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MODEL PERISIAN MENYEMAK APLIKASI TEREDAR 

MENGGUNAKAN PENDEKATAN HIBRID PEMUSATAN DAN CACHE  

ABSTRAK 

Membangunkan sistem teragih yang boleh dipercayai menimbulkan cabaran 

yang ketara disebabkan oleh sifat bukan penentu bagi pelaksanaan thread dan proses, 

serta saluran komunikasi. Penyemakan model perisian menawarkan cara untuk 

mengesahkan ketepatan sistem dengan menganalisis secara menyeluruh semua laluan 

pelaksanaan program. Walau bagaimanapun, penyemak model kod bait sedia ada, 

yang mampu menyemak pelbagai proses, mengalami letupan ruang keadaan dan 

overhed pengiraan. Tesis ini memperkenalkan Java PathFinder (JPF)-Nas-Hybrid 

(JNH), penyemak model baru yang menangani masalah ini. JNH menggunakan model 

komunikasi antara proses (IPC) yang direka bentuk semula dan menyepadukan 

mekanisme caching berskala. Mekanisme ini menyimpan data komunikasi antara 

proses dengan cekap, mengurangkan overhed pengiraan dan menyatakan letupan 

ruang semasa pemeriksaan model. Dengan mengoptimumkan penggunaan sumber dan 

meminimumkan overhed, JNH meningkatkan prestasi pengesahan dengan ketara. 

Penambahbaikan utama termasuk pembangunan mekanisme caching berskala yang 

disepadukan ke dalam model IPC pemusatan, penempatan semula permintaan dan 

pokok tindak balas, dan pemprosesan data dalam ketulan berbilang bait. Penciptaan 

JNH melibatkan lanjutan daripada sistem teras JPF dan mengubah suai perpustakaan 

rangkaian Java. Selain itu, tesis ini meneroka strategi pengesanan pepijat, 

membezakan antara pepijat tempatan dan global, dan menilai pelbagai strategi carian 

untuk meneroka ruang keadaan program yang diedarkan. Melalui ujian komprehensif 
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dan analisis statistik, penyelidikan memberikan pandangan tentang pendekatan 

pengesanan pepijat yang berkesan, memajukan lagi kaedah penyemakan-model. 
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SOFTWARE MODEL CHECKING FOR DISTRIBUTED 

APPLICATIONS USING HYBRIDIZATION OF CENTRALIZATION AND 

CACHE APPROACHES 

ABSTRACT 

Developing reliable distributed systems poses significant challenges due to the 

non-deterministic nature of thread and process execution, as well as communication 

channels. Software model checking offers a means to verify system correctness by 

exhaustively analyzing all program execution paths. However, the existing bytecode 

model checker, capable of verifying multiple processes, suffers from state space 

explosion and computational overhead. This thesis introduces Java PathFinder (JPF)-

Nas-Hybrid (JNH), a novel model checker addressing these limitations. JNH employs 

a redesigned inter-process communication (IPC) model and integrates a scalable 

caching mechanism. This mechanism efficiently stores communication data between 

processes, mitigating computational overhead and state space explosion during model 

checking. By optimizing resource utilization and minimizing overhead, JNH 

significantly improves verification performance. Key enhancements include the 

development of a scalable caching mechanism integrated into the centralization IPC 

model, relocating request and response trees, and processing data in multi-byte chunks. 

JNH's creation involves extending from the JPF-core system and modifying Java 

network libraries. Additionally, the thesis explores bug detection strategies, 

distinguishing between local and global bugs, and evaluates various search strategies 

to explore distributed program state spaces. Through comprehensive testing and 

statistical analysis, the research provides insights into effective bug detection 

approaches, further advancing model-checking methodologies.  
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background 

Modern society relies heavily on complex software systems, which can be 

found in various fields such as banking, automotive, shopping, entertainment, and so 

on. These systems are often large, distributed, and exhibit guaranteed qualities. They 

also consist of multiple processes spread across multiple computing devices, executing 

independently. While this provides the advantages of increased performance and 

scalability it also makes such systems much harder to test due to partial failure and 

asynchrony (McCaffrey, 2016). Partial failure refers to the components in distributed 

applications that can fail along the way, resulting in incomplete results or data. 

Asynchrony is the indeterminateness of ordering and timing within a distributed 

system that often leads to solutions with a high degree of complexity. Avoiding 

distributed system bugs also requires reasoning about the integration between nodes 

and must tolerate the failure of the underlying hardware. In addition, the probability of 

human error in either design, implementation, or operation also contributes to system 

bugs. Therefore, developing a reliable distributed system is a very challenging task.  

In addition, complex software systems are composed of independent sub-

systems that interact with each other, and these interactions are referred to as atomic 

events. These atomic events are subject to both measurable and non-measurable 

uncertainties. Measurable uncertainties are typically characterized by assigning 

probabilities to future events, while non-measurable uncertainties are modeled as non-

determinism and resolved by an external scheduler.  
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Additionally, the most common aspects of complex software systems involve 

cost and time. Each event in the system incurs a cost and takes a certain amount of 

time to complete. While cost and time can be modeled as non-negative real values, 

their accumulation over the dynamics of the system is not directly comparable. The 

total cost of a set of events can be obtained by summing their costs, but the total time 

depends on the concurrency among the events. The concurrent interactions of multiple 

processes are non-deterministic, making these systems very hard to test. The 

interleaving between threads within a process also increases the challenges for 

software testers. Moreover, setting up an environment and instrumenting the software 

under test is also time-consuming and expensive.  

Data race and deadlocks are known to be fundamental problems in any 

concurrent software system (Chen et al., 2022; Cai et al., 2021; Yuan et al., 2021; 

Bagherzadeh et al., 2020; Tu et al., 2019). A data race occurs when two threads are 

trying to access the same shared variable at the same time without any proper 

synchronization, e.g., not protected by a common lock. Deadlock occurs when two or 

more operations circularly wait for each other to release the acquired resources. Unlike 

concurrent software systems, distributed systems are involved in not only local 

concurrency bugs, which come from thread interleaving within a process but also 

concurrency bugs in globally distributed components, which come from inter-process 

communication interleaving.   

As society increasingly relies on complex software systems, it is important not 

only to ensure their correctness but also to subject them to rigorous analysis. The most 

common way to analyze such systems is through testing (Hsaini et al., 2019; Moutai 

et al., 2019; Stuardo et al., 2019). Once the system is designed, it is tested against a 
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finite set of test cases to verify that it behaves as expected. While testing can be 

effective if the test cases are carefully chosen with relevant domain expertise, it is 

important to acknowledge that testing cannot guarantee success for all possible 

behaviors of the system.  

At the opposite end of the analysis spectrum, formal methods employ 

mathematical techniques to determine whether a system satisfies a given property for 

all possible outcomes. One important sub-discipline of formal methods is model 

checking.  

Model checking (Baier & Katoen, 2008; Clarke, Henzinger, & Veith, 2018) is 

a technique to detect property violations in a concurrent system by exploring every 

possible execution path. Accordingly, every possible state of the system is checked 

against given properties. This technique is very useful for the quality assurance of 

safety-critical systems and core algorithms/protocols of large systems. Model 

checking was originally developed for hardware verification, but the concept of state 

space exploration has been applied to a wide range of software systems as well. 

The research on applying model checking for distributed systems has gained 

popularity in recent years due to two main reasons (Muscholl, 2018). First, distributed 

systems are error-prone, because programmers must consider all possible effects 

induced by different scheduling of events. Second, testing, which is widely used for 

certifying sequential programs, tends to have low coverage in distributed settings, 

because bugs are usually difficult to reproduce. They may happen under very specific 

thread schedules, and the likelihood of taking such corner-case schedules may be very 

low. Therefore, automated verification techniques represent crucial support in the 

development of reliable distributed systems.  
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Conventional model checkers for distributed systems necessitate the utilization 

of abstract modeling languages like TLA+ (Lamport, 1994), PlusCal (Lamport, 2009), 

Coq (Barras et al., 1999), and SPIN (Holzmann, 1997). This approach demands a 

substantial investment of developer effort and does not guarantee the identification of 

all bugs in the system implementation. These traditional model checkers can only 

detect bugs within the specified system model and have no way of finding bugs in the 

actual implementation (Anand, 2020).  

For instance, Amazon employs TLA+ for system verification (Newcombe et 

al., 2015). However, a drawback of TLA+, along with other comparable specification 

languages, is their application to a system model rather than the actual implementation. 

There is still a significant gap between the system specification and its implementation, 

making the system prone to bugs at the implementation level. A noteworthy illustration 

of this occurred in 2017 when a bug in Amazon S3 resulted in $150 million in damages 

for companies relying on Amazon Web Services (Condliffe, 2017). Instances of such 

incidents are growing more prevalent. 

A novel approach within the research community involves applying model 

checking directly to the actual implementations of distributed systems. The direct 

verification of real-world implementations enhances confidence in meeting software 

safety requirements. It's essential to recognize that adherence to system design 

specifications does not ensure compliance in the implementation phase. Numerous 

bugs related to concurrency, including race conditions, deadlocks, and assert 

violations, often stem from programming errors during implementation. Verification 

during the design phase cannot conclusively guarantee the absence of bugs in the final 

deliverables. Concrete model checkers (Anand, 2018, 2020; Artho et al., 2017; 
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Deligiannis et al., 2016; Guerraoui & Yabandeh, 2011; Guo et al., 2011a; Killian et 

al., 2007; Laroussinie & Larsen, 1998; Leesatapornwongsa et al., 2014; Lukman et al., 

2019a; Musuvathi et al., 2008; Yabandeh et al., 2009; Yang et al., 2009a) concentrate 

on testing and debugging unmodified distributed systems to identify failures, crashes, 

and violations of user-defined properties. They are model checker tools for distributed 

systems, which are designed to address specific programming languages, such as Go 

(Anand, 2020), or to examine the systems operating at the operating system level to 

identify bugs. Furthermore, concrete model checkers suffer from massive state space 

explosion and programming language coverage.  

Unlike any other concrete model checkers, the Java Pathfinder (Visser & 

Mehlitz, 2005) or JPF model checks bytecode rather than native code or operating 

system code. This approach reduces a large number of unrelated state spaces. 

Additionally, JPF offers fundamental support for verifying distributed systems. It 

serves as a framework for the analysis of Java bytecode, with its core functionality 

centered around an explicit state model checker. Developed by the Robust Software 

Engineering Group at NASA Ames Research Center, JPF has been open source since 

2005 under the NOSA 1.3 license (Artho & Visser, 2019). 

JPF extends its support to the model checking of the actual implementations 

(Shafiei & Mehlitz, 2014), and is the only bytecode model checker that supports model 

checking of distributed systems (Artho & Visser, 2019). Notably, it operates directly 

on the code without necessitating the remodeling of the system through tools like 

TLA+, PlusCal, Coq, or SPIN. As it directly handles bytecode, JPF is versatile and 

applicable to the verification of code compiled into bytecode, including languages like 

Java, Kotlin, Scala, Groovy, Clojure, Go, and more. 
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Functioning as an open-source framework, JPF is built around a Virtual 

Machine (VM) engine capable of interpreting Java bytecode and customizable to meet 

user specifications. The framework boasts various features, such as state storage, state 

matching, configurable execution semantics for bytecode instruction sets, and 

scheduling policies for state space exploration. The standard JPF core distribution 

includes default checks for generic properties, including the detection of unhandled 

exceptions, deadlocks, and data races.  

The core of JPF consists of a customized Java Virtual Machine (JVM) 

dedicated to executing bytecode for model checking. As a result, it does not cover 

native codes and low-level operating system codes, thereby overcoming massive 

amounts of unrelated state space. JPF core offers fundamental components for model-

checking distributed systems and distinguishes itself with its exceptional extensibility, 

achieved through a collection of stable interfaces and runtime-configurable 

components. 

Various extensions are available, including symbolic execution, directed 

automated random testing, random choice generation, configurable state abstractions, 

heuristics for bug detection, alternative state space search strategies, temporal property 

verification, and more. All these extensions can be integrated into JPF using its well-

designed extension mechanisms without modifying the core code of JPF. Moreover, 

JPF provides a comprehensive infrastructure for building, testing, and configuring, 

making it easier to create new extensions and applications.  

JPF has been around for 15 years and has been open-sourced for nine years, 

which has led to a large and active user community worldwide. The Java PathFinder 

workshop (Sherman et al., 2023) is to bring together members of this community, 
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including researchers, developers, and users, to showcase their current work and 

discuss future directions for the framework. The workshop series provides a platform 

for presenting ongoing JPF-related research and promotes collaboration among 

participants to plan the development of the JPF framework and its community.  

JPF comes with a default search, depth-first search, or backtracking feature 

that is utilized to capture different scheduling of threads within a process. This feature 

enables JPF to explore different orderings of concurrent transitions within the system 

under test (SUT), where executing them in different orders may result in different 

behaviors of the process. However, JPF's search is limited to individual processes and 

does not account for inter-process communications, which are essential in distributed 

systems to find global bugs. Communication channels between processes can lead to 

different behaviors based on the ordering in which they are accessed. Therefore, a 

mechanism is necessary to capture the various orderings of concurrent transitions 

involving inter-process communications. 

This thesis focuses on the model checking of the actual implementation of 

distributed systems using bytecode executions. Employing bytecodes, as opposed to 

other concrete model checkers that check on native or operating system-specific codes, 

significantly reduces the unrelated state space. Furthermore, this approach allows 

customization of the model checker for different JVM languages. Additionally, the 

model checking of bytecodes has a more substantial impact on verifying distributed 

systems operating on the cloud, such as server-side Java or Scala. 

The below sections explain the details of the research problem, research 

questions, research motivation, research objectives, research scope, research 

contributions, and finally thesis organization.     
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1.2 Research Problem 

Two primary approaches have been employed for model-checking distributed 

systems at the bytecode level executions: centralization (Artho & Garoche, 2006; 

Barlas & Bultan, 2007; Ma et al., 2013; Nakagawa et al., 2005; Stoller & Liu, 2001) 

and caching (Artho et al., 2008, 2009; Leungwattanakit et al., 2011, 2014). The 

centralization (Shafiei & Mehlitz, 2014) at the model checker level involves capturing 

multiple processes and checking for both local and global bugs. On the other hand, the 

caching (Artho et al., 2008, 2009; Leungwattanakit et al., 2011) approach entails 

model checking one process at a time, allowing other processes to run in their native 

environments. This technique aims to minimize the state space by examining only one 

process at a time. However, the caching technique faces challenges related to state 

synchronization among processes during the backtracking procedure, and the 

technique does not cover the states of communication between processes. This thesis 

focuses on the model checker level centralization, and the following sections elaborate 

on the research problem associated with centralization at the model checker level. 

The first major problem in model checker level centralization is the state space 

explosion, as this technique covers all possible reachable states of multiple processes 

in distributed systems. The second problem with centralization (Shafiei & Mehlitz, 

2014) is that the technique requires careful development of the Inter-Process 

Communication (IPC) model, which facilitates communication between multiple 

processes. The choice of IPC design can significantly impact the approach's 

effectiveness. The current IPC uses two "ArrayByteQueue" buffers—one for the 

server to send data to the client and another for the client to send data to the server. 

These buffers store communication and process data byte by byte. For example, the 

server may send "hello" to the client, and the client responds with "world!". During 
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state exploration, the centralization process writes one character to the queue, moves 

to the next state, removes the same character from the queue, and updates the state 

accordingly. Unfortunately, the write and read operations (which write and remove 

data from the queue) of the data streams "hello" and "world!" result in computational 

limitations.  

 Finally, the limitation imposed by the state space explosion (Clarke et al., 

2011a) makes centralization impractical for exploring the state space of distributed 

systems. This challenge, known as state space explosion, arises when the exponential 

growth of system states becomes so extensive that the centralization technique 

becomes computationally impractical. With increasing system complexity, the 

technique must be able to manage a growing number of visited states, handle thread 

interleaving, and address other complexities. Therefore, the model checker may take 

an infinite of time. 

1.3 Research Questions 

The overall goal of the thesis is to address computational challenges 

encountered by distributed systems during bytecode-level executions, particularly in 

the centralized approach. The research to be conducted is guided by the following 

research questions: 

1. What are the key considerations in designing a caching mechanism to store 

and manage multiple communication data between processes? 

2. How does integrating the caching mechanism into the model checker level 

centralization effectively address computation overhead? 
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3. How can the hybridization of centralization and cache approaches be 

validated for mitigating the state space explosion problem through bug 

injection and different search strategies? 

1.4 Research Motivation 

Software model checking is a formal verification technique used to ensure the 

correctness of a system by exhaustively exploring its state space. In distributed 

systems, where multiple processes work together to achieve a common goal, model 

checking can help detect errors and ensure the system's correctness.  

One key motivation for using software model checking for distributed systems 

is the need to guarantee that the system satisfies its requirements under all possible 

system configurations and execution scenarios. This is particularly important in safety-

critical systems, where even a small error could have big impact consequences. By 

using model checking, developers can explore all possible system states and execution 

paths to ensure that the system behaves as expected and meets its safety requirements.  

Another motivation for using software model checking for distributed systems 

is the need to handle complex interactions between multiple processes. In distributed 

systems, processes communicate and coordinate their actions to achieve a common 

goal. This coordination can be challenging to get right, especially when there are 

multiple possible execution paths that the system can take. Model checking can help 

developers ensure that all possible interaction scenarios have been considered and that 

the system behaves as expected in all of them.  

Finally, software model checking can also help detect subtle errors that may be 

difficult to find through testing or other methods. Distributed systems are often 

complex and may exhibit unexpected behavior in certain scenarios. Model checking 
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can help detect these errors by exploring all possible system states and execution paths, 

even those that may be difficult to reproduce in a real-world setting. 

1.5 Research Objectives 

The main goal of the research is to propose an efficient centralized interprocess 

communication (IPC) framework with integrated caching mechanisms to enhance 

model-checking capabilities in detecting bugs at both local and global scales. The 

specific objectives of this thesis can, therefore, be broken down into the following:  

1. To investigate existing caching mechanisms and their suitability for storing 

and managing multiple communication data between processes operating 

within the model checker level centralization. 

2. To integrate the proposed caching mechanism into the centralization IPC 

model that can effectively address computation overhead. 

3. To validate the hybridization approaches that can improve both local and 

global bug detections. 

1.6 Research Scope 

First, this research focuses on bytecode execution rather than native code 

execution. The choice to operate at the bytecode level is motivated by the ability to 

navigate the relevant state space more effectively compared to exploring the unrelated 

state space inherent in low-level native codes. The concrete model checkers for 

distributed systems discussed in section 1.1 address programming language coverage, 

testing, and debugging of the unmodified distributed systems. The goal is to identify 

failures, crashes, and violations of user-defined properties. These tools serve as model 

checkers specifically tailored for distributed systems, each designed to address the 

coverage of specific programming languages or platform-specific considerations.  
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Second, this thesis focuses on the hybridization of the current centralization 

and cache, expanding upon the core system of JPF. However, it does not dive into the 

process through which JPF constructs the model from the bytecode, generates state 

space, captures thread scheduling, and various other features inherent to the JPF core. 

Finally, the thesis considers distributed multi-threaded applications that 

involve communicating processes, regardless of their physical location or means of 

communication. The proposed approach utilizes a combination of centralization and 

caching to minimize computation overhead and state space, thereby enhancing the 

model checker-level centralization performance. The research aims to enhance state 

space reduction for networked applications, with cache-based techniques being the 

primary solution proposed. The proposed approach is evaluated using specific metrics 

and compared with existing techniques. Additionally, the thesis includes experiments 

involving bug injection and various search strategies to detect bugs while exploring 

the state space of distributed applications and maintaining deadlocks. However, it is 

important to note that this research is limited to communication over the TCP/IP 

protocol with blocking I/O and unbounded buffers. 

1.7 Research Contributions 

The key contributions of this research are outlined as follows:  

1. A scalable caching mechanism has been designed to automatically adjust 

the size of the request and response trees based on the number of 

connections created by processes. These trees are designed to store multiple 

communication data from multiple processes, identified by their respective 

endpoints, such as client and server endpoints. They can scale efficiently 

without causing a state space explosion. Furthermore, the inter-process 
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communication (IPC) models that utilize these trees are also scalable and 

can handle large volumes of input and output data streams without 

incurring excessive overhead computation. This helps to minimize the state 

space.  

2. The proposed model checker employs a scalable caching mechanism along 

with enhanced read-and-write algorithms. This results in reduced overhead 

computation and minimizes state space exploration during the backtracking 

process.  

3. The proposed bug injection techniques ensure the preservation of both local 

and global bug-detection properties, while the suggested search strategies 

guarantee the framework’s adaptability for various state space exploration 

scenarios. 

1.8 Thesis Organization 

This thesis is organized into six chapters.  

Chapter 1 offers a thorough explanation and discussion of the background, 

research problem, research questions, research motivation, research objectives, 

research scope, and research contributions, focusing particularly on model-checking 

distributed systems employing bytecode-level execution. 

Chapter 2 offers a comprehensive overview of model checking, including its 

application in software model checking and the model checker for Java. It delves into 

system modeling for distributed systems, examines existing literature on model 

checking distributed systems, conducts literature reviews on bytecode model checking 

for distributed systems, engages in discussion, and concludes with a summary. 
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Chapter 3 discusses the overall research methodology, benchmark networked 

applications, experimentation of cache and centralization techniques, the 

customization of caching techniques, the proposed design, the proposed reduction 

techniques, tools, and experimental settings, the evaluation of the proposed method, 

and finally the summary. 

Chapter 4 provides an in-depth explanation of the development and 

implementation of the software model checking for distributed applications using a 

hybridization approach.  

Chapter 5 provides an in-depth analysis and discussion of the research's 

experimental results. The proposed model checker has experimented with four 

benchmarked distributed applications including Echo, Daytime, Chat, and Alphabet. 

Chapter 6 summarizes the achievements of the research objectives, research 

contributions, and future work. 
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CHAPTER 2  
 

BACKGROUND AND LITERATURE REVIEW 

2.1 Introduction 

This chapter covers the background and literature surrounding the research 

studies. The background materials serve as the theoretical foundation of the thesis, 

offering a concise overview of crucial concepts related to model checking and its 

applications in distributed systems. Furthermore, the chapter examines existing studies, 

identifying research gaps in bytecode-level model checkers for distributed systems. In 

conclusion, the chapter wraps up with a thorough discussion and summary of its key 

points.  

2.2 Model Checking 

The invention of model checking represents a fundamental change in the 

application of logic for detecting bugs in both hardware and software industries (Clarke, 

Henzinger, & Veith, 2018). This technique is a sub-discipline of formal methods that 

exhaustively checks for property violations in a concurrent system. It explores all 

possible system states in a brute-force and systematic manner. Despite its initial success 

in hardware verification, the principles of model checking have found extensive 

application and adoption in the realm of software as well (Beyer & Podelski, 2022).  

There are two major advantages of model checking over the other formal 

verification techniques (Baier & Katoen, 2008). First, it is fully automatic. This means 

that model checking does not require any user supervision to control the input during 

the design simulation. Second, it provides a counterexample when the given model does 

not satisfy the given properties. The counterexample is like a bug trace, which provides 

important clues to fix the software bug.  
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The model-checking problem can be stated as: 

𝑀, 𝑠 | = 𝑓 2.1 

 

Where M is a Kripke structure (i.e., labeled transition system) and f is a formula 

of temporal logic (i.e., the specification). The problem is to find all states s of M such 

that M, s |= f. The system model is formally described as a Kripke structure or Labelled 

Transition System (LTS), and the system properties are generally expressed in temporal 

logic. When the state LTS satisfies the property, the model checking continues to the 

next state until the error is found, or the end state is reached. If the error is found, it 

produces the counterexample that gives an important clue to fix the error. 

   

 

Figure 2.1 Basic model-checking methodology (Clarke, Henzinger, Veith, et al., 

2018). 

 

Figure 2.1 shows the schematic view of the model checking. The model 

checking accepts two inputs, the system description, and system specification. The 

system description is formally described as TS, and the property of the system is 
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generally expressed in temporal logic. When the state of TS satisfies the property, the 

model checking will continue to check the next state until the error is found. Otherwise, 

it produces the counterexample that gives an important clue to finding the error. 

Model checking can be categorized into two fundamental approaches: explicit-

state (Holzmann, 2018) and symbolic-state (Chaki & Gurfinkel, 2018) model checking. 

The primary distinctions between these approaches lie in how they manage and 

manipulate explored states during computation. Explicit-state algorithms explore the 

program state sequentially, storing explored states in full program states. Consequently, 

algorithm optimization concentrates on frequently visited states. In contrast, symbolic 

algorithms assign either the set of initial states or the set of valid states, examining the 

state space until an error is detected. This thesis considers only explicit-state model 

checking since it is the most effective for software systems. 

2.3 Software Model Checking of Single Process 

The process of verifying software involves using theorem proving (Goguen, 

2021)  and static analysis (Rival & Yi, 2020). These methods analyze the software 

system by examining its model, without actually executing it. In contrast, dynamic 

analysis (Afianian et al., 2019) involves running the system to identify any errors and 

provides information about these errors through trace data. Software model checking 

can be performed at different stages during the software development process and can 

be seen as a combination of both static and dynamic analysis. It is used to verify abstract 

versions of a program during the design phase or its actual implementation. Model 

checkers such as VeriSoft (Godefroid, 2005) and CMC (Musuvathi et al., 2002) 

dynamically analyze non-determinism in a program by running it in a specialized 

environment. However, dynamic analysis requires a runtime environment for the target 
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system to be executed, which may not have all the capabilities of a full operating system, 

such as a file system.  

In a concurrent system, where multiple processes are running at the same time, 

the operating system selects a process from a pool of candidates to run, based on its 

scheduling policy. The order in which the processes are selected is known as the 

execution schedule, and this order may differ between each run of the system. This can 

result in issues such as race conditions. To address this, programmers use mutual 

exclusion, which ensures that only one process has control over a shared resource at a 

time. However, this can lead to further problems like deadlocks and starvation. Software 

testing can only verify one specific execution schedule, making it difficult to reproduce 

failures that occur in a specific order. Model checking, on the other hand, systematically 

examines all possible schedules to check if any specified properties are being violated.  

Previously, model checkers were used to verify a system during the analysis and 

design phase. But now, modern model checkers work directly on the implementation of 

the application rather than its abstract model. Some modern model checkers, like SLAM 

(Ball et al., 2011) and Blast (Beyer et al., 2007; Henzinger et al., 2003) take program 

code as input and verify the abstracted code instead of the actual code. However, other 

model checkers process the program code directly. These model checkers control the 

execution of the target program and guide it through the execution tree using methods 

such as depth-first search, breadth-first search, and heuristic search, which traverse the 

tree based on a heuristic function. 
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Figure 2.2 Example of model checker executing six different ways of a system 

which has two threads and each thread has two atomic instructions. 

 

In this subsection, a simple example program is used to illustrate the basic 

workings of a software model checker. The program consists of two threads, each 

containing two atomic instructions. An atomic instruction is a single, uninterrupted 

operation. The operating system that the program is running on can execute these 

instructions in six different orders: (T1, T1, T2, T2), (T1, T2, T1, T2), (T1, T2, T2, T1), 

(T2, T1, T1, T2), (T2, T1, T2, T1), and (T2, T2, T1, T1), as shown in Figure 2.2. The 

software model checker examines all six possible schedules. After the execution of one 

atomic instruction, the execution tree branches. When configured to search using a 

depth-first approach, the model checker backtracks once the program terminates. The 

execution tree is used to display all possible states of the program, as depicted in Figure 

2.3. 
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Figure 2.3 Example of execution tree by the model checker. 

  

As mentioned earlier, modern model checkers have been applied directly to the 

actual implementation of software programs, written in extreme programming 

languages such as C or Java. These model checker tools help programmers to detect 

software bugs and errors during the implementation phase. An example of a model 

checker tool that model checks real programs is Java PathFinder (Visser & Mehlitz, 

2005).  

The model checker requires backtracking of the system under test (SUT). To 

illustrate the backtracking concept, let’s look at the example of how the model checker 

executes the Java program as shown in Figure 2.4. 
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SIMPLE JAVA PROGRAM 

1 import java.util.Random; 

2 public class Rand { 

3     public static void main (String[] args) { 

4          Random random = new Random(42); 

5          int a = random.nextInt(2); 

6          System.out.println("a=" + a); 

7          int b = random.nextInt(3); 

8          System.out.println("b=" + b); 

9          int c = a/(b+a -2); 

10          System.out.println("c=" + c); 

11     } 

12 } 

Figure 2.4 Simple Java program using Random class. 

 

Figure 2.4 shows an example of a simple Java program that computes two 

random variables, a and b. The program starts with the initialization of the Random 

class with a value of 42. The integer variables a and b are initialized and given the 

.nextInt() method with the values of 2 and 3, respectively. Variable c does computation 

as shown in line 9. Finally, the program prints out the result of c. 

Figure 2.5 (a) indicates the execution graph on normal execution, and Figure 2.5 

(b) shows the execution graph of the program by the model checker. The octagon, single 

circle, and double circle represent the start state, and end state, respectively. Notice that 

in (a) the program executes on normal execution. It does not involve backtracking thus 

the program does not cause any errors. However, in (b), the model checker executes the 

program in all possible ways until it finds the error state.  



22 

 

Figure 2.5 Execution graph by (a) executed normally and (b) executed by the 

model checker. 

 

2.4 The State Space Explosion Problem 

The cornerstone of applying model checking is the state space explosion (Clarke 

et al., 2011). The exhaustive state exploration expands the system description of M as a 

TS or Kripke structure. The mathematical definition of such a structure is equivalent to 

directed graphs with additional labels at the vertices. The computation of statements or 

functions in the digraphs often leads to new global states in the system under test (SUT), 

with different program counters and variables. For efficient model checking, the states 
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of the SUT need to be stored in the main memory. This memory should be fast enough 

to verify the system of interest. The state-space is known to be exponential to the size 

of the SUT, in addition, the number of parallel components, data variables and 

properties, and channel buffers normally lead to an event larger state-space. The 

exponential growth of states during the model checking is often called the “state-space 

explosion problem”. 

2.5 The Model Checker for Java 

State space explosion is the cornerstone of software model checking. Executing 

bytecodes instead of native codes or operating system low-level codes can avoid a 

tremendous amount of unrelated state space (Model Checker for Java Programs - NASA 

Technical Reports Server (NTRS), n.d.). This section describes the Java thread model, 

the Java PathFinder, Java Networking, and applying model checking for distributed 

systems. 

2.5.1 The Java Thread Model 

In Java, a thread represents an executable task and has thread-local information 

that cannot be directly accessed by other threads. It shares the global heap with other 

threads. A Java program starts with only one thread, the main thread, which begins 

executing in the main(String[] args) method. Additional threads are created when 

Thread objects are initialized. A task can be assigned to a thread in two ways: by 

extending the Thread class or by implementing the Runnable interface. In either case, 

the programmer must provide the task to be executed in the run() method. The thread 

can commence its work after its start() method is invoked by another thread, known as 

the parent thread. 
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Multiple threads in a system can access shared computing resources. Figure 2.6 

provides an example where two threads share the same resource, an instance of the 

Printer class. The Configuration and JobExecutor classes each have their tasks, but both 

access the same information in a Printer instance. To avoid conflicts, a mechanism must 

be in place to manage access to these shared resources.  

AN OBJECT SHARED BY TWO THREADS 

1 class Configuration extends Thread {…} 

2 class JobExecutor extends Thread {…} 

3 class Printer { 

4      public static void main(String[] args) { 

5           Printer p = Printer.getInstance(); 

6           Thread conf = new Configuration(p); 

7           Thread exec = new JobExecutor(p); 

8      } 

9 } 

Figure 2.6 Example of an object shared by two threads in Java. 

 

Java has a synchronization mechanism, which is linked to a lock object, to 

manage access to shared resources. Every object in Java can serve as a lock. 

Programmers use the lock to create a block of code in which only one thread is allowed 

to enter at a time. The thread must acquire the lock before entering the mutually 

exclusive code. Figure 2.7 illustrates an example of the use of a mutual exclusion lock. 

To ensure that two threads do not access the printer simultaneously, the programmer 

uses the synchronized keyword to protect the printer from concurrent access. In this 

example, the Printer instance itself is used as the lock. 

 


