STUDY ON THE EFFECTS OF Catharanthus roseus-SILVER NANOPARTICLES ON HUMAN HEPATOCELLULAR CARCINOMA CELL LINE HEPG2

NUR ASNA BINTI AZHAR

UNIVERSITI SAINS MALAYSIA

STUDY ON THE EFFECTS OF Catharanthus roseus-SILVER NANOPARTICLES ON HUMAN HEPATOCELLULAR CARCINOMA CELL LINE HEPG2

by

NUR ASNA BINTI AZHAR

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

September 2024

ACKNOWLEDGEMENT

First and foremost, praise to Allah S.W.T, the Almighty for the successful completion of this dissertation. This dissertation would not have been possible without the help of so many people in so many ways. I would like to express my deepest appreciation to my supervisor, Dr Nor Hazwani binti Ahmad, who has supported me throughout my period of study with her knowledge, persistent guidance and courage. Without her support, I would not have the opportunity to gain valuable knowledge and experiences. I would like to acknowledge the technical expertise of the laboratory staff. In addition, thank you to all the staffs from animal laboratory for their assistance. I am thankful to my lab mate Aishah binti Abu Bakar that had been together with me throughout this journey. I am grateful for the great memories that we had together. My deepest gratitude goes to my parents Azhar bin Hasan and Rosidah binti Haroon for their endless love and encouragement. Thank you so much to my siblings Azzah, Azri, Azni, and Azim for their emotional support. I am grateful to my husband, Mohd Zamir Bin Zainol Abidin, for his patience, understanding, and unwavering support. Lastly, I offer my regards and blessings to all of those who supported me in any respect during the completion of the study. Thank you.

TABLE OF CONTENTS

ACK	NOWLEI	DGEMENT	ii
TABI	LE OF CO	DNTENTS	iii
LIST	OF TABI	LES	X
LIST	OF FIGU	J RES	xii
LIST	OF ABBI	REVIATIONS	xxiv
LIST	OF UNIT	CS	xxix
LIST	OF SYM	BOLS	xxxi
LIST	OF APPI	ENDICES	.xxxii
ABST	RAK		xxxiii
ABST	TRACT		xxxvi
CHAI	PTER 1 I	INTRODUCTION	1
1.1	Backgrou	und	1
1.2	Rational	e of study	4
1.3	Research	ı objectives	8
CHAI	PTER 2 I	LITERATURE REVIEW	11
2.1	Cancer		11
	2.1.1	Global cancer statistics	12
	2.1.2	Cancer statistics in Malaysia	13
	2.1.3	Hepatocellular carcinoma	15
2.2	Nanotech	hnology	16
	2.2.1	Introduction	16
	2.2.2	Biomedical Application of Nanomaterials	17
	2.2.3	Clinically approved nanoparticles	19
2.3	Silver Na	anoparticles (AgNPs)	22
	2.3.1	Introduction	22

	2.3.2	Patent and	alysis of AgNPs in cancer therapy	23
	2.3.3	Synthesis	of AgNPs	24
		2.3.3(a)	Physical and chemical methods	25
		2.3.3(b)	Biological methods	29
	2.3.4	Character	isation of AgNPs	38
		2.3.4(a)	Ultraviolet-Visible spectroscopy (UV-Vis)	38
		2.3.4(b)	Fourier transform infrared (FTIR) spectroscopy	40
		2.3.4(c)	Transmission electron microscopy (TEM)	40
		2.3.4(d)	Scanning electron microscopy (SEM)	41
		2.3.4(e)	X-ray diffraction (XRD)	42
		2.3.4(f)	Particle size and zeta potential analysis	43
	2.3.5	Cellular u	ptake of AgNPs	45
		2.3.5(a)	Cell membrane interactions and AgNPs entry into the cell	45
		2.3.5(b)	The physicochemical properties of AgNPs affect their cellular uptake.	50
2.4	Catharan	thus roseu	as (L) G. Don (<i>C. roseus</i>)	53
2.5	Mechanis	sm of cell	death	58
	2.5.1	Type I ce	ll death	58
		2.5.1(a)	Death-receptor-induced apoptotic pathway(extrinsic)	58
		2.5.1(b)	Mitochondrial-mediated apoptotic pathway (Intrinsic)	59
		2.5.1(c)	Other signalling pathways mediated to apoptosis	63
CHAF	PTER 3 N	IATERIA	LS AND METHOD	67
3.1	Materials	and reage	nts	67
3.2	Preparati	on of <i>C. rc</i>	oseus-AgNPs	70
	3.2.1	C. roseus	aqueous extraction	70
	3.2.2	Synthesis	of C. roseus-AgNPs	70

	3.2.3	Preparation of camptothecin	71
3.3	Preparat	ion of Cells	71
	3.3.1	Cell Lines	71
		3.3.1(a) Cell thawing	72
		3.3.1(b) Passaging cells	73
		3.3.1(c) Cell counting	73
		3.3.1(d) Cryopreservation	74
3.4	Antiprol	iferative effects of C. roseus-AgNPs	74
	3.4.1	Cell Viability Assay	74
	3.4.2	Selectivity Index (SI)	75
	3.4.3	IncuCyte® Morphological Observation	75
	3.4.4	Statistical analysis	75
3.5	Oxidativ	ve stress effects of HepG2 cells treated with C. roseus-AgNPs	76
	3.5.1	Nitric oxide (NO) release assay	76
		3.5.1(a) Griess reagent calibration	76
	3.5.2	Reactive oxygen species (ROS) assay	77
	3.5.3	Intracellular calcium measurement	78
	3.5.4	Mitochondrial membrane potential ($\Delta \psi_m$) assay	78
	3.5.5	Statistical analysis	79
3.6	The cell	death mechanism of HepG2 cells lines treated with C. roseus-Ag	gNPs 80
	3.6.1	Caspase 3/7 and 8 activities	80
	3.6.2	Caspase 9 activity	80
	3.6.3	Annexin V-FITC/PI staining assay	81
	3.6.4	Cell cycle analysis	82
	3.6.5	Comet assay	83
		3.6.5(a) Qualitative analysis of comet assay	83
		3.6.5(b) Quantitative analysis of comet assay	84

	3.6.6	Statistical analysis
3.7	Cellular	uptake of <i>C. roseus</i> -AgNPs in HepG2 cells85
	3.7.1	Quantification of <i>C. roseus</i> -AgNPs cellular uptake85
	3.7.2	Quantification of <i>C. roseus</i> -AgNPs exocytosis85
	3.7.3	Selective inhibition of <i>C. roseus</i> -AgNPs uptake
	3.7.4	Visualisation of <i>C. roseus</i> -AgNPs uptake87
	3.7.5	Statistical analysis
3.8	Transcri	ptomic profiling of HepG2 treated with C. roseus-AgNPs88
	3.8.1	Total RNA extraction and sample quality check
	3.8.2	Beijing Genomics Institute sequencing
CHA	PTER 4	RESULTS90
4.1	Anti-pro	liferative effects C. roseus-AgNPs90
	4.1.1	Anti-proliferative effects of C. roseus-AgNPs on HepG2 cells90
	4.1.2	Anti-proliferative effects of <i>C. roseus</i> aqueous extract on HepG2 cells
	4.1.3	Anti-proliferative effects of camptothecin on HepG2 cells94
	4.1.4	Anti-proliferative effects of <i>C. roseus</i> -AgNPs on THLE-3 cells
	4.1.5	Anti-Proliferative effects of <i>C. roseus</i> aqueous extract on THLE-3 cells
	4.1.6	Anti-proliferative effects of camptothecin on THLE-3 Cells100
	4.1.7	IC ₅₀ Summary
	4.1.8	Selectivity Index (SI)
	4.1.9	IncuCyte® Morphological Observation106
		4.1.9(a) Morphology of HepG2 at 24, 48, and 70 hours of incubation
		4.1.9(b) Morphology of THLE-3 at 24, 48 and 70 hours of incubation
4.2	The oxic	lative stress effect of C. roseus-AgNPs towards HepG2 cells114

	4.2.1	Nitric oxide (NO) release assay114
	4.2.2	Intracellular reactive oxygen species (ROS) assay116
	4.2.3	Quantification of intracellular Ca ²⁺ 118
	4.2.4	C. roseus-AgNPs induced mitochondrial damage in HepG2122
		4.2.4(a) Quantitative analysis of HepG2 mitochondrial membrane potential
		4.2.4(b) Qualitative analysis of mitochondrial membrane potential in HepG2
4.3	The cell	death mechanism of HepG2 cells treated with C. roseus-AgNPs126
	4.3.1	Activation of executioner and effector caspases126
		4.3.1(a) Activation of caspase 8
		4.3.1(b) Activation of caspase 9 128
		4.3.1(c) Activation of caspase 3/7
	4.3.2	Detection of early and late apoptosis of HepG2 cells treated with <i>C. roseus</i> -AgNPs
	4.3.3	Effects of <i>C. roseus</i> -AgNPs on the HepG2 cells cycle136
	4.3.4	Effects of <i>C. roseus</i> -AgNPs on the HepG2 cells DNA damage.
4.4	Cellular	uptake of <i>C. roseus</i> -AgNPs in HepG2 cells144
	4.4.1	Quantification of intracellular Ag144
	4.4.2	Exocytosis of C. roseus-AgNPs146
	4.4.3	Endocytosis vs Exocytosis of C. roseus-AgNPs148
	4.4.4	Selective inhibition of C. roseus-AgNPs uptake pathways150
	4.4.5	Visualisation C. roseus-AgNPs uptake155
4.5	Transcri	ptomic profiling of HepG2 cells treated with C. roseus-AgNPs159
	4.5.1	Quantitative and qualitative measurement of total RNA159
	4.5.2	Sequencing data filtering161
	4.5.3	Genome mapping165
	4.5.4	SNP and INDEL detection165

	4.5.5	Different	ially splicing gene detection169
	4.5.6	Gene exp	pression analysis171
		4.5.6(a)	Gene mapping and expression 171
		4.5.6(b)	Sequencing saturation, reads coverage, distribution analysis transcripts, and correlation between samples
		4.5.6(c)	Differentially Expressed Gene (DEG) detection 174
		4.5.6(d)	<i>C. roseus</i> -AgNPs exposure altered the expression multiple genes in HepG2 cells
		4.5.6(e)	Pathway analysis of DEG 185
CHA	PTER 5 I	DISCUSSI	ON
5.1	C. roseus	s-AgNPs in	nduced anti-proliferative effects on HepG2 cells
5.2	C. roseux HepG2 c	s-AgNPs in ells	nduced oxidative stress and mitochondrial depolarisation in
5.3	C. roseus	s-AgNPs in	nduced apoptosis in the HepG2 cells201
5.4	C. roseus	s-AgNPs e	ntered HepG2 cells via endocytosis207
5.5	C. roseus	s-AgNPs d	ysregulated gene and biological pathways214
	5.5.1	mRNA ta genes	ranscriptome analysis identified 296 protein-coding
	5.5.2	C. roseus genes	s-AgNPs induced the expression of stress-associated
	5.5.3	C. rosei suppresso	us-AgNPs increased the expression of tumour or genes and apoptotic genes
	5.5.4	C. roseus as mitog pathway	s-AgNPs activated signal transduction pathway such gen-activated protein kinase (MAPK) signalling
	5.5.5	C. roseu signalling	s-AgNPs activated Tumour Necrosis Factor (TNF) g pathway
	5.5.6	C. roseus pathway	s-AgNPs elicited the activaton of TGF-β signalling
	5.5.7	The uptal	ke of C. roseus-AgNPs occured via endocytosis
	5.5.8	The uptal	ke of <i>C. roseus</i> -AgNPs caused cell cycle arrest225

СНАР	TER 6 CONCLUSION AND FUTURE RECOMMENDATION2	28
6.1	Conclusion2	28
6.2	Study limitations and future recommendations2	:30
REFERENCES		
APPENDICES		

LIST OF PUBLICATIONS AND AWARDS

LIST OF TABLES

Page

Table 2.1	Commonly used nanomaterials in biomedicine for various
	applications. Taken from Barkalina et al.(2014)
Table 2.2	Clinically approved intravenous nanoparticle therapies and
	diagnostics, grouped by their broad indication. Taken from
	Anselmo & Mitragotri (2016) 21
Table 2.3	Synthesis of AgNPs by physical methods. Taken from Venditto <i>et</i>
	<i>al</i> .(2010)27
Table 2.4	Synthesis of AgNPs by chemical methods. Taken from Venditto <i>et</i>
	<i>al</i> .(2010)
Table 2.5	Bacteria-, fungi-mediated synthesis of AgNPs. Taken from
	Venditto <i>et. al</i> (2010)
Table 2.6	Plant-mediated synthesis of AgNPs. Taken from Venditto <i>et al.</i>
T 11 0 1	(2010)
Table 3.1	List of reagents
Table 3.2	List of solvents and chemical
Table 3.3	List of materials
Table 3.4	Characteristics of C. roseus-AgNPs that had done previously by
	Ghozali <i>et al.</i> , 2018
Table 4.1	The IC ₅₀ Summary
Table 4.2	The selectivity index
Table 4.3	Dot plots of flow cytometry analysis of treated HepG2 cells for 24,
	48, and 72 hours. Annexin-V stained HepG2 cells_FITC/PI staining
	and analysed using flow cytometry
Table 4.4	Fluorescence microscope image at $10 \times$ magnification of apoptotic
	inducing effect on HepG2 cells assessed by comet assay 143

Table 4.5	Clean reads quality metrics	. 163
Table 4.6	Summary of genome mapping	. 165
Table 4.7	SNP variant type summary	. 166
Table 4.8	Summary of gene mapping ratio	. 171
Table 4.10	The significant KEGG pathways	. 186

LIST OF FIGURES

Page

Figure 2.1	Estimated number of new cases worldwide in 2020. Taken from http://gco.iarc.fr
Figure 2.2	Number of new cases and the top common cancer in Malaysia in 2022. Taken from http://gco.iarc.fr
Figure 2.3	The patent documents related to AgNPs in cancer therapy that were published, filed, and granted over the years. Taken from Lens.org 24
Figure 2.4	AgNPs synthesis top-down approach and bottom-up approach. Taken from Xu <i>et al.</i> (2020)
Figure 2.5	UV-Vis absorption spectrum of (a) cannonball leaf extract and (b) biosynthesised AgNPs. Taken from Devaraj <i>et al.</i> (2013) 40
Figure 2.6	Example of XRD patterns of AgNPs synthesised using <i>Catharanthus roseus</i> leaf extract. Taken from Ghozali <i>et al.</i> (2015)
Figure 2.7	Example of Zeta potential patterns of AgNPs synthesised using <i>Catharanthus roseus</i> leaf extract. Taken from Mukunthan <i>et al.</i> (2011)
Figure 2.8	Schematic illustration of the opsonisation process, initiated by the adsorption of immunoglobulins or other complement proteins (opsonin) to the AgNPs surface. Opsonised particles are subsequently identified through receptors on phagocytic cells and internalised. Taken from Yamamura <i>et al.</i> (2018)
Figure 2.9	Entry of AgNPs into cells using different endocytotic pathways. (a) Macropinocytosis and phagocytosis. (b) Clathrin-mediated endocytosis,clathrin-caveolin independent endocytosis and caveolae-mediated endocytosis. Taken from Foroozandeh <i>et al.</i> (2018)

- Figure 2.10 Various species of *C. roseus*. Photographs of eight varieties of *C. roseus*. (a) Patricia White (PW); (b) First Kiss Polka Dot (FKD);
 (c) First Kiss Peach (FKP); (d) Experimental Rose Pink (ER); (e) Experimental Deep Pink (ED); (f) Cooler Orchid (CO); (g) Victory Red (VR); (h) Blue Pearl (BP). Taken from (Malaysia Biodiversity Centre, 2013).
- Figure 3.1 This flowchart summarises the study's methodology, including five main experimental phases: (1) Antiproliferative effects are assessed through cell viability assays, IC50 determination, selectivity index (SI), and IncuCyte morphological observations. (2) Oxidative stress effects was evaluated using nitric oxide (NO) release assays, reactive oxygen species (ROS) assays, intracellular calcium measurements, and mitochondrial membrane potential $(\Delta \Psi m)$ assays. (3) The cell death mechanism is investigated by measuring caspase 3/7, 8, and 9 activities, performing Annexin V-FITC/PI staining, cell cycle analysis, and comet assays. (4) Cellular uptake and exocytosis of C. roseus-AgNPs are quantified, including selective inhibition studies and visualisation of nanoparticle uptake. (5) RNA analysis involves total RNA extraction, quantitative and qualitative measurement, library construction, bioinformatics workflow, and identification of

- Figure 4.5 (A) The cytotoxicity of THLE-3 cells lines treated with different concentrations of *C. roseus* aqueous extract, while untreated

- Figure 4.10 Morphological assessment of (A) Untreated THLE-3 (B) *C. roseus*-AgNPs treated THLE-3 cells (C) camptothecin treated THLE-3 cells (D) C. *roseus* aqueous extract treated THLE-3 cells using the IncuCyte ZOOM® system at 10× magnification at 24 hours incubation.

- Figure 4.17 (A) The intracellular Ca²⁺ production of HepG2 cells line with different treatments at 72 hours. Camptothecin was used as a positive control, while untreated HepG2 cells were used as a negative control. Data are presented as means±SD, n=3. Comparisons of the group were done using one-way ANOVA, followed by Dunnett's post-test to detect any significant differences between the treated and untreated cells (* p<0.05; ** p<0.01; *** p<0.001) Bonferroni

- Figure 4.31 (A) The endocytosis of *C. roseus*-AgNPs was studied in response to selective inhibitors using HepG2 cells for 24 hours. Data are presented as means±SD, n=3. Comparisons of the group were done using two-way ANOVA, followed by Dunnett's post-test to detect any significant differences between the treated and untreated cells

- Figure 4.35 Electron micrographs of HepG2 treated with *C. roseus*-AgNPs at 48 hours. (A)Untreated HepG2 cells (B) Intracellular accumulation of *C. roseus*-AgNPs in HepG2 cells. (I) Plasma membrane protrusion fold back forming caved-like invagination (black arrow) and (yellow arrow) showed *C. roseus*-AgNPs near membrane. (II) Cell shows *C. roseus*-AgNPs in the cytosol....... 157
- Figure 4.36 Electron Micrographs of HepG2 treated with *C. roseus* -AgNPs at 72 hours. (A)Untreated HepG2 cells (B) *C. roseus* -AgNPs deposited in HepG2 cells. (I) *C. roseus*-AgNPs in endosomes/lysosome (black arrow), *C. roseus*-AgNPs being exocytosed (yellow arrow) (II) *C. roseus*-AgNPs in the exocytic vesicles (black arrow), *C. roseus*-AgNPs being exocytosed (yellow arrow).

- Figure 4.42 Statistic of splicing 170

- Figure 5.2 Schematic diagram showing the potential mechanism underlying apoptosis induction in HepG2 cells treated with *C. roseus*-AgNPs 206
- Figure 5.3 Schematic diagram of cell death mechanism induced by *C. roseus*-AgNPs in HepG2 cells. The *C. roseus*-AgNPs treatment triggered apoptosis in HepG2 cells two major pathways: the cell-death-receptor-mediated (extrinsic) apoptotic pathway and the mitochondrial-mediated (intrinsic) apoptotic pathway which involved the underlying pathways regulated by the genes which were p53 signalling pathway, apoptosis pathway, endocytic pathway, MAPK signalling pathway, TNF signalling pathway, 216

LIST OF ABBREVIATIONS

AgNPs	Silver nanoparticles
Ag^+	Silver ion
Ag^0	Silver
Ar	Argon
3D	Three-dimensional
ANOVA	Analysis of variance
ATCC	American Tissue Culture Collection
BEGM	Bronchial Epithelial Cell Growth Basal Medium
С	Carbon
Ca	Calcium
Ca ²⁺	Calcium ion
CaO	Calcium oxide
CDK	Cyclin-dependent kinase
CDKI	CDK inhibitor
cDNA	Complementary DNA
CO ₂	Carbon dioxide
DC	Direct current
DCFH-DA	2, 7-dichlorodihydrofluorescein diacetate
DCM	Dichloromethane
DD	Death domain
DDIT3	DNA damage-inducible transcript
DEG	Differentially expressed genes
DISC	Death-inducing signalling complex
DMEM	Dulbecco's Modified Eagle Medium,
DMSO	Dimethyl sulfoxide

DNA	Deoxyribonucleic acid
DNBs	DNA nanoballs
DTT	Dithiothreitol
DUSP	Dual-specificity phosphatase
EDTA	Ethylenediaminetetraacetic acid
EMA	European Medicines Agency
EGF	Epidermal growth factor
ER	Endoplasmic reticulum
ERK	Extracellular signal-regulated kinase
EST	Expressed sequence tag
FBS	Fetal bovine serum
FDA	U.S. Food and drug administration
FITC	Fluorescein isothiocyanate
FPKM	Fragments per kilobase million
FTIR	Fourier transform infrared spectroscopy
G0	Gap G0 growth phase
G0/G1	Checkpoint occurs between the G0 and G1 phases
G1	Gap G1 growth phase
G2	Gap G2 growth phase
G2/M	Checkpoint occurs between the G2 and M phases
GLOBOCAN	Global Cancer Observatory
GO	Gene ontology
GPI	Glycosylphosphatidylinositol
GTN	Goniothalamin
GTN-BG	Combination of GTN and BG
Н	Hydrogen
H ₂ 0	Water

HCC	Hepatocellular carcinoma				
HEPG2	Hepatocellular carcinoma cell line				
HIV	Human immunodeficiency viruses				
HNO ₃	Nitric acid				
HPV	Human papillomavirus				
IC ₅₀	Half maximal inhibitory concentration				
ICP-OES	Inductively coupled plasma optical emission spectrometry				
IR	Infrared				
JNK	C-Jun N-terminal kinase				
JC-1	Cationic carbocyanine dye				
К	Potassium				
K^+	Potassium ion				
KBr	Potassium bromide				
LED	Light-emitting diode				
LDL	Low-density lipoprotein				
М	Mitotic phase				
МАРК	Mitogen-activated protein kinase				
MCF-7	Human breast adenocarcinoma cells				
Mg	Magnesium				
Mg^{2+}	Magnesium ion				
mRNA	messenger ribonucleic acid				
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide				
Na	Sodium				
Na ⁺	Sodium ion				
NADH	Nicotinamide adenine dinucleotide hydrogen				
NP	Nanoparticles				

NGS	Next-generation sequencing
NO	Nitric oxide
n	Sample size
ns	Not significant
NSPCCP	National Strategic Plan for Cancer Control Programme
0	Oxygen
OD	Optical density
ОН	Hydroxyl group
Р	Phosphorus
PBS	Phosphate-buffered saline
PCR	Polymerase chain reaction
PEG	Polyethylene glycol
PI	Propidium iodide
PLK5	Polo-like kinase 5
PO4 ³⁻	Phosphate ion
PSI	Pounds per square inch
PVP	Polyvinylpyrrolidone
QC	Quality control
RIN	RNA integrity number
RNA	Ribonucleic acid
ROS	Reactive oxygen species
RPM	Revolution per minute
RPMI 1640	Roswell Park Memorial Institute 1640
S	Synthesis phase
SAED	Selected-area electron diffraction
SD	Standard deviation
SDS	Sodium dodecyl sulphate

SEM	Standard error of the mean
SEM-EDS	Scanning electron microscopy-elemental analysis
SI	Selectivity index
Si	Silicon
SiO ₂	Silicon dioxide
Si-OH	Silanol group
TEM	Transmission electron microscopes
THLE-3	Normal liver cell line
SI	Tumour selective index
TGF-β	Transforming growth factor-β
TNFRSF	Tumour necrosis factor receptor superfamily
TIAs	Terpenoid indole alkaloids
UACC	Human breast carcinoma cells
USA	United States of America
UT	Untreated sample
UV	Ultraviolet
UV VIS	Ultraviolet-Visible spectroscopy
WHO	World Health Organization
XRD	X-ray diffraction

LIST OF UNITS

°C	Degree celcius
μg	Microgram
μL	Microliter
μm	Micrometer
μΜ	Micromolar
Å	Ångström
cells/mL	Cells per millilitre
cm ⁻¹	Reciprocal wavelength
cm ²	Centimeter square
cm ³ /g	Centimeter cubic per gram
c/s	Count/second
Da	Dalton
g	Gram (weight per unit mass)
g	Gravity
Hz	Hertz
kV	Kilovolt
Μ	Molar
m²/g	Meter square per gram
mA	Milliampere
mg/mL	Milligram per mililiter
MHz	Megahertz
min	Minute
mL	Milliliter
mm	Millimeter
mM	Millimolar

mV	Millivolt
nm	Nanometer
nM	Nanomolar
PPM	Parts per million
psi	Pounds per square inch
RFU	Relative fluorescence units
U/mL	Units per mililiter
v/v	Volume/volume
w/v	Weight/volume

LIST OF SYMBOLS

α	Alpha
β	Beta
δ	Delta
θ	Theta
~	Approximately
*	Asterisk
_	Dash
=	Equals
>	Greater than
-	Hyphen
<	Less than
\leq	Less-than or equal to
/	Or
±	Plus-minus
®	Registered trademark
×	Times
TM	Trademark
%	Percentage
+	Plus
Δψm	Mitochondria membrane potential

LIST OF APPENDICES

- Appendix A Calculation of 5mM AgNO₃
- Appendix B The standard curve of nitrite concentration
- Appendix C Library Construction

KAJIAN KE ATAS KESAN *Catharanthus roseus*- NANOPARTIKEL PERAK TERHADAP SEL SELANJAR KARSINOMA HEPATOSELULAR MANUSIA HEPG2

ABSTRAK

Kanser merupakan cabaran kesihatan global yang signifikan dan terus meningkat di seluruh dunia serta menjadi penghalang utama untuk mencapai jangka hayat yang panjang. Ubat-ubatan kemoterapi konvensional yang bersifat kurang selektif, menimbulkan kesan sampingan yang besar serta membahayakan sel sihat. Oleh itu, terapi kanser alternatif adalah penting, dan penggunaan nanopartikel perak (AgNPs) membentuk pendekatan baru dalam rawatan kanser disebabkan ciri uniknya. Penggunaan tumbuhan untuk biosintesis AgNPs menawarkan beberapa kelebihan berbanding dengan kaedah lain. Beberapa kajian telah melaporkan bahawa sintesis AgNPs melalui tumbuhan mempunyai aktiviti antikanser terhadap pelbagai jenis sel kanser. Oleh itu, kesan antiproliferasi dan indeks pemilihan (SI) nanopartikel perak Catharanthus roseus (C. roseus-AgNPs) terhadap sel sasaran hepatoselular karsinoma (HepG2) ditentukan dengan menggunakan sel hati bukan sasaran manusia (THLE-3) sebagai kawalan. C. roseus-AgNPs menunjukkan kesan antiproliferasi yang lebih poten daripada ekstrak akueus C. roseus dalam menghalang proliferasi sel HepG2 sementara menunjukkan kesan antiproliferasi yang lebih rendah terhadap sel THLE-3. C. roseus-AgNPs menunjukkan kesan ketoksikan yang selektif terhadap sel HepG2 dengan nilai SI yang tinggi (>2) berbanding dengan camptothecin. Bagi kedua-dua rawatan C. roseus-AgNPs dan ekstrak akueus C. roseus, beberapa ciri apoptotik telah dikesan apabila diperhatikan menggunakan sistem analisis sel hidup IncuCyte, termasuk pengecutan sel.

Mekanisme yang terlibat dengan kesan perencatan pada sel yang dirawat telah dikaji secara lebih mendalam. Peningkatan tahap ROS, NO dan Ca^{2+,} bersama-sama dengan kehilangan MMP dianggap sebagai pencetus tekanan oksidatif. Kajian ini juga menunjukkan bahawa apoptosis diaktifkan melalui laluan kematian ekstrinsik dan laluan mitokondria intrinsik, kerana pengaktifan kaspase eksekutor dan efektor dikesan dalam sel HepG2 yang dirawat dengan C. roseus-AgNPs. Memandangkan pengaktifan kaspase telah dikaitkan dengan pemutusan rantaian DNA dan penahanan kitaran sel, potensi genotoksik C. roseus-AgNPs telah dikaji dengan lebih lanjut. Dapatan menunjukkan bahawa sel HepG2 yang dirawat dengan C. roseus-AgNPs menunjukkan kerosakan DNA yang ketara dan penahanan serentak dalam progresi kitaran sel pada G₂/M. Persepsi yang lebih mendalam boleh dicapai melalui pemahaman dengan lebih mendalam tentang mekanisme pengambilan selular mereka. Oleh itu, pengambilan selular C. roseus-AgNPs telah dikaji lebih lanjut dengan melihat pengumpulan Ag intrasel dan seterusnya menilai taburan C. roseus-AgNPs dalam sel HepG2. Sel HepG2 utamanya mengambil C. roseus-AgNPs melalui endositosis bergantung kepada klatrin dan makropinoktosis, seperti yang dibuktikan dengan peningkatan gen yang terlibat dalam endositosis, pembentukan protrusi membran plasma, dan penghalangan klatrin melalui medium terdeplesi K⁺. Bagi memahami mekanisme aktiviti antikanser C. roseus-AgNPs terhadap sel HepG2, adalah perlu untuk mengenal pasti gen yang bekerjasama untuk menghasilkan kesan tersebut. Analisis transkriptomik, yang memberikan pandangan menyeluruh tentang ekspresi gen dalam keadaan tertentu, digunakan untuk menyiasat profil ekspresi gen dan memperoleh pemahaman mendalam tentang sifat antikanser C. roseus-AgNPs. Kajian ini menunjukkan bahawa rawatan dengan C. roseus-AgNPs menyebabkan peningkatan ekspresi gen tindakbalas Tumour dan apoptosis dalam sel HepG2, serta pengaktifan beberapa laluan pemindahan isyarat termasuk laluan MAPK, endositosis, TNF, dan laluan TGF-Beta serta penahanan kitaran sel. Kesimpulannya, *C. roseus*-AgNPs mempunyai aktiviti antikanser yang kuat dan selektif terhadap sel HepG2 melalui mekanisme yang melibatkan tekanan oksidatif, apoptosis, kerosakan DNA, dan penahanan kitaran sel. Pemahaman yang diperoleh menunjukkan bahawa *C. roseus*-AgNPs boleh menjadi alternatif atau pelengkap yang baik kepada kemoterapi konvensional, menawarkan rawatan kanser yang disasarkan dengan potensi kesan sampingan yang kurang.

STUDY ON THE EFFECTS OF Catharanthus roseus-SILVER NANOPARTICLES ON HUMAN HEPATOCELLULAR CARCINOMA CELL LINE HEPG2

ABSTRACT

Cancer is a major global health challenge that continues to increase worldwide, posing a significant obstacle to achieving long life expectancy. Conventional chemotherapy drugs may not be specific enough, leading to significant side effects and harm to healthy cells. Therefore, alternative cancer therapies are crucial, and application of silver nanoparticles (AgNPs) presents a novel approach to cancer treatment due to their unique features. Utilising plants for the biosynthesis of AgNPs offers several advantages over other methods. Numerous studies had reported that plant mediated AgNPs synthesis have been found to exhibit potent anticancer activity against various cancer cell lines. Thus, the antiproliferative effects and selective index (SI) of Catharanthus roseus-silver nanoparticles (C. roseus-AgNPs) on hepatocellular carcinoma (HepG2) cells were determined by using normal liver cell line (THLE-3) as a control. C. roseus-AgNPs was more potent than C. roseus-aqueous extract in inhibiting the proliferation of HepG2 cells while exhibiting less inhibition towards THLE-3 cells. C. roseus-AgNPs demonstrated selective toxicity towards HepG2 cells with a high SI value (>2) compared to camptothecin. For both C. roseus-AgNPs and C. roseus-aqueous extract treatments, several apoptotic features were detected when observed using IncuCyte live-cell analysis system, including cell shrinkage, rounded cells, and retracted. The underlying mechanisms associated with the inhibitory effects in the treated cells were further explored. The increased level of ROS, NO and Ca²⁺ levels, together with the subsequent loss of MMP was assumed to induced oxidative

stress. This study also depicted that apoptosis was triggered through both extrinsic death receptor pathway and intrinsic mitochondrial pathway as the activation of executioner and effector caspases were detected in C. roseus-AgNPs treated HepG2 cells. Given that caspase activation has been implicated in DNA strand breaks and cell cycle arrest, the genotoxic potential of C. roseus-AgNPs was further assessed. The findings indicate that HepG2 cells treated with C. roseus-AgNPs exhibit significant DNA damage and concurrent arrest of cell cycle progression at G₂/M. In-depth perception of the cytotoxic effects of C. roseus-AgNPs on HepG2 cells can be achieved through a better understanding of their cellular uptake mechanisms. Therefore, the C. roseus-AgNPs cellular uptake was further explored by looking at the accumulation of intracellular Ag followed by the evaluation of the C. roseus-AgNPs distribution in HepG2 cells. HepG2 cells primarily took up C. roseus-AgNPs through clathrin-dependent endocytosis and macropinocytosis, as evidenced by upregulated genes involved in endocytosis, the formation of plasma membrane protrusions, and the inhibition of clathrin through K⁺ depleted medium. To comprehend the underlying mechanisms of the anti-cancer activity of C. roseus-AgNPs against HepG2 cells, it is necessary to identify the genes that collaborate to produce the effect. Transcriptome analysis, which provides a comprehensive view of gene expression under a specific condition, was used to investigate the gene expression profile, and gain an in-depth understanding of the anti-cancer properties of C. roseus-AgNPs. The study found that treatment with C. roseus-AgNPs led to increased expression of tumour suppressor and apoptotic genes in HepG2 cells, as well as activation of several signal transduction pathways including the MAPK, endocytosis, TNF, and TGF-Beta pathways as well as cell cycle arrest. In conclusion, C. roseus-AgNPs exhibit potent and selective anticancer activity against HepG2 cells through mechanisms involving oxidative

stress, apoptosis, DNA damage, and cell cycle arrest. The molecular insights gained indicate that *C. roseus*-AgNPs could be a promising alternative or complement to conventional chemotherapy, offering targeted cancer treatment with potentially fewer side effects.

CHAPTER 1

INTRODUCTION

1.1 Background

Cancer is a complex and multifaceted disease that affects millions of people worldwide. According to the World Health Organization (WHO), cancer was the leading cause of death globally in 2020, accounting for nearly 10 million deaths in 2022. The most common cancer with high mortality rate in 2020 were lung, colon, liver, stomach, and breast cancers. Hepatocellular carcinoma (HCC), also known as liver cancer, is a type of cancer that originates in the liver cells, called hepatocytes. It is the most common type of liver cancer, accounting for more than 700,000 deaths each year (Siegel *et al.*, 2023). In Malaysia, liver cancer is one of the ten most frequent cancers diagnosed in patients (Mohamed *et al.*, 2018). While other types of liver cancer, such as cholangiocarcinoma and hepatoblastoma, are also important, HCC's higher prevalence and impact on public health make it a primary focus of research in liver cancer (Reghupaty *et al.*, 2021).

There are several types of conventional treatments for liver cancer including surgery, chemotherapy, radiation therapy and immunotherapy, that can cause significant side effects and toxicity. These treatments not only affect cancer cells but can also harm the healthy cells and tissues, leading to adverse effects such as fatigue, nausea, hair loss, and reduced immune function. These side effects can impact the patient's quality of life and limit the treatment tolerability (Andleeb *et al.*, 2021). Other types of cancer treatments include targeted therapy, hormone therapy, and stem cell transplant. The type of treatment chosen will be determined by various criteria, including the type of cancer, its stage, and the patient's overall condition (Sanità *et al.*, 2020). Due to the limitation of conventional treatments for liver cancer, thus, the

search for a novel approach and discover potent anticancer agents for effective treatment against cancer with minimal side effects becomes prominent. Nanotechnology-based approaches have shown promising potential such as maximal efficacy and safety to ameliorate cancer therapy and diagnosis in recent years (Shabani *et al.*, 2022). Nanoparticles possesses unique characteristics such as nanosized particle which are large surface area per volume ratio, porosity, solubility, bioavailability and have various structural properties. Due to the unique characteristics of the nanoparticle, a nanoscale anticancer drug has developed into a high- benefit treatment since it has high stability and specificity, is durable and less dosed frequency needed (Sinha *et al.*, 2006).

Silver nanoparticles (AgNPs) enticed the attention of the scientific community and trade itself by exploiting several biomedical applications including diagnosis, treatment, medical device coatings, drug delivery, personal health care product, antimicrobial agents, anti-inflammatory agents, and anticancer agents. AgNPs can be synthesis through varies methods including the physical, chemical, biological and hybrid methods (Iravani *et al.*, 2014). Among preparation techniques that have been reported for the synthesis of AgNPs including laser ablation, gamma and electron irradiation, chemical reduction method, microemulsion technique, UV-initiated photoreduction methods, electrochemical synthetic method, microwave-assisted synthesis, Tollen method and biological synthetic methods (Abbasi *et al.*, 2013.; Gurunathan *et al.*, 2013; Kaviya *et al.*, 2014). There are potentials and limitations of physical and chemical methods although these techniques serve as an imperative technique in the synthesis of AgNPs. The main drawback of these method is that they are extremely high cost, and very toxic to human being since there are involvement of hazardous and high toxicity chemicals such as sodium borohydride, potassium bitartrate, methoxy polyethylene glycol and hydrazine which function in reducing the sizes of particles (Le *et al.*, 2010; Prabhu *et al.*, 2013;Bagherzade *et al.*, 2017).

Therefore, here is a growing need to develop an eco-friendly and financially doable approach to the technique of synthesising AgNPs. The hunt for such a method has led to the biogenic synthesis of silver nanoparticles which are more eco-friendly, hazard- free, easily accessible, and cost-effective (Kaviya *et al.*, 2014). Therefore, biosynthesis of AgNPs using bacteria, fungi, or plants has been a major approach since this method offers a fascinating alternative to chemical synthesis (Ahmed *et al.*, 2016). AgNPs synthesised by plants are more effective, as in plants, they are effortlessly accessible, safe and nontoxic much of the time and they also have an expansive mixed bag of metabolites that can help in the reduction of silver ions (Piao *et al.*, 2011; Prabhu *et al.*, 2013; Sankar *et al.*, 2013).

Catharanthus roseus (L.) G.Don, also known as the Madagascar periwinkle, is a medicinal plant classified under the Apocynaceae family that synthesises terpenoid indole alkaloids (TIAs) (Moudi *et al.*, 2013). Additionally, *C. roseus* acts as a reducing and stabilising agent in the synthesis of nanoparticles due to its rich content of phytochemicals. This plant contains several active compounds, including vinblastine and vincristine, which are commercially available tubulin inhibitors (TIAs) used in chemotherapy for cancer treatment. These compounds belong to a group of compounds called the vinca alkaloids, which repress cell growth by altering the microtubular dynamics, ultimately provoking apoptosis. They are commonly used to treat several malignant conditions, including Hodgkin's and non-lymphomas, Hodgkin's acute lymphoblastic leukaemia, neuroblastoma, and breast carcinoma (Ghozali *et al.*, 2018).

Based on the facts that inorganic-based NPs have been successfully used clinically and biosynthesis of AgNPs provides more advantages, we envisage possible anticancer effects of *C. roseus*-AgNPs to rule out the biosafety issues of AgNPs and provide theoretical basis to develop a better anticancer therapeutic strategy for HCC - to rule out the biosafety issues of AgNPs and provide a theoretical basis to develop a better anticancer therapeutic strategy for HCC.

1.2 Rationale of study

Hepatocellular carcinoma (HCC) is one of the most common and deadliest types of liver cancer that arises from the hepatocytes, the main type of liver cells responsible for carrying out essential functions such as detoxification, protein synthesis, and bile production (Llovet et al., 2021). HCC is known for its aggressive nature and resistance to conventional treatments such as chemotherapy and radiation therapy. Surgical resection and liver transplantation are potentially curative treatments for early-stage HCC, but these treatments are not feasible for all patients due to factors such as the presence of underlying liver disease, the size and location of the Tumour, and the patient's overall health. Another limitation of conventional treatments is the potential for toxicity and side effects, including the inability to target specific sites that can lead to long-term health consequences and the potential for cancer recurrence (Huang et al., 2020). Due to the limitations of traditional treatments for HCC, there is a need for the development of novel and effective therapies for this disease. Therefore, researchers are constantly exploring new compounds with strong anticancer activity and minimal toxicity towards untargeted cells as potential alternatives to conventional chemotherapeutic drugs. The development of such compounds is crucial to improve cancer treatment and reducing the side effects associated with current therapies. While previous study exploring the cytotoxic effects of C. roseus-AgNPs in cancer cell lines, less attention has been made to their selectivity in human cancer cell lines (Ghozali et *al.*, 2015). It is essential to determine the selectivity of *C. roseus*-AgNPs in cancer cell lines versus normal human cells as this can help assess their safety for use in cancer therapy. Selectivity refers to the ability of a therapeutic agent to target cancer cells while sparing untargeted cells, minimising side effects (Rashidi *et al.*, 2017). Therefore, in this study, the antiproliferative effects of *C. roseus*-AgNPs were evaluated on hepatocellular carcinoma (HepG2) cells and normal liver (THLE-3) cells. THLE-3 cells are a human liver cell line that has been widely used as a normal control cell line in many studies involving liver cancer cells (Jehan *et al.*, 2020). Two vital parameters were measured; the half maximum inhibitory concentration (IC₅₀) to study the efficacy of *C. roseus*-AgNPs in inhibiting cancer cells and the tumour selectivity index (TSI) to examine the safety of *C. roseus*-AgNPs as a therapeutic candidate to untargeted cells.

Silver nanoparticles are a more commonly used in research than gold nanoparticles due to several reasons. Firstly, silver is less expensive than gold, which makes it a more affordable option for researchers who want to study nanoparticles (Devi *et al.*, 2022). AgNPs can be synthesised more easily and in larger quantities than gold nanoparticles, which can be challenging to produce in a consistent and reproducible manner (Solati and Dorranian, 2015). One justification is related to the surface properties of silver nanoparticles, which can enhance their cellular uptake and cytotoxicity against cancer cells. Studies have shown that AgNPs can accumulate more efficiently in cancer cells compared to untargeted cells, due to their preferential interaction with the tumour microenvironment and cancer cell membranes. This increased uptake can enhance their therapeutic efficacy while reducing their toxicity to untargeted cells (Talarska *et al.*, 2021). In contrast, gold nanoparticles are generally considered to have low cellular uptake and require additional modifications to enhance their tumour targeting and uptake. This can limit their efficacy in some cancer therapy applications (Huang *et al.*, 2006). Another justification is related to the unique optical properties of gold nanoparticles, which can limit their usefulness in certain applications. Gold nanoparticles have a distinct colour due to their plasmon resonance, which can interfere with some types of imaging techniques and biosensors (Lynch and Dawson, 2008). In contrast, silver nanoparticles have a broader absorption spectrum, which can make them more suitable for some types of imaging and sensing applications (Solati and Dorranian, 2015). While gold nanoparticles have their own unique advantages, silver nanoparticles are often the preferred choice in much research. Hence, AgNPs were selected to be greenly synthesised in this study.

There are several approaches to synthesising AgNPs such as chemical, physical, and biological approaches. Biological approaches have been shown to be the most economical, sustainable, reliable, and eco-friendly of all AgNPs synthesis approaches, and this approach does not use harmful chemicals (Andleeb *et al.*, 2021). The synthesis of AgNPs using plants offers several benefits, such as biocompatibility, easy and low-cost synthesis, environmentally friendly, and had potential for additional bioactive properties making it a promising approach for the development of safe and effective nanomaterials (Xu *et al.*, 2020). Thus, this study was designed to explore the cytotoxicity of plant mediated synthesis of AgNPs (*C. roseus*-AgNPs) on HepG2 cells.

Defects in cell death pathways, such as apoptosis and autophagy, can contribute to cancer development and progression, which is one of the hallmarks of cancer. Many cancer treatments aim to boost the ability of cancerous cells to undergo programmed cell death, either by activating apoptotic pathways or by inhibiting prosurvival pathways (Thapa *et al.*, 2022). Identifying the mechanisms underlying apoptosis, as well as its effector proteins and genes, can aid in the discovery of novel anticancer treatments that boost cancer cell sensitivity to apoptosis. Therefore, the underlying mechanisms associated with the inhibitory effects in the *C. roseus*-AgNPs treated cells were further explored in this study. This study provides insight into the underlying molecular mechanisms of cell death, specifically by apoptosis in cells treated with *C. roseus*-AgNPs. It will be useful for further evaluation in preclinical and clinical settings for cancer treatment.

An understanding of the anticancer mechanisms of AgNPs at the molecular level would provide detailed insight into various physiological processes involved. This is achievable via transcriptome analysis, a holistic view of gene expression. An overview or snapshot of the gene expression landscape could reveal the intricate molecular network that underlies the myriad of biological processes in a cell. As compared to hybridisation-based RNA quantification methods such as microarray analysis, this sequencing-based transcriptome detection can perform well within a wide range of circumstances, where this method could quantify gene expression with low background, high accuracy, and high reproducibility levels with significant dynamic range transcriptome analysis can detect subtle changes in gene expression, mutations, splice variants and fusion genes that cannot be identified by microarrays. Fuelled by the intriguing capacity of the transcriptome analysis, in this study, we endeavoured to carry out an mRNA transcriptome profiling of the *C. roseus*-AgNPs treated HepG2 cells.

1.3 Research objectives

This study has five main objectives, and the following specific objectives have been developed to achieve the main goals.

- 1. To elucidate the antiproliferative effects of *C. roseus*-AgNPs on HepG2 and THLE-3 cells.
 - a. To identify the IC₅₀ values of *C. roseus*-AgNPs, *C. roseus* aqueous extract, and camptothecin on HepG2 and THLE-3 cells.
 - b. To compare the antiproliferative effectiveness of *C. roseus*-AgNPs, *C. roseus* aqueous extract, and camptothecin on HepG2 and THLE-3 cells.
 - c. To calculate the Selectivity Index (SI) of *C. roseus*-AgNPs treatment in HepG2 cells relative to THLE-3 cells.
 - d. d. To examine the morphological changes in HepG2 and THLE-3 cells after treatment compared to untreated cells.
- To determine the oxidative stress effects induced by *C. roseus*-AgNPs in HepG2 and cells
 - a. To measure the nitric oxide production levels in HepG2 cells treated with *C. roseus*-AgNPs.
 - b. To explore the role of oxidative stress by assessing ROS levels in *C*. *roseus*-AgNPs-treated HepG2 cells.
 - c. To monitor intracellular calcium levels in HepG2 cells following treatment with *C. roseus*-AgNPs.
 - d. To observe changes in mitochondrial membrane potential in HepG2 cells treated with *C. roseus*-AgNPs.

- To determine the mechanisms of cell death induced by *C. roseus*-AgNPs in HepG2 cells
 - a. To evaluate the activation of initiator caspases (caspase 8 for the extrinsic pathway and caspase 9 for the intrinsic pathway) and effector caspases (caspase 3/7) in *C. roseus*-AgNPs-treated HepG2 cells.
 - b. To analyse the cell cycle arrest induced by *C. roseus*-AgNPs in HepG2 cells.
 - c. To determine the mode of cell death in HepG2 cells treated with *C*. *roseus*-AgNPs.
 - d. To assess the effectiveness of *C. roseus*-AgNPs in inducing DNA damage in HepG2 cells.
- 4. To investigate the cellular uptake and intracellular distribution of *C. roseus*-AgNPs in HepG2 cells
 - a. To quantify the uptake of C. roseus-AgNPs by HepG2 cells.
 - b. To measure the exocytosis of C. roseus-AgNPs from HepG2 cells.
 - c. To identify the cellular uptake mechanisms of *C. roseus*-AgNPs using selective inhibitors.
 - d. To visualise the processes of uptake and exocytosis of *C. roseus*-AgNPs in HepG2 cells.
- 5. To assess the mRNA transcriptome profiling of *C. roseus*-AgNPs treated HepG2 cells
 - a. To isolate total RNA from HepG2 cells treated with C. roseus-AgNPs.

- b. To analyse differential gene expression between untreated and *C*. *roseus*-AgNPs-treated HepG2 cells.
- c. To investigate the molecular pathways activated in HepG2 cells following *C. roseus*-AgNPs treatment.

CHAPTER 2

LITERATURE REVIEW

2.1 Cancer

Cancer is a complex disease that arises from the accumulation of genetic abnormalities and epigenetic alterations in a cell, resulting in uncontrolled growth and division of aberrant cells (Mousavi *et al.*, 2018). A range of variables, including exposure to environmental toxins such as tobacco smoke, certain chemicals, and pollution, can create mutations in genes that can lead to cancer (Choi *et al.*, 2014). Ionising radiation, such as that emitted by X-rays or radioactive materials, can also result in mutations that lead to the development of cancer. Furthermore, certain viruses, such as the human papillomavirus (HPV) and the hepatitis B and C viruses, can induce infections that result in genetic changes in cells, raising the chance of developing certain types of cancer. Other risk factors for cancer include lifestyle factors such as diet and physical activity, as well as inherited genetic abnormalities that can raise the chance of cancer (Hudnall *et al.*, 2014).

Untargeted cells in the body have regulatory mechanisms that control their growth and division, preventing them from dividing indefinitely. However, cancer cells are preceded by the appearance of mutations in untargeted cells that disrupt these control mechanisms, allowing them to continue dividing and growing uncontrollably (Andleeb *et al.*, 2021). This is the initial stage of cancer development called initiation. As the mutated cells continue to proliferate (promotion), they can form a mass of a targeted cells called a tumour. Tumours can be benign, meaning they are not cancerous and do not spread to other parts of the body, or they can be malignant, meaning they are cancerous and can metastasis surrounding tissues and spread to other parts of the body through the bloodstream or lymphatic system (Sarkar *et al.*, 2013).

Cancer is a heterogeneous disease, meaning that it can have many different subtypes and genetic alterations that affect its behavior and response to treatment (Rivenbark *et al.*, 2013). The diagnosis and treatment of cancer are based on a combination of factors, including the type and stage of the cancer, the patient's age and overall health, and the presence of any other medical conditions (Yildizhan *et al.*, 2018). Treatment options can include surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, among others.

2.1.1 Global cancer statistics

Cancer is the leading cause of death, and its occurrence is steadily increasing. In 2020, global cancer statistics showed that an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and around 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer). Figure 2.1 showed female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an expected 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers (Sung *et al.*, 2021). Lung cancer remained the top cause of cancer death with an estimated 1.8 million fatalities (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers (Sung *et al.*, 2021).

In general, the occurrence of cancer was 2 to 3 times higher in countries that had completed their transition to modernisation compared to those in the midst of transitioning, for both males and females. However, whereas male mortality varied 2fold, but female mortality varied little. Nonetheless, transitioning countries had much higher rates of breast and cervical cancer deaths among women compared to transitioned countries. Looking forward to 2040, the global burden of cancer is predicted to increase by 47%, totaling 28.4 million cases, with transitioning countries facing a greater increase of 64% to 95% compared to 32% to 56% in transitioned countries. This rise is due to demographic shifts, the growing economy, and rising risk factors associated with globalisation. To improve global cancer control, it is necessary to create sustainable infrastructure to spread cancer prevention strategies and offer cancer care in transitioning nations (Sung *et al.*, 2021).

Figure 2.1 Estimated number of new cases worldwide in 2020. Taken from http://gco.iarc.fr

2.1.2 Cancer statistics in Malaysia

In 2020, Malaysia reported 48,639 new cases of cancer and this number indicates a steady increase in cancer incidence in the country. Alarmingly, cancer incidence in Malaysia is expected to double by 2040, which is a cause for concern (Schliemann *et al.*, 2020). Based on current statistics, approximately 1 in 10 people in Malaysia will be diagnosed with cancer during their lifetime. This means that the lifetime risk of developing cancer in Malaysia is 1 in 10 for males and 1 in 9 for females. Lifetime risk refers to the probability of a person developing cancer before the age of 75 years in the absence of other causes of death. As shown in Figure 2.2,

the top five most common cancers in Malaysia in 2020 were breast cancer (17.3%), followed with colorectal cancer (13.6%), lung cancer (10.6%), nasopharyngeal cancer (4.6%) and lastly, liver cancer (4.4%)(Schliemann *et al.*, 2020). Lifestyle factors such as smoking, alcohol consumption, unhealthy diet, and lack of physical activity are believed to contribute to the increasing incidence of cancer in Malaysia (Schliemann *et al.*, 2020). To address this growing issue, the Malaysian government has implemented various initiatives to improve cancer care and access to treatment. These include establishing cancer centers and support groups, introducing a National Strategic Plan for Cancer Control Programme (NSPCCP) 2021-2025.

Figure 2.2 Number of new cases and the top common cancer in Malaysia in 2022. Taken from http://gco.iarc.fr

2.1.3 Hepatocellular carcinoma

Liver cancer is a significant health concern globally, including in Malaysia. According to the Global Cancer Observatory (Globocan) 2020, liver cancer is the sixth most common cancer among males in Malaysia, accounting for 6.7% of all new cancer cases in this group. It is also the third leading cause of cancer-related deaths in the country, contributing to 6.9% of all cancer deaths. Hepatocellular carcinoma (HCC) is the most common primary liver cancer and arises from the hepatocytes, which are the main functional cells of the liver (Bosch *et al.*, 2004). HCC accounts for up to 90% of all primary hepatic malignancies with nearly one million new cases diagnosed annually worldwide, HCC comprises a significant portion of the global cancer burden. The worldwide incidence of HCC with a predominant number of cases 72% occurring in Asia, of which over 50% are reported in China. The remaining HCC cases are distributed as follows: 10% in Europe, 7.8% in Africa, 5.1% in North America, 4.6% in Latin America, and 0.5% in Oceania (Ramai *et al.*, 2022)..

The factors that have been identified as risk factors for HCC development include chronic infection with hepatitis B or C viruses, heavy alcohol consumption, non-alcoholic fatty liver disease (NAFLD) or non-alcoholic steatohepatitis (NASH), and cirrhosis (Boyle *et al.*, 2017). People with chronic hepatitis B or C are at an increased risk of developing HCC as these viruses can cause liver inflammation and scarring over time (Abdualmjid *et al.*, 2022). Drinking large amounts of alcohol over a long period of time can also cause liver damage and increase the risk of liver cancer. Additionally, NAFLD and NASH, characterised by the build-up of fat in the liver, can cause liver inflammation and scarring, thereby increasing the risk of HCC. Cirrhosis, a chronic liver disease characterised by scarring of the liver, is also associated with an increased risk of HCC (Golabi *et al.*, 2017).

The prognosis for HCC varies depending on the stage of the disease at diagnosis, with early-stage tumours having a better prognosis than advanced-stage tumours (Wan et al., 2022). To ensure the best possible treatment outcome for patients with HCC, a team of healthcare professionals with diverse expertise must make clinical decisions considering the patient's tumour stage, liver function, and performance status (Ramai et al., 2022). Surgery is considered the best option if the cancer is confined to a specific area of the liver, but it may not be possible for patients with advanced disease or underlying medical conditions. Liver transplant is an option for patients with cirrhosis or liver failure, but it largely depends on finding a suitable donor liver and the patient's overall health (Llovet et al., 2021). Other treatment options include ablation therapy, radiation therapy, and chemotherapy, which can be given orally or intravenously and may be used in combination with other treatments (Algahtani et al., 2019). However, these treatments have several limitations, including tumour recurrence, side effects such as fatigue and nausea, and limited effectiveness, especially in patients with advanced disease. In such cases, palliative care may be necessary to relieve symptoms and improve the patient's quality of life (Henson et al., 2020).

2.2 Nanotechnology

2.2.1 Introduction

Nano is derived from the Greek word "nanos", meaning dwarf, tiny, or very small (Rai *et al.*, 2008). Nanotechnology is a field of science and technology that focuses on manipulating and engineering materials at the atomic, molecular, and supramolecular scale, typically ranging from 1 to 100 nanometres (nm) (Ferrari *et al.*,

2005). Nanotechnology has the potential to revolutionise a wide range of industries, including medicine, electronics, energy, and materials science (Emerich *et al.*, 2005). Understanding the physicochemical properties of materials at the nanoscale will be essential in order to materialise the potential and develop new materials with novel features and functionalities that may be used for human well-being (Alexis *et al.*, 2008).

Nanobiotechnology emerged due to the application of nanotechnology in biotechnology, which was inevitable given the presence of naturally occurring nanoscale structures in living cells, which refers to the application of nanotechnology in the life sciences (Jain *et al.*, 2010). Nanomedicine is an application of nanobiotechnology that offers numerous potential medical applications, including developing new materials and devices that may interact with biological systems at the nanoscale. Some key focus areas in nanomedicine include drug and gene delivery, imaging agent, probing of DNA structure, tissue engineering, detection of pathogens, and phagokinetic (Foroozandeh *et al.*, 2018). Nanooncology is a rapidly growing field within nanomedicine that focuses on using nanotechnology for the diagnosis, imaging, and treatment of cancer (Jain *et al.*, 2010). Some examples of nanooncology applications are using quantum dots, gold nanoparticles conjugated with a monoclonal antibody, nanobiosensors to detect multiple molecular biomarkers of cancer, and nanocarrier magnetic and target delivery of drugs to the cancerous site (Choi *et al.*, 2006).

2.2.2 Biomedical Application of Nanomaterials

Nanomaterials exhibit unique properties and tremendous applicability, making them well-suited for medical applications (Silva *et al.*, 2004). One important aspect of nanomaterials is their high surface area-to-volume ratio, which can contribute to higher reactivity, specificity, and adsorption capacity. This characteristic is extremely important in medical applications, as nanomaterials can be engineered to transport other compounds, such as probes, proteins, and drugs, to specified sites in the body (Zhang *et al.*, 2019). Another critical property of nanomaterials is their quantum properties, which can arise due to their small size. Some nanoparticles can exhibit fluorescent or magnetic properties that can be exploited in medical imaging or drug delivery applications (Silva *et al.*, 2004). Table 2.1 shows various types and structures of nanomaterials used in biomedical applications.

Table 2.1Commonly used nanomaterials in biomedicine for various applications.Taken from Barkalina *et al.*(2014)

Class	Subclass	Material	Structure	Description
Organic	Lipids	Phospholipids	Liposomes	Enclosed nanospheres comprised of a phospholipid bilayer
Polymers			Micelles	Enclosed nanospheres comprised of a phospholipid monolayer
		Solid lipids	Solid lipid nanoparticles	Nanospheres comprised of the lipid core stabilised by surfactants and/or polymers
	Polymers	Poly-L-lactide-co- glycolide (PLGA) Poly-L-lactic acid (PLA) Chitosan Gelatine	Nanoparticles	Variously shaped structures with all three physical dimensions on the nanoscale (b 100 nm)
		Polyamidoamine(PAMAM Polypropyleneimine (PPI)	Dendrimers	Spherical nanomolecules consisting of the central core and sequential layers of branching groups
Inorganic Noble metals	Gold	Nanoparticles	Variously shaped structures with all three physical dimensions on the nanoscale (b 100 nm)	
		Silver Platinum		
Oxides		Magnetic and	Nanoparticles	Variously shaped structures with all the
		superparamagnetic iron oxides		the nanoscale (b100 nm)
	Semiconductors	s Cadmium	Quantum dots	Semiconductor nanocrystals with optical
		Selenium Tellurium Indium		properties
	Carbon-based	Carbon	Fullerenes	Hollow nanospheres, comprised of carbon atoms, forming cage-like
			Nanotubes	structures Cylindrical structures with two of the three physical dimensions on

			the nanoscale (b100 nm)
Other	Mesoporous silica	Nanoparticles	Variously shaped structures with all three physical dimensions on
			the nanoscale (b 100 nm) and mesoporous architecture
			(Pore diameter: 2-50 nm)

The use of nanomaterials in biomedical applications has tremendous potential for improving disease diagnosis and treatment, and is an area of active research and development, however, it is essential to note that using nanomaterials in medicine raises concerns about their potential toxicity and environmental impact. As such, researchers in nanotechnology are working to develop safe and sustainable methods for using nanomaterials in medical applications.

2.2.3 Clinically approved nanoparticles

Several types of nanoparticles formulations have been approved for use in cancer treatment by regulatory organisations such as the U.S. Food and Drug Administration (FDA). These nanoparticle formulations are designed to target cancer cells specifically while minimising toxicity to healthy cells.

Abraxane is one of the FDA approved nanoformulated drugs, which is a nanoparticle-bound form of the chemotherapy drug paclitaxel. Abraxane is used to treat breast cancer, non-small cell lung cancer, and pancreatic cancer. The nanoparticle-bound paclitaxel allows for increased drug delivery to cancer cells, resulting in higher efficacy and fewer side effects (Ventola *et al.*, 2017). Another example is Doxil, which is a liposomal formulation of the chemotherapy drug doxorubicin. Doxil is used to treat ovarian and breast cancers. The liposomal formulation allows for sustained drug release and increased accumulation of the drug in cancer cells (Min *et al.*, 2015). Table 2.2 illustrates several nanoparticle-based therapies in clinical trials for various types of cancer. Many clinically certified nanoparticle formulations used in cancer treatment are designed to target cancer cells passively by using the unique properties of nanoparticles rather than actively targeting

them by modifying nanoparticles using chemical-based targeting moieties (Zhang *et al.*, 2014). Active targeting has several advantages over passive targeting, including increased specificity and selectivity, improved drug delivery to the target site, and reduced toxicity to healthy tissues. Many clinically approved nanoparticle formulations still use passive targeting due to several reasons including the complexity and cost of developing and manufacturing active-targeted nanoparticles, the potential for off-target effects and toxicity, and the need for more extensive preclinical and clinical testing to demonstrate safety and efficacy (Anselmo and Mitragotri, 2016).

Name	Particle type/drug	Approved application/indication	Approval(year)	Investigated application/indication	ClinicalTrials.gov identifier
Doxil/Caelyx (Janssen)	Liposomal doxorubicin (PEGylated)	Ovarian cancer (secondary to platinum-backtherapies) HIV-associated Kaposi's sarcoma(secondary to chemotherapy) Multiple myeloma (secondary)	FDA (1995) EMA (1996)	Various cancers including solid malignancies, ovarian, breast, leukemia, lymphomas, prostate, metastatic, or liver	166 studies mention Doxil 90 studies mention CAELYX
DaunoXome (Galen)	Liposomal daunorubicin(non- PEGylated)	HIV-associated Kaposi's sarcoma(primary)	FDA (1996)	Various leukemias	32 studies mention DaunoXome
Myocet (Teva UK)	Liposomal doxorubicin(non- PEGylated)	Treatment of metastatic breast cancer(primary)	EMA (2000)	Various cancers including breast,lymphoma, or ovarian.	32 studies mention Myocet
Abraxane (Celgene)	Albumin-particle boundpaclitaxel	Advanced nonsmall cell lung cancer (surgery or radiation is not an option)Metastatic breast cancer (secondary) Metastatic pancreatic cancer (primary)	FDA (2005) EMA (2008)	Various cancers including: solid malignancies, breast, lymphomas, bladder,lung, pancreatic, head and neck, prostate,melanoma, or liver	295 studies mention Abraxane
Marqibo (Spectrum)	Liposomal vincristine(non- PEGylated)	Philadelphia chromosome- negative acute lymphoblastic leukemia (tertiary)	FDA (2012)	Various cancers including: lymphoma,brain, leukemia, or melanoma	23 studies mention Marqibo
MEPACT (Millennium)	Liposomal mifamurtide(non- PEGylated)	Treatment for osteosarcoma (primaryfollowing surgery)	EMA (2009)	Osteosarcomas	4 studies mention MEPACT: 3 active/recruiting
Onivyde MM- 398(Merrimack)	Liposomal irinotecan (PEGylated)	Metastatic pancreatic cancer (secondary)	FDA (2015)	Various cancers including: solid malignancies, breast, pancreatic, sarcomas, or brain	7 studies mention MM- 398/Onivyde: 6 active/recruiting

Table 2.2Clinically approved intravenous nanoparticle therapies and diagnostics, grouped by their broad indication. Taken from Anselmo&Mitragotri (2016)

2.3 Silver Nanoparticles (AgNPs)

2.3.1 Introduction

Silver nanoparticles (AgNPs) are a crucial and captivating type of nanomaterial that is widely used in the field of biomedicine, alongside other metallic nanoparticles. AgNPs have a significant impact on nanoscience and nanotechnology, particularly in the area of nanomedicine (Solati et al., 2015). AgNPs exhibit unique properties at the nanoscale, such as a high surface area-to-volume ratio and surface modification properties, which make them attractive for use in medical applications. The small size of AgNPs allows for enhanced permeability and retention in tissues, which can increase their therapeutic efficacy. Additionally, AgNPs have intrinsic cytotoxic features due to the release of silver ions. As a result, AgNPs can be thought of as a two-in-one medicinal solution, such as antimicrobial, anti-inflammatory, and anticancer effects (Iravani et al., 2014b). These AgNPs are being extensively studied for their potential use in a wide range of medical applications, including wound healing, drug delivery, diagnostic imaging, and cancer treatment. Other biological activities of AgNPs have been also explored, including promoting bone healing and wound repair, enhancing the immunogenicity of vaccines, and anti-diabetic effects (Xu et al., 2020). The inherent properties of AgNPs, such as their size, shape, and surface charge play an efficient role in combating a diverse range of cancers, both in vitro and in vivo. These cancers include cervical cancer, breast cancer, lung cancer, hepatocellular carcinoma, nasopharyngeal carcinoma, glioblastoma, colorectal adenocarcinoma, and prostate carcinoma (Dyal et al., 2006; Sukirtha et al., 2012;Prabhu et al., 2013; Liu, et al., 2016).

2.3.2 Patent analysis of AgNPs in cancer therapy

Patent analysis of AgNPs in cancer therapy involves examining patents related to the use of AgNPs in the diagnosis, treatment, and monitoring of cancer. AgNPs have been explored as a potential tool in cancer therapy due to their unique physical and chemical properties, including their ability to penetrate cancer cells, generate reactive oxygen species, and exhibit localised surface plasmon resonance.

Patent analysis can also provide insights into the regulatory landscape for AgNP-based cancer therapies. For example, if a large number of patents are being filed for AgNP-based targeted drug delivery systems, it may suggest that there is a strong need and demand for such products, and that regulatory bodies may need to develop guidelines for their safe and effective use (Lens, 2022).

Based on Figure 2.3, the patent documents related to AgNPs in cancer therapy that were published, filed, and granted showed an increasing trend up to 2022. This trend indicates a growing interest and investment in AgNPs-based cancer therapies and suggests that researchers and companies recognise the potential of AgNPs in cancer diagnosis, treatment, and monitoring. The increasing number of patent documents also reflects the competitive landscape in the field, as more companies and research groups seek to protect their intellectual property and secure a market share in the rapidly growing field of AgNP-based cancer therapy. The trend also highlights the need for continued innovation and development in the field, as stakeholders seek to improve the safety and efficacy of AgNPs-based cancer therapies and address challenges such as regulatory approval and clinical translation.

Overall, the increasing trend of patent documents related to AgNPs in cancer therapy demonstrates the importance and potential of this field and highlights the need

for continued investment and collaboration to drive innovation and improve patient outcomes.

Figure 2.3 The patent documents related to AgNPs in cancer therapy that were published, filed, and granted over the years. Taken from Lens.org

2.3.3 Synthesis of AgNPs

The synthesis methods of AgNPs can be broadly classified into two categories into two processes which were top-down and bottom-up as shown in Figure 2.4.

Figure 2.4 AgNPs synthesis top-down approach and bottom-up approach. Taken from Xu *et al.* (2020)