth,	Gupta and Gupta
		for treating rheumatic pain, and relieves pain in leprosy	2020; Stevens. 1980
		(root; stem bark; seed); Used for masts, spars and	
		building house (wood)	
C. symingtonianum	M.R.Hend. & Wyatt-Sm.	Used as antifungal and antioxidant (no mention of	Arifullah et al. 2014;
		plant part used); Used for building house (wood)	Stevens. 1980
C. tacamahaca	Willd.	Treatment for eye diseases, rheumatism, headache,	Lavergne. 2001
		gout, arthritis, dermic problems, skin disorders,	
		memory troubles, blood circulation (no mention of	
		plant part used)	
C. teysmannii	Miq.	Used as antiviral (no mention of plant part used); Used	Arifullah et al. 2014;
		for construction (wood)	Stevens. 1980
C. thorelii	Pierre	Useful in construction, including that of boats and	Stevens. 1980
		masts, apparently being resistant to the attacks of	
		borers (wood), while, the flowers are very fragrant &	
		used by the ladies	
C. tomentosum	Wight	Being practiced in Ayurveda to treat ulcers, snake bites	Govindappa et al.
		and eye diseases (extracts); Used in the treatment of	2018; Stevens. 1980
		skin diseases (seed oil)	
C. venulosum	Zoll.	Used as oars (wood)	Stevens. 1980
C. verticillatum	P.F.Stevens	Used in construction (wood)	Stevens. 1980

Table 2.2: Ethnobotanical and ethnomedicinal uses of Calophyllum species. (continued)

Species	Botanist	Ethnobotanical and ethnomedicinal uses (parts	References
		used)	
C. walkeri	Wight	Used in construction and joinery (wood), as well as lighting (seed oil)	Stevens. 1980
C. wallichianum	Planch. & Triana	Used as poultice to treat itching and other skin diseases (latex)	Eswani et al. 2010

 Table 2.2: Ethnobotanical and ethnomedicinal uses of Calophyllum species. (continued)

2.1.1(a) Taxonomy of Calophyllum macrocarpum

C. macrocarpum could grow on seasonal freshwater swamp forest, riverine, hillsides, ridges, and low undulating land in pantropical country. The locals generally called *C. macrocarpum* by its local name; Bintagor Bunut or Bintagor Batu (Source: Malaysia Biodiversity Information System (MyBIS)). Figure 2.2 shows the herbarium samples of *C. macrocarpum*. The taxonomy of *C. macrocarpum* are shown below:

Table 2.3: The Taxonomy of Calophyllum macrocarpum (Source:

Domain	Eukaryota
Kingdom	Plantae
Phylum	Tracheophyta
Subphylum	Angiospermae
Class	Magnoliopsida
Order	Malpighiales
Family	Calophyllaceae
Genus	Calophyllum
Species	C. macrocarpum
Common name	Bintagor Bunut

Malaysia Biodiversity Information System (MyBIS)).

Figure 2.2: Herbarium sample of *C. macrocarpum*.

Taken from Herbarium Catalogue Specimens; Digital Image © Board of Trustees, RBG Kew, http://creativecommons.org/licenses/by/3.0/

2.1.1(b) Taxonomy of Calophyllum recurvatum

The local people are more familiar with *C. recurvatum* as Bintagor. However, this species is considered relatively new and an unexplored species, since there are no literature studies or any present data on this plant. Figure 2.3 shows the herbarium samples of *C. recurvatum*. The taxonomy of *C. recurvatum* are shown below:

Table 2.4: The Taxonomy of Calophyllum recurvatum (Source:

Domain	Eukaryota
Kingdom	Plantae
Phylum	Tracheophyta
Subphylum	Angiospermae
Class	Magnoliopsida
Order	Malpighiales
Family	Calophyllaceae
Genus	Calophyllum
Species	C. recurvatum
Common name	Bintagor

Global Biodiversity Information Facility (GBIF)).

Figure 2.3: Herbarium sample of *C. recurvatum*.

Taken from Naturalis Biodiversity Center; <u>http://creativecommons.org/publicdomain/zero/1.0/</u>

2.2 Chemistry of xanthones

Greek word "*xanthos*," which means "yellow," is where the word "xanthone" originates (Diderot et. al. 2006). Xanthones are yellow-coloured natural polyphenolic compounds with a basic structural formula of C_6 - C_1 - C_6 and molecular formula of $C_{13}H_8O_2$. Xanthones are a subgroup of phenolic constituents is categorized under benzopyrone. Xanthones have dibenzo- γ -pyrone as core in the skeletal structure, in which the two benzene rings bridged across a carbonyl group and an oxygen. These system of conjugated rings hinder the carbon-carbon's free rotation. The properties of xanthones depend on the types and position of chemical substituents that attached to the core structure. Xanthones are divided into six main classes which are simple oxygenated xanthones, prenylated xanthones, xanthone glycosides, bisxanthones, xanthonolignoids and miscellaneous xanthones (Negi et al, 2013). Figure 2.4 shows the basic skeleton of a xanthone.

Figure 2.4: Basic skeleton of xanthone.

Simple oxygenated xanthones are further subclassed accordingly, in regards to the degree of oxygenation into non-, mono-, di-, tri-, tetra-, penta-, and hexa-oxygenated substances (Negi et al, 2013). In this type of xanthones, the substituent groups are rather just simple hydroxy, methoxy or methyl moieties. Mono-oxygenated xanthones are rare as there are only three compounds from the *Hypericaceae* and *Guttiferae* families were discovered (Diderot et. al. 2006).

Figure 2.5: Example of mono-oxygenated xanthone.

For di-oxygenated xanthones, twelve derivatives of this class were found (Diderot et. al. 2006).

Figure 2.6: Example of di-oxygenated xanthone.

Gentisine, the first isolated xanthone, is an example of tri-oxygenated xanthones (Diderot et. al. 2006).

Figure 2.7: Example of tri-oxygenated xanthone.

Tetra-oxygenated: many of them were isolated from the *Gentianaceae* family and they were more abundant (Diderot et. al. 2006).

Figure 2.8: Example of tetra-oxygenated xanthone.

Only a few penta-oxygenated xanthones were found in nature (Diderot et. al. 2006).

Figure 2.9: Example of penta-oxygenated xanthone.

Hexa-oxygenated xanthones are the highest level of oxygenation ever recorded for xanthones (Diderot et. al. 2006).

Figure 2.10: Example of hexa-oxygenated xanthone.

Naturally, occurring glycosylated xanthones are reported as *C*- or *O*-glycosides. *O*-glycosides have typical glycosidic linkage. In *O*-glycoside xanthones, the sugar moiety is typically presents at carbon-1 of xanthone nucleus, which is quite challenging to enlighten its presence over there given its close proximity of the carbonyl group and the potential for strain (Diderot et. al. 2006).

When compared to *O*-glycoside xanthones, *C*-glycoside xanthones are actually better hydrolysis-resistant xanthones, although their occurrence is exceedingly rare (Diderot et. al. 2006). In *C*-glycosides, the sugar moiety and the xanthone nucleus is linked by the C-C bond, which made them quite resistant to enzymatic hydrolysis (Negi et al. 2013).

Besides that, the existence of the prenylated xanthones is constrained to the family *Guttiferae* plants (Negi et al. 2013). It seems that the family *Guttiferae* produces a lot of xanthones with geranyl and isopentenyl substituents (Diderot et. al. 2006).

Naturally occurring xanthonolignoids are scarce; in previous studies, only five compounds were reported. Xanthonolignoids are a rather uncommon class of natural products that are mostly found in the genera *Kielmeyera*, *Caraipa*, and *Psorospermum* of the *Guttiferae* family. The skeletal patterns that are generated when the lignoid pattern and the xanthone nucleus combine to make these compounds are remarkably similar (coniferyl alcohol or syringenin). Candesin D is the most representative xanthonolignoid known so far. (Diderot et. al. 2006).

A number of 12 bisxanthones; five from the higher plants, six from fungi and one from lichen that have been reported to date. Last but not least, xanthones with substituents other than all that have been discussed before are all included in miscellaneous xanthones and they could not be categorised in the conventional way (Negi et al. 2013).

Figure 2.11: Example of miscellaneous xanthone (4,5-dichloro-6-*O*-methylnorlichexanthone).

Numerous researchers have thoroughly investigated the biosynthetic process that results in xanthones in plants both *in vivo* and *in vitro* utilizing markers. They made an effort to compare and contrast natural xanthones with established oxygenation patterns. They demonstrated that the synthesis is the result of two processes; acetate polymalonic pathway (lower plants - microorganisms and lichens) and mixed shikimate acetate pathway (higher plants) (Pogam & Boustie 2016).

It has been established that the biosynthesis of several xanthones in lower plants (microorganisms and lichens) was entirely obtained from seven acetate units, through acetate polymalonic route. An example of the acetate polymalonic pathway is provided by the biosynthetic mechanism of ravelenin from *Helminthosporium raverelii* proposed by Birch et al. back in 1976. The pathway involved is as shown in Figure 2.12 (Pogam & Boustie 2016).