
SOFTWARE MODEL CHECKING FOR

DISTRIBUTED APPLICATIONS USING

HYBRIDIZATION OF CENTRALIZATION AND

CACHE APPROACHES

HING RATANA

UNIVERSITI SAINS MALAYSIA

2024

SOFTWARE MODEL CHECKING FOR

DISTRIBUTED APPLICATIONS USING

HYBRIDIZATION OF CENTRALIZATION AND

CACHE APPROACHES

by

HING RATANA

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

April 2024

ii

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to all those who have played a part in the

realization of this thesis, as their support and guidance have been invaluable.

First and foremost, I am deeply indebted to my supervisor, Associate Professor

Dr. Chan Huah Yong, and Dr. Sharifah Mashita Sayed Mohamad, for their unwavering

guidance, patience, and expertise. Their insightful feedback, encouragement, and

dedication to my growth as a researcher have been instrumental in shaping this work.

I am immensely grateful to the members of my thesis committee, Associate

Professor Dr. Wong Li Pei, Dr. Lim Chia Yean, and Dr. Sukumar Letchmunan, for

their valuable insights, constructive criticism, and scholarly contributions. Their

expertise in their respective fields has immensely enriched this research and broadened

my understanding.

Special thanks go to my wife and my children for their unwavering love,

understanding, and support. Their encouragement, patience, and belief in me have

been a constant source of motivation, and I am forever grateful.

Thank you all for being an integral part of this transformative journey and for helping

me reach this milestone in my academic career.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... ii

TABLE OF CONTENTS .. iii

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

LIST OF SYMBOLS .. xiii

LIST OF ABBREVIATIONS .. xiv

LIST OF APPENDICES ... xv

ABSTRAK ... xvi

ABSTRACT ... xviii

CHAPTER 1 INTRODUCTION .. 1

1.1 Background .. 1

1.2 Research Problem ... 8

1.3 Research Questions .. 9

1.4 Research Motivation .. 10

1.5 Research Objectives ... 11

1.6 Research Scope .. 11

1.7 Research Contributions .. 12

1.8 Thesis Organization .. 13

CHAPTER 2 BACKGROUND AND LITERATURE REVIEW 15

2.1 Introduction .. 15

2.2 Model Checking ... 15

2.3 Software Model Checking of Single Process ... 17

2.4 The State Space Explosion Problem .. 22

2.5 The Model Checker for Java .. 23

2.5.1 The Java Thread Model .. 23

iv

2.5.2 The Java PathFinder ... 25

2.5.2(a) Virtual Machine Component ... 28

2.5.2(b) Search Component ... 28

2.5.2(c) Extensibility ... 29

2.5.3 Java Networking ... 30

2.6 Distributed System Model .. 32

2.6.1 Labeled Transition Systems With Inputs And Outputs 33

2.6.2 Stream Abstraction ... 36

2.6.3 Properties of Verification Systems ... 36

2.7 Model Checking of Distributed Systems ... 37

2.7.1 Formal Verification Framework... 37

2.7.2 Model-Based Testing ... 38

2.7.3 Implementation-Level Model Checkers ... 39

2.8 Bytecode-Level Model Checkers ... 41

2.8.1 Centralization Approach .. 42

2.8.1(a) SUT Level Centralization .. 43

2.8.1(b) OS Level Centralization .. 49

2.8.1(c) Model Checker Level Centralization 50

2.8.2 Cache Approach ... 55

2.8.2(a) Linear-Time Cache .. 57

2.8.2(b) Branching-Time Cache .. 58

2.8.2(c) Cache with Process Checkpointing 60

2.9 Discussion .. 62

2.10 Summary .. 65

CHAPTER 3 RESEARCH METHODOLOGY ... 67

3.1 Introduction .. 67

3.2 Overall Research Processes .. 67

v

3.3 Benchmark Distributed Applications ... 69

3.4 Tools and Environments ... 72

3.5 Experimental Settings .. 72

3.6 Experimenting Model Checker Level Centralization 74

3.6.1 Connection Manager .. 75

3.6.2 Distributed Scheduler ... 77

3.6.3 Formulating the Limitation .. 78

3.7 Experimenting Branching-Time Cache .. 84

3.7.1 The Cache Layer .. 85

3.7.2 Send and Receive Cache .. 86

3.7.3 The Listener.. 89

3.7.4 The Support for Java Network Libraries .. 89

3.7.5 Formulating the Limitation .. 90

3.8 The Customization of Cache Used in The Proposed Work 91

3.9 The Extension Mechanism Used in The Proposed Work 93

3.10 The Proposed Design of Hybrid Model Checker ... 96

3.10.1 The NasHybridVM ... 97

3.10.2 The Connection Manager Component ... 97

3.10.3 The Connection Component... 98

3.10.4 The Distributed Scheduler Component .. 102

3.11 The Proposed Reduction Techniques ... 102

3.11.1 Computational Overhead Reduction Using Multiple Pointers 103

3.11.2 State Space Reduction Using Multi-Byte Data Processing 104

3.12 Evaluation of Proposed Method ... 105

3.13 Summary .. 106

CHAPTER 4 SOFTWARE MODEL CHECKING FOR DISTRIBUTED

APPLICATIONS USING HYBRIDIZATION APPROACHES 108

4.1 Introduction .. 108

vi

4.2 The JNH Property Configurations .. 110

4.3 The Main Entry Point ... 112

4.4 The Proposed RR Tree Class ... 113

4.5 The Proposed Connection Manager Class ... 117

4.6 The Proposed Connection Class ... 120

4.7 Model Classes and Peer Classes ... 122

4.8 Distributed Scheduler and Search Strategies.. 132

4.9 Summary .. 133

CHAPTER 5 EXPERIMENTS AND RESULTS .. 136

5.1 Introduction .. 136

5.2 Echo Application .. 136

5.3 Daytime Application .. 147

5.4 Chat Application .. 152

5.5 Alphabet Application ... 157

5.6 Seeding Bugs .. 161

5.7 Different Search Strategies ... 163

5.8 Summary .. 169

CHAPTER 6 CONCLUSION AND FUTURE WORK 170

6.1 Introduction .. 170

6.2 The Achievements of the Formed Research Objectives 170

6.3 Summarization of Research Contributions... 171

6.4 Future Work ... 172

REFERENCES ... 174

APPENDICES

LIST OF PUBLICATIONS

vii

LIST OF TABLES

Page

Table 2.1 Model checking distributed systems using centralization. 63

Table 2.2 Model checking distributed systems using cache. 64

Table 3.1 Java applications used in the experiments. .. 70

Table 5.1 Execution results obtained from model checking Echo application

using JNH and JPF-Nas. .. 142

Table 5.2 Execution results obtained from model checking Daytime

application using JNH and JPF-Nas. .. 148

Table 5.3 Execution results obtained from model checking Chat application

using JNH and JPF-Nas. .. 153

Table 5.4 Execution results obtained from model checking Alphabet

application using JNH and JPF-Nas. .. 157

Table 5.5 Experimental results obtained from model checking Daytime

application using JNH for difference searches................................. 167

Table 5.6 Experimental results obtained from model checking Chat

application using JNH for different searches. 167

Table 5.7 Experimental results obtained from model checking Alphabet

application using JNH for different searches. 168

Table 6.1 Mapping the research objectives to the research contributions. 172

viii

LIST OF FIGURES

Page

Figure 2.1 Basic model-checking methodology (Clarke, Henzinger, Veith, et

al., 2018). ... 16

Figure 2.2 Example of model checker executing six different ways of a

system which has two threads and each thread has two atomic

instructions. .. 19

Figure 2.3 Example of execution tree by the model checker. 20

Figure 2.4 Simple Java program using Random class. .. 21

Figure 2.5 Execution graph by (a) executed normally and (b) executed by the

model checker. ... 22

Figure 2.6 Example of an object shared by two threads in Java. 24

Figure 2.7 Example of using the mutual exclusion lock in Java. 25

Figure 2.8 Overall architecture of Java PathFinder. .. 27

Figure 2.9 Simple server Java program. .. 31

Figure 2.10 Simple client Java program. ... 32

Figure 2.11 Overall architecture of centralization approach. 43

Figure 2.12 Multi-processes representation as groups of threads within JPF. 53

Figure 2.13 The list of connections is kept at the same level as JPF..................... 54

Figure 2.14 Overall architecture of cache approach. ... 56

Figure 2.15 Linear-time cache data structure. ... 57

Figure 2.16 Branching-time cache data structure. ... 60

Figure 2.17 Overall architecture of cache-based hybrid approach. 61

Figure 3.1 Overall research methodology. .. 67

Figure 3.2 An overview of the existing IPC design. ... 75

Figure 3.3 An example of the local and global scheduler. 78

ix

Figure 3.4 Example of faulty codes of the Echo server....................................... 80

Figure 3.5 Example of faulty codes of the Echo server....................................... 81

Figure 3.6 Experimental result of model checking example program using

centralization technique. .. 82

Figure 3.7 An overview of the cache model checker’s design. 84

Figure 3.8 The RR tree of the model checking client code, which is shown in

Figure 2.10. .. 87

Figure 3.9 Execution logs of model checking client code shown in Figure

2.10. .. 88

Figure 3.10 Experimental result of model checking example client program

using cache technique. ... 90

Figure 3.11 RR tree illustration after the client sends “0” and the server replies

“a”. ... 91

Figure 3.12 RR tree illustration after the client sends “1” and the server replies

“b”. ... 92

Figure 3.13 The overall architecture of extending JPF to model checking

distributed systems. .. 94

Figure 3.14 Overall architecture of the proposed remodeling of IPC. 96

Figure 3.15 The write operation in the connection class. 100

Figure 3.16 The read operation in the connection class. 101

Figure 4.1 The JPF-Nas-Hybrid project structure. .. 109

Figure 4.2 The JPF properties for configuring the proposed model checker,

JNH. ... 111

Figure 4.3 Implementation of the NasHybridVM. .. 113

Figure 4.4 The Implementation of the RR tree class. .. 116

Figure 4.5 The implementation of the connection manager class. 118

Figure 4.6 The implementation of the connection class. 121

Figure 4.7 InetAddress model class implementation. 124

x

Figure 4.8 InetSocketAddress model class implementation. 124

Figure 4.9 ServerSocket model class implementation. 125

Figure 4.10 ServerSocket peer class implementation. ... 126

Figure 4.11 Socket model class implementation. .. 127

Figure 4.12 Socket peer class implementation. ... 128

Figure 4.13 SocketInputStream model class implementation. 129

Figure 4.14 SocketInputStream peer class implementation. 129

Figure 4.15 SocketOutputStream model class implementation........................... 130

Figure 4.16 SocketOutputStream peer class implementation. 131

Figure 4.17 Distributed sync policy interface implementation. 133

Figure 5.1 Echo server code snippet. ... 137

Figure 5.2 Echo client code snippet... 137

Figure 5.3 Echo deadlock traces produced by the JNH model checker. 138

Figure 5.4 Global deadlock in Echo application executed by JNH. 139

Figure 5.5 Echo server after modification. .. 140

Figure 5.6 Echo client after modification. ... 141

Figure 5.7 Number of states explored when model checking Echo using JNH

and JPF-Nas. .. 143

Figure 5.8 Number of bytecode instructions explored when model checking

Echo using JNH and JPF-Nas. ... 144

Figure 5.9 The depth of the search tree explored when model checking Echo

using JNH and JPF-Nas. .. 145

Figure 5.10 Elapsed time in seconds when model checking Echo using JNH

and JPF-Nas. .. 146

Figure 5.11 The number of memory in megabytes when model checking Echo

using JNH and JPF-Nas. .. 146

Figure 5.12 CPU hits 95% when model checking Echo using JPF-Nas. 147

xi

Figure 5.13 Number of states explored when model checking Daytime using

JNH and JPF-Nas. .. 149

Figure 5.14 Number of bytecode instructions explored when model checking

Daytime using JNH and JPF-Nas. .. 149

Figure 5.15 The depth of the search tree explored when model checking

Daytime using JNH and JPF-Nas. .. 150

Figure 5.16 Elapsed time in seconds when model checking Daytime using JNH

and JPF-Nas. .. 151

Figure 5.17 The number of memory in megabytes when model checking

Daytime using JNH and JPF-Nas. .. 151

Figure 5.18 CPU hits 100% when model checking Daytime using JPF-Nas. 152

Figure 5.19 Number of states explored when model checking Chat using JNH

and JPF-Nas. .. 154

Figure 5.20 Number of bytecode instructions explored when model checking

Chat using JNH and JPF-Nas. .. 154

Figure 5.21 The depth of the search tree explored when model checking Chat

using JNH and JPF-Nas. .. 155

Figure 5.22 Elapsed time in seconds explored when model checking Chat using

JNH and JPF-Nas. .. 156

Figure 5.23 Number of memory in megabytes explored when model checking

Chat using JNH and JPF-Nas. .. 156

Figure 5.24 Number of states explored when model checking Alphabet using

JNH and JPF-Nas. .. 158

Figure 5.25 Number of bytecode instructions explored when model checking

using JNH and JPF-Nas. .. 159

Figure 5.26 The depth of the search tree explored when model checking

Alphabet using JNH and JPF-Nas. ... 159

Figure 5.27 Elapsed time in seconds explored when model checking Alphabet

using JNH and JPF-Nas. .. 160

xii

Figure 5.28 Number of memory in megabytes explored when model checking

using JNH and JPF-Nas. .. 160

Figure 5.29 Example of Echo and Daytime bug seeding. 161

Figure 5.30 Example of Chat and Alphabet bug seeding. 162

Figure 5.31 Code snippet for setting breadth-first search heuristic in the

distributed scheduler. ... 164

Figure 5.32 Code snippet for setting random search heuristic in the distributed

scheduler. ... 164

Figure 5.33 Deadlock encountered when applying breadth-first search heuristic

on the Echo application. ... 165

Figure 5.34 Deadlock encountered when applying random search heuristic on

the Echo application. .. 166

xiii

LIST OF SYMBOLS

M Kripke structure

f A formula of temporal logic

s All states

S A set of process states

LI A set of input labels

LO A set of output labels

T A set of transitions

s0 An initial state

τ An unobservable action

∅ Non-empty set

Act A set of actions

I Invisible actions

m A message stream

SPreq Request stream pointer

SPresp Response stream pointer

T Thread

T Communication trace

V Visible actions

Φ A single process

α An action

xiv

LIST OF ABBREVIATIONS

API Application Programming Interface

BFS Breadth-First Search

BLAST Berkeley Lazy Abstraction Software Verification Tool

CMC Compositional Model Checking

DFS Depth-First Search

GDB Gnu Debugger

GNU GNU’s Not Unix

I/O Input/Output

IP Internet Protocol

IPC Interprocess Communication

JNH JPF Network Asynchronous Systems Using A Hybrid Approach

JPF Java PathFinder

JPF-JVM JPF Java Virtual Machine

JPF-Nas JPF Network Asynchronous Systems

JVM Java Virtual Machine

LTS Labeled Transition System

MJI Model Java Interface

NASA National Aeronautics and Space Administration

NET-IOCACHE Network Input/Output Cache

NOSA NASA Open Source Agreement

OS Operating System

RR Tree Request and Response Tree

SLAM Software Language Analysis and Modeling

SUT System Under Test

TCP Transmission Control Protocol

TS Transition System

UDP User Datagram Protocol

VM Virtual Machine

xv

LIST OF APPENDICES

Appendix A Experimental Distributed Program Source Code

xvi

MODEL PERISIAN MENYEMAK APLIKASI TEREDAR

MENGGUNAKAN PENDEKATAN HIBRID PEMUSATAN DAN CACHE

ABSTRAK

Membangunkan sistem teragih yang boleh dipercayai menimbulkan cabaran

yang ketara disebabkan oleh sifat bukan penentu bagi pelaksanaan thread dan proses,

serta saluran komunikasi. Penyemakan model perisian menawarkan cara untuk

mengesahkan ketepatan sistem dengan menganalisis secara menyeluruh semua laluan

pelaksanaan program. Walau bagaimanapun, penyemak model kod bait sedia ada,

yang mampu menyemak pelbagai proses, mengalami letupan ruang keadaan dan

overhed pengiraan. Tesis ini memperkenalkan Java PathFinder (JPF)-Nas-Hybrid

(JNH), penyemak model baru yang menangani masalah ini. JNH menggunakan model

komunikasi antara proses (IPC) yang direka bentuk semula dan menyepadukan

mekanisme caching berskala. Mekanisme ini menyimpan data komunikasi antara

proses dengan cekap, mengurangkan overhed pengiraan dan menyatakan letupan

ruang semasa pemeriksaan model. Dengan mengoptimumkan penggunaan sumber dan

meminimumkan overhed, JNH meningkatkan prestasi pengesahan dengan ketara.

Penambahbaikan utama termasuk pembangunan mekanisme caching berskala yang

disepadukan ke dalam model IPC pemusatan, penempatan semula permintaan dan

pokok tindak balas, dan pemprosesan data dalam ketulan berbilang bait. Penciptaan

JNH melibatkan lanjutan daripada sistem teras JPF dan mengubah suai perpustakaan

rangkaian Java. Selain itu, tesis ini meneroka strategi pengesanan pepijat,

membezakan antara pepijat tempatan dan global, dan menilai pelbagai strategi carian

untuk meneroka ruang keadaan program yang diedarkan. Melalui ujian komprehensif

xvii

dan analisis statistik, penyelidikan memberikan pandangan tentang pendekatan

pengesanan pepijat yang berkesan, memajukan lagi kaedah penyemakan-model.

xviii

SOFTWARE MODEL CHECKING FOR DISTRIBUTED

APPLICATIONS USING HYBRIDIZATION OF CENTRALIZATION AND

CACHE APPROACHES

ABSTRACT

Developing reliable distributed systems poses significant challenges due to the

non-deterministic nature of thread and process execution, as well as communication

channels. Software model checking offers a means to verify system correctness by

exhaustively analyzing all program execution paths. However, the existing bytecode

model checker, capable of verifying multiple processes, suffers from state space

explosion and computational overhead. This thesis introduces Java PathFinder (JPF)-

Nas-Hybrid (JNH), a novel model checker addressing these limitations. JNH employs

a redesigned inter-process communication (IPC) model and integrates a scalable

caching mechanism. This mechanism efficiently stores communication data between

processes, mitigating computational overhead and state space explosion during model

checking. By optimizing resource utilization and minimizing overhead, JNH

significantly improves verification performance. Key enhancements include the

development of a scalable caching mechanism integrated into the centralization IPC

model, relocating request and response trees, and processing data in multi-byte chunks.

JNH's creation involves extending from the JPF-core system and modifying Java

network libraries. Additionally, the thesis explores bug detection strategies,

distinguishing between local and global bugs, and evaluates various search strategies

to explore distributed program state spaces. Through comprehensive testing and

statistical analysis, the research provides insights into effective bug detection

approaches, further advancing model-checking methodologies.

1

CHAPTER 1

INTRODUCTION

1.1 Background

Modern society relies heavily on complex software systems, which can be

found in various fields such as banking, automotive, shopping, entertainment, and so

on. These systems are often large, distributed, and exhibit guaranteed qualities. They

also consist of multiple processes spread across multiple computing devices, executing

independently. While this provides the advantages of increased performance and

scalability it also makes such systems much harder to test due to partial failure and

asynchrony (McCaffrey, 2016). Partial failure refers to the components in distributed

applications that can fail along the way, resulting in incomplete results or data.

Asynchrony is the indeterminateness of ordering and timing within a distributed

system that often leads to solutions with a high degree of complexity. Avoiding

distributed system bugs also requires reasoning about the integration between nodes

and must tolerate the failure of the underlying hardware. In addition, the probability of

human error in either design, implementation, or operation also contributes to system

bugs. Therefore, developing a reliable distributed system is a very challenging task.

In addition, complex software systems are composed of independent sub-

systems that interact with each other, and these interactions are referred to as atomic

events. These atomic events are subject to both measurable and non-measurable

uncertainties. Measurable uncertainties are typically characterized by assigning

probabilities to future events, while non-measurable uncertainties are modeled as non-

determinism and resolved by an external scheduler.

2

Additionally, the most common aspects of complex software systems involve

cost and time. Each event in the system incurs a cost and takes a certain amount of

time to complete. While cost and time can be modeled as non-negative real values,

their accumulation over the dynamics of the system is not directly comparable. The

total cost of a set of events can be obtained by summing their costs, but the total time

depends on the concurrency among the events. The concurrent interactions of multiple

processes are non-deterministic, making these systems very hard to test. The

interleaving between threads within a process also increases the challenges for

software testers. Moreover, setting up an environment and instrumenting the software

under test is also time-consuming and expensive.

Data race and deadlocks are known to be fundamental problems in any

concurrent software system (Chen et al., 2022; Cai et al., 2021; Yuan et al., 2021;

Bagherzadeh et al., 2020; Tu et al., 2019). A data race occurs when two threads are

trying to access the same shared variable at the same time without any proper

synchronization, e.g., not protected by a common lock. Deadlock occurs when two or

more operations circularly wait for each other to release the acquired resources. Unlike

concurrent software systems, distributed systems are involved in not only local

concurrency bugs, which come from thread interleaving within a process but also

concurrency bugs in globally distributed components, which come from inter-process

communication interleaving.

As society increasingly relies on complex software systems, it is important not

only to ensure their correctness but also to subject them to rigorous analysis. The most

common way to analyze such systems is through testing (Hsaini et al., 2019; Moutai

et al., 2019; Stuardo et al., 2019). Once the system is designed, it is tested against a

3

finite set of test cases to verify that it behaves as expected. While testing can be

effective if the test cases are carefully chosen with relevant domain expertise, it is

important to acknowledge that testing cannot guarantee success for all possible

behaviors of the system.

At the opposite end of the analysis spectrum, formal methods employ

mathematical techniques to determine whether a system satisfies a given property for

all possible outcomes. One important sub-discipline of formal methods is model

checking.

Model checking (Baier & Katoen, 2008; Clarke, Henzinger, & Veith, 2018) is

a technique to detect property violations in a concurrent system by exploring every

possible execution path. Accordingly, every possible state of the system is checked

against given properties. This technique is very useful for the quality assurance of

safety-critical systems and core algorithms/protocols of large systems. Model

checking was originally developed for hardware verification, but the concept of state

space exploration has been applied to a wide range of software systems as well.

The research on applying model checking for distributed systems has gained

popularity in recent years due to two main reasons (Muscholl, 2018). First, distributed

systems are error-prone, because programmers must consider all possible effects

induced by different scheduling of events. Second, testing, which is widely used for

certifying sequential programs, tends to have low coverage in distributed settings,

because bugs are usually difficult to reproduce. They may happen under very specific

thread schedules, and the likelihood of taking such corner-case schedules may be very

low. Therefore, automated verification techniques represent crucial support in the

development of reliable distributed systems.

4

Conventional model checkers for distributed systems necessitate the utilization

of abstract modeling languages like TLA+ (Lamport, 1994), PlusCal (Lamport, 2009),

Coq (Barras et al., 1999), and SPIN (Holzmann, 1997). This approach demands a

substantial investment of developer effort and does not guarantee the identification of

all bugs in the system implementation. These traditional model checkers can only

detect bugs within the specified system model and have no way of finding bugs in the

actual implementation (Anand, 2020).

For instance, Amazon employs TLA+ for system verification (Newcombe et

al., 2015). However, a drawback of TLA+, along with other comparable specification

languages, is their application to a system model rather than the actual implementation.

There is still a significant gap between the system specification and its implementation,

making the system prone to bugs at the implementation level. A noteworthy illustration

of this occurred in 2017 when a bug in Amazon S3 resulted in $150 million in damages

for companies relying on Amazon Web Services (Condliffe, 2017). Instances of such

incidents are growing more prevalent.

A novel approach within the research community involves applying model

checking directly to the actual implementations of distributed systems. The direct

verification of real-world implementations enhances confidence in meeting software

safety requirements. It's essential to recognize that adherence to system design

specifications does not ensure compliance in the implementation phase. Numerous

bugs related to concurrency, including race conditions, deadlocks, and assert

violations, often stem from programming errors during implementation. Verification

during the design phase cannot conclusively guarantee the absence of bugs in the final

deliverables. Concrete model checkers (Anand, 2018, 2020; Artho et al., 2017;

5

Deligiannis et al., 2016; Guerraoui & Yabandeh, 2011; Guo et al., 2011a; Killian et

al., 2007; Laroussinie & Larsen, 1998; Leesatapornwongsa et al., 2014; Lukman et al.,

2019a; Musuvathi et al., 2008; Yabandeh et al., 2009; Yang et al., 2009a) concentrate

on testing and debugging unmodified distributed systems to identify failures, crashes,

and violations of user-defined properties. They are model checker tools for distributed

systems, which are designed to address specific programming languages, such as Go

(Anand, 2020), or to examine the systems operating at the operating system level to

identify bugs. Furthermore, concrete model checkers suffer from massive state space

explosion and programming language coverage.

Unlike any other concrete model checkers, the Java Pathfinder (Visser &

Mehlitz, 2005) or JPF model checks bytecode rather than native code or operating

system code. This approach reduces a large number of unrelated state spaces.

Additionally, JPF offers fundamental support for verifying distributed systems. It

serves as a framework for the analysis of Java bytecode, with its core functionality

centered around an explicit state model checker. Developed by the Robust Software

Engineering Group at NASA Ames Research Center, JPF has been open source since

2005 under the NOSA 1.3 license (Artho & Visser, 2019).

JPF extends its support to the model checking of the actual implementations

(Shafiei & Mehlitz, 2014), and is the only bytecode model checker that supports model

checking of distributed systems (Artho & Visser, 2019). Notably, it operates directly

on the code without necessitating the remodeling of the system through tools like

TLA+, PlusCal, Coq, or SPIN. As it directly handles bytecode, JPF is versatile and

applicable to the verification of code compiled into bytecode, including languages like

Java, Kotlin, Scala, Groovy, Clojure, Go, and more.

6

Functioning as an open-source framework, JPF is built around a Virtual

Machine (VM) engine capable of interpreting Java bytecode and customizable to meet

user specifications. The framework boasts various features, such as state storage, state

matching, configurable execution semantics for bytecode instruction sets, and

scheduling policies for state space exploration. The standard JPF core distribution

includes default checks for generic properties, including the detection of unhandled

exceptions, deadlocks, and data races.

The core of JPF consists of a customized Java Virtual Machine (JVM)

dedicated to executing bytecode for model checking. As a result, it does not cover

native codes and low-level operating system codes, thereby overcoming massive

amounts of unrelated state space. JPF core offers fundamental components for model-

checking distributed systems and distinguishes itself with its exceptional extensibility,

achieved through a collection of stable interfaces and runtime-configurable

components.

Various extensions are available, including symbolic execution, directed

automated random testing, random choice generation, configurable state abstractions,

heuristics for bug detection, alternative state space search strategies, temporal property

verification, and more. All these extensions can be integrated into JPF using its well-

designed extension mechanisms without modifying the core code of JPF. Moreover,

JPF provides a comprehensive infrastructure for building, testing, and configuring,

making it easier to create new extensions and applications.

JPF has been around for 15 years and has been open-sourced for nine years,

which has led to a large and active user community worldwide. The Java PathFinder

workshop (Sherman et al., 2023) is to bring together members of this community,

7

including researchers, developers, and users, to showcase their current work and

discuss future directions for the framework. The workshop series provides a platform

for presenting ongoing JPF-related research and promotes collaboration among

participants to plan the development of the JPF framework and its community.

JPF comes with a default search, depth-first search, or backtracking feature

that is utilized to capture different scheduling of threads within a process. This feature

enables JPF to explore different orderings of concurrent transitions within the system

under test (SUT), where executing them in different orders may result in different

behaviors of the process. However, JPF's search is limited to individual processes and

does not account for inter-process communications, which are essential in distributed

systems to find global bugs. Communication channels between processes can lead to

different behaviors based on the ordering in which they are accessed. Therefore, a

mechanism is necessary to capture the various orderings of concurrent transitions

involving inter-process communications.

This thesis focuses on the model checking of the actual implementation of

distributed systems using bytecode executions. Employing bytecodes, as opposed to

other concrete model checkers that check on native or operating system-specific codes,

significantly reduces the unrelated state space. Furthermore, this approach allows

customization of the model checker for different JVM languages. Additionally, the

model checking of bytecodes has a more substantial impact on verifying distributed

systems operating on the cloud, such as server-side Java or Scala.

The below sections explain the details of the research problem, research

questions, research motivation, research objectives, research scope, research

contributions, and finally thesis organization.

8

1.2 Research Problem

Two primary approaches have been employed for model-checking distributed

systems at the bytecode level executions: centralization (Artho & Garoche, 2006;

Barlas & Bultan, 2007; Ma et al., 2013; Nakagawa et al., 2005; Stoller & Liu, 2001)

and caching (Artho et al., 2008, 2009; Leungwattanakit et al., 2011, 2014). The

centralization (Shafiei & Mehlitz, 2014) at the model checker level involves capturing

multiple processes and checking for both local and global bugs. On the other hand, the

caching (Artho et al., 2008, 2009; Leungwattanakit et al., 2011) approach entails

model checking one process at a time, allowing other processes to run in their native

environments. This technique aims to minimize the state space by examining only one

process at a time. However, the caching technique faces challenges related to state

synchronization among processes during the backtracking procedure, and the

technique does not cover the states of communication between processes. This thesis

focuses on the model checker level centralization, and the following sections elaborate

on the research problem associated with centralization at the model checker level.

The first major problem in model checker level centralization is the state space

explosion, as this technique covers all possible reachable states of multiple processes

in distributed systems. The second problem with centralization (Shafiei & Mehlitz,

2014) is that the technique requires careful development of the Inter-Process

Communication (IPC) model, which facilitates communication between multiple

processes. The choice of IPC design can significantly impact the approach's

effectiveness. The current IPC uses two "ArrayByteQueue" buffers—one for the

server to send data to the client and another for the client to send data to the server.

These buffers store communication and process data byte by byte. For example, the

server may send "hello" to the client, and the client responds with "world!". During

9

state exploration, the centralization process writes one character to the queue, moves

to the next state, removes the same character from the queue, and updates the state

accordingly. Unfortunately, the write and read operations (which write and remove

data from the queue) of the data streams "hello" and "world!" result in computational

limitations.

 Finally, the limitation imposed by the state space explosion (Clarke et al.,

2011a) makes centralization impractical for exploring the state space of distributed

systems. This challenge, known as state space explosion, arises when the exponential

growth of system states becomes so extensive that the centralization technique

becomes computationally impractical. With increasing system complexity, the

technique must be able to manage a growing number of visited states, handle thread

interleaving, and address other complexities. Therefore, the model checker may take

an infinite of time.

1.3 Research Questions

The overall goal of the thesis is to address computational challenges

encountered by distributed systems during bytecode-level executions, particularly in

the centralized approach. The research to be conducted is guided by the following

research questions:

1. What are the key considerations in designing a caching mechanism to store

and manage multiple communication data between processes?

2. How does integrating the caching mechanism into the model checker level

centralization effectively address computation overhead?

10

3. How can the hybridization of centralization and cache approaches be

validated for mitigating the state space explosion problem through bug

injection and different search strategies?

1.4 Research Motivation

Software model checking is a formal verification technique used to ensure the

correctness of a system by exhaustively exploring its state space. In distributed

systems, where multiple processes work together to achieve a common goal, model

checking can help detect errors and ensure the system's correctness.

One key motivation for using software model checking for distributed systems

is the need to guarantee that the system satisfies its requirements under all possible

system configurations and execution scenarios. This is particularly important in safety-

critical systems, where even a small error could have big impact consequences. By

using model checking, developers can explore all possible system states and execution

paths to ensure that the system behaves as expected and meets its safety requirements.

Another motivation for using software model checking for distributed systems

is the need to handle complex interactions between multiple processes. In distributed

systems, processes communicate and coordinate their actions to achieve a common

goal. This coordination can be challenging to get right, especially when there are

multiple possible execution paths that the system can take. Model checking can help

developers ensure that all possible interaction scenarios have been considered and that

the system behaves as expected in all of them.

Finally, software model checking can also help detect subtle errors that may be

difficult to find through testing or other methods. Distributed systems are often

complex and may exhibit unexpected behavior in certain scenarios. Model checking

11

can help detect these errors by exploring all possible system states and execution paths,

even those that may be difficult to reproduce in a real-world setting.

1.5 Research Objectives

The main goal of the research is to propose an efficient centralized interprocess

communication (IPC) framework with integrated caching mechanisms to enhance

model-checking capabilities in detecting bugs at both local and global scales. The

specific objectives of this thesis can, therefore, be broken down into the following:

1. To investigate existing caching mechanisms and their suitability for storing

and managing multiple communication data between processes operating

within the model checker level centralization.

2. To integrate the proposed caching mechanism into the centralization IPC

model that can effectively address computation overhead.

3. To validate the hybridization approaches that can improve both local and

global bug detections.

1.6 Research Scope

First, this research focuses on bytecode execution rather than native code

execution. The choice to operate at the bytecode level is motivated by the ability to

navigate the relevant state space more effectively compared to exploring the unrelated

state space inherent in low-level native codes. The concrete model checkers for

distributed systems discussed in section 1.1 address programming language coverage,

testing, and debugging of the unmodified distributed systems. The goal is to identify

failures, crashes, and violations of user-defined properties. These tools serve as model

checkers specifically tailored for distributed systems, each designed to address the

coverage of specific programming languages or platform-specific considerations.

12

Second, this thesis focuses on the hybridization of the current centralization

and cache, expanding upon the core system of JPF. However, it does not dive into the

process through which JPF constructs the model from the bytecode, generates state

space, captures thread scheduling, and various other features inherent to the JPF core.

Finally, the thesis considers distributed multi-threaded applications that

involve communicating processes, regardless of their physical location or means of

communication. The proposed approach utilizes a combination of centralization and

caching to minimize computation overhead and state space, thereby enhancing the

model checker-level centralization performance. The research aims to enhance state

space reduction for networked applications, with cache-based techniques being the

primary solution proposed. The proposed approach is evaluated using specific metrics

and compared with existing techniques. Additionally, the thesis includes experiments

involving bug injection and various search strategies to detect bugs while exploring

the state space of distributed applications and maintaining deadlocks. However, it is

important to note that this research is limited to communication over the TCP/IP

protocol with blocking I/O and unbounded buffers.

1.7 Research Contributions

The key contributions of this research are outlined as follows:

1. A scalable caching mechanism has been designed to automatically adjust

the size of the request and response trees based on the number of

connections created by processes. These trees are designed to store multiple

communication data from multiple processes, identified by their respective

endpoints, such as client and server endpoints. They can scale efficiently

without causing a state space explosion. Furthermore, the inter-process

13

communication (IPC) models that utilize these trees are also scalable and

can handle large volumes of input and output data streams without

incurring excessive overhead computation. This helps to minimize the state

space.

2. The proposed model checker employs a scalable caching mechanism along

with enhanced read-and-write algorithms. This results in reduced overhead

computation and minimizes state space exploration during the backtracking

process.

3. The proposed bug injection techniques ensure the preservation of both local

and global bug-detection properties, while the suggested search strategies

guarantee the framework’s adaptability for various state space exploration

scenarios.

1.8 Thesis Organization

This thesis is organized into six chapters.

Chapter 1 offers a thorough explanation and discussion of the background,

research problem, research questions, research motivation, research objectives,

research scope, and research contributions, focusing particularly on model-checking

distributed systems employing bytecode-level execution.

Chapter 2 offers a comprehensive overview of model checking, including its

application in software model checking and the model checker for Java. It delves into

system modeling for distributed systems, examines existing literature on model

checking distributed systems, conducts literature reviews on bytecode model checking

for distributed systems, engages in discussion, and concludes with a summary.

14

Chapter 3 discusses the overall research methodology, benchmark networked

applications, experimentation of cache and centralization techniques, the

customization of caching techniques, the proposed design, the proposed reduction

techniques, tools, and experimental settings, the evaluation of the proposed method,

and finally the summary.

Chapter 4 provides an in-depth explanation of the development and

implementation of the software model checking for distributed applications using a

hybridization approach.

Chapter 5 provides an in-depth analysis and discussion of the research's

experimental results. The proposed model checker has experimented with four

benchmarked distributed applications including Echo, Daytime, Chat, and Alphabet.

Chapter 6 summarizes the achievements of the research objectives, research

contributions, and future work.

15

CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

2.1 Introduction

This chapter covers the background and literature surrounding the research

studies. The background materials serve as the theoretical foundation of the thesis,

offering a concise overview of crucial concepts related to model checking and its

applications in distributed systems. Furthermore, the chapter examines existing studies,

identifying research gaps in bytecode-level model checkers for distributed systems. In

conclusion, the chapter wraps up with a thorough discussion and summary of its key

points.

2.2 Model Checking

The invention of model checking represents a fundamental change in the

application of logic for detecting bugs in both hardware and software industries (Clarke,

Henzinger, & Veith, 2018). This technique is a sub-discipline of formal methods that

exhaustively checks for property violations in a concurrent system. It explores all

possible system states in a brute-force and systematic manner. Despite its initial success

in hardware verification, the principles of model checking have found extensive

application and adoption in the realm of software as well (Beyer & Podelski, 2022).

There are two major advantages of model checking over the other formal

verification techniques (Baier & Katoen, 2008). First, it is fully automatic. This means

that model checking does not require any user supervision to control the input during

the design simulation. Second, it provides a counterexample when the given model does

not satisfy the given properties. The counterexample is like a bug trace, which provides

important clues to fix the software bug.

16

The model-checking problem can be stated as:

𝑀, 𝑠 | = 𝑓 2.1

Where M is a Kripke structure (i.e., labeled transition system) and f is a formula

of temporal logic (i.e., the specification). The problem is to find all states s of M such

that M, s |= f. The system model is formally described as a Kripke structure or Labelled

Transition System (LTS), and the system properties are generally expressed in temporal

logic. When the state LTS satisfies the property, the model checking continues to the

next state until the error is found, or the end state is reached. If the error is found, it

produces the counterexample that gives an important clue to fix the error.

Figure 2.1 Basic model-checking methodology (Clarke, Henzinger, Veith, et al.,

2018).

Figure 2.1 shows the schematic view of the model checking. The model

checking accepts two inputs, the system description, and system specification. The

system description is formally described as TS, and the property of the system is

17

generally expressed in temporal logic. When the state of TS satisfies the property, the

model checking will continue to check the next state until the error is found. Otherwise,

it produces the counterexample that gives an important clue to finding the error.

Model checking can be categorized into two fundamental approaches: explicit-

state (Holzmann, 2018) and symbolic-state (Chaki & Gurfinkel, 2018) model checking.

The primary distinctions between these approaches lie in how they manage and

manipulate explored states during computation. Explicit-state algorithms explore the

program state sequentially, storing explored states in full program states. Consequently,

algorithm optimization concentrates on frequently visited states. In contrast, symbolic

algorithms assign either the set of initial states or the set of valid states, examining the

state space until an error is detected. This thesis considers only explicit-state model

checking since it is the most effective for software systems.

2.3 Software Model Checking of Single Process

The process of verifying software involves using theorem proving (Goguen,

2021) and static analysis (Rival & Yi, 2020). These methods analyze the software

system by examining its model, without actually executing it. In contrast, dynamic

analysis (Afianian et al., 2019) involves running the system to identify any errors and

provides information about these errors through trace data. Software model checking

can be performed at different stages during the software development process and can

be seen as a combination of both static and dynamic analysis. It is used to verify abstract

versions of a program during the design phase or its actual implementation. Model

checkers such as VeriSoft (Godefroid, 2005) and CMC (Musuvathi et al., 2002)

dynamically analyze non-determinism in a program by running it in a specialized

environment. However, dynamic analysis requires a runtime environment for the target

18

system to be executed, which may not have all the capabilities of a full operating system,

such as a file system.

In a concurrent system, where multiple processes are running at the same time,

the operating system selects a process from a pool of candidates to run, based on its

scheduling policy. The order in which the processes are selected is known as the

execution schedule, and this order may differ between each run of the system. This can

result in issues such as race conditions. To address this, programmers use mutual

exclusion, which ensures that only one process has control over a shared resource at a

time. However, this can lead to further problems like deadlocks and starvation. Software

testing can only verify one specific execution schedule, making it difficult to reproduce

failures that occur in a specific order. Model checking, on the other hand, systematically

examines all possible schedules to check if any specified properties are being violated.

Previously, model checkers were used to verify a system during the analysis and

design phase. But now, modern model checkers work directly on the implementation of

the application rather than its abstract model. Some modern model checkers, like SLAM

(Ball et al., 2011) and Blast (Beyer et al., 2007; Henzinger et al., 2003) take program

code as input and verify the abstracted code instead of the actual code. However, other

model checkers process the program code directly. These model checkers control the

execution of the target program and guide it through the execution tree using methods

such as depth-first search, breadth-first search, and heuristic search, which traverse the

tree based on a heuristic function.

19

Figure 2.2 Example of model checker executing six different ways of a system

which has two threads and each thread has two atomic instructions.

In this subsection, a simple example program is used to illustrate the basic

workings of a software model checker. The program consists of two threads, each

containing two atomic instructions. An atomic instruction is a single, uninterrupted

operation. The operating system that the program is running on can execute these

instructions in six different orders: (T1, T1, T2, T2), (T1, T2, T1, T2), (T1, T2, T2, T1),

(T2, T1, T1, T2), (T2, T1, T2, T1), and (T2, T2, T1, T1), as shown in Figure 2.2. The

software model checker examines all six possible schedules. After the execution of one

atomic instruction, the execution tree branches. When configured to search using a

depth-first approach, the model checker backtracks once the program terminates. The

execution tree is used to display all possible states of the program, as depicted in Figure

2.3.

20

Figure 2.3 Example of execution tree by the model checker.

As mentioned earlier, modern model checkers have been applied directly to the

actual implementation of software programs, written in extreme programming

languages such as C or Java. These model checker tools help programmers to detect

software bugs and errors during the implementation phase. An example of a model

checker tool that model checks real programs is Java PathFinder (Visser & Mehlitz,

2005).

The model checker requires backtracking of the system under test (SUT). To

illustrate the backtracking concept, let’s look at the example of how the model checker

executes the Java program as shown in Figure 2.4.

21

SIMPLE JAVA PROGRAM

1 import java.util.Random;

2 public class Rand {

3 public static void main (String[] args) {

4 Random random = new Random(42);

5 int a = random.nextInt(2);

6 System.out.println("a=" + a);

7 int b = random.nextInt(3);

8 System.out.println("b=" + b);

9 int c = a/(b+a -2);

10 System.out.println("c=" + c);

11 }

12 }

Figure 2.4 Simple Java program using Random class.

Figure 2.4 shows an example of a simple Java program that computes two

random variables, a and b. The program starts with the initialization of the Random

class with a value of 42. The integer variables a and b are initialized and given the

.nextInt() method with the values of 2 and 3, respectively. Variable c does computation

as shown in line 9. Finally, the program prints out the result of c.

Figure 2.5 (a) indicates the execution graph on normal execution, and Figure 2.5

(b) shows the execution graph of the program by the model checker. The octagon, single

circle, and double circle represent the start state, and end state, respectively. Notice that

in (a) the program executes on normal execution. It does not involve backtracking thus

the program does not cause any errors. However, in (b), the model checker executes the

program in all possible ways until it finds the error state.

22

Figure 2.5 Execution graph by (a) executed normally and (b) executed by the

model checker.

2.4 The State Space Explosion Problem

The cornerstone of applying model checking is the state space explosion (Clarke

et al., 2011). The exhaustive state exploration expands the system description of M as a

TS or Kripke structure. The mathematical definition of such a structure is equivalent to

directed graphs with additional labels at the vertices. The computation of statements or

functions in the digraphs often leads to new global states in the system under test (SUT),

with different program counters and variables. For efficient model checking, the states

23

of the SUT need to be stored in the main memory. This memory should be fast enough

to verify the system of interest. The state-space is known to be exponential to the size

of the SUT, in addition, the number of parallel components, data variables and

properties, and channel buffers normally lead to an event larger state-space. The

exponential growth of states during the model checking is often called the “state-space

explosion problem”.

2.5 The Model Checker for Java

State space explosion is the cornerstone of software model checking. Executing

bytecodes instead of native codes or operating system low-level codes can avoid a

tremendous amount of unrelated state space (Model Checker for Java Programs - NASA

Technical Reports Server (NTRS), n.d.). This section describes the Java thread model,

the Java PathFinder, Java Networking, and applying model checking for distributed

systems.

2.5.1 The Java Thread Model

In Java, a thread represents an executable task and has thread-local information

that cannot be directly accessed by other threads. It shares the global heap with other

threads. A Java program starts with only one thread, the main thread, which begins

executing in the main(String[] args) method. Additional threads are created when

Thread objects are initialized. A task can be assigned to a thread in two ways: by

extending the Thread class or by implementing the Runnable interface. In either case,

the programmer must provide the task to be executed in the run() method. The thread

can commence its work after its start() method is invoked by another thread, known as

the parent thread.

24

Multiple threads in a system can access shared computing resources. Figure 2.6

provides an example where two threads share the same resource, an instance of the

Printer class. The Configuration and JobExecutor classes each have their tasks, but both

access the same information in a Printer instance. To avoid conflicts, a mechanism must

be in place to manage access to these shared resources.

AN OBJECT SHARED BY TWO THREADS

1 class Configuration extends Thread {…}

2 class JobExecutor extends Thread {…}

3 class Printer {

4 public static void main(String[] args) {

5 Printer p = Printer.getInstance();

6 Thread conf = new Configuration(p);

7 Thread exec = new JobExecutor(p);

8 }

9 }

Figure 2.6 Example of an object shared by two threads in Java.

Java has a synchronization mechanism, which is linked to a lock object, to

manage access to shared resources. Every object in Java can serve as a lock.

Programmers use the lock to create a block of code in which only one thread is allowed

to enter at a time. The thread must acquire the lock before entering the mutually

exclusive code. Figure 2.7 illustrates an example of the use of a mutual exclusion lock.

To ensure that two threads do not access the printer simultaneously, the programmer

uses the synchronized keyword to protect the printer from concurrent access. In this

example, the Printer instance itself is used as the lock.

