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KAEDAH PENGHAMPIRAN UNTUK MENYELESAIKAN MODEL 

JANGKITAN HIV DALAM PERSEKITARAN KABUR 

ABSTRAK 

 Persamaan pembezaan kabur (PPK) mempunyai pelbagai aplikasi dalam 

fizik, sains gunaan dan kejuruteraan dan telah menjadi alat penting untuk 

memodelkan pelbagai fenomena kehidupan sebenar, lebih-lebih lagi yang melibatkan 

ketidakpastian seperti model jangkitan HIV. Namun begitu, kebanyakan model 

matematik untuk jangkitan HIV kabur, seperti yang digambarkan dalam model tak 

linear, mengalami kemerosotan dalam penyelesaian analitik yang mana penyelesaian 

ini pada kebiasaannya sukar untuk difahami. Akibatnya, pendekatan lazim untuk 

menggambarkan model HIV kabur perlu melibatkan penggunaan kaedah 

penghampiran, biasanya melalui teknik berangka. Kaedah berangka sedemikian 

menghasilkan penyelesaian dalam nilai berangka. Walau bagaimanapun, adalah 

penting untuk ambil perhatian bahawa kaedah penghampiran berangka ini 

menghadapi had dalam menyelesaikan secara langsung model jangkitan HIV kabur 

dan memerlukan penggunaan pendiskretan atau pelinearan. Sebaliknya, kaedah 

penghampiran analitik terbukti boleh digunakan dengan beberapa cara yg berbeza, 

kerana ia bukan sahaja digunakan untuk model HIV kabur tanpa memerlukan 

pelinearan atau pendiskretan tetapi juga memberikan penyelesaian selanjar. Oleh itu, 

dalam tesis ini, penghampiran analitik seperti kaedah usikan homotopi kabur 

(KUHK), kaedah lelaran ubahan kabur (KLUK) serta versi yang terubahsuai telah 

dipertimbangkan untuk menyelesaikan beberapa model jangkitan HIV linear dan tak 

linear kabur di bawah konsep pendekatan kebolehbezaan Hukuhara untuk memberi 

penyelesaian penghampiran analitik dalam bentuk penyelesaian siri penumpuan. 

Kewujudan dan keunikan penyelesaian untuk model jangkitan HIV kabur linear dan 
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tak linear dalam kerja ini juga telah disiasat. Perbandingan berangka antara KUHK, 

KLUK dan penyelesaian tepat telah dilakukan, menunjukkan hasil ketepatan yang 

tinggi serta perbandingan dengan kaedah sedia ada yang lain. Kaedah tersebut 

didapati cekap dalam menyelesaikan model jangkitan HIV kabur linear. Sebaliknya, 

kerumitan sistem kabur tak linear menyukarkan untuk mendapatkan penyelesaian 

penghampiran analitik untuk tempoh yang panjang sekiranya menggunakan kaedah 

analisis anggaran semasa seperti KUHK dan KLUK. Untuk menangani perkara ini, 

penggunaan KUHK berperingkat (KUHKB) dan KLUK berperingkat (KLUKB) 

untuk menyelesaikan model jangkitan HIV tak linear kabur telah dicadangkan, dibina 

dan kemudiannya digunakan ke atas model tersebut. Tambahan pula, kesan 

ketidakpastian ke atas sistem imun yang berpadanan dengan umur, jantina dan 

pemakanan adalah parameter penting dalam rawatan penyakit HIV. Keadaan ini akan 

mengakibatkan keadaan awal yang tidak menentu, dan selalunya lebih sesuai untuk 

memodelkannya menggunakan nombor kabur, oleh itu, beberapa model jangkitan 

HIV tak linear telah diubah suai. daripada persekitaran klasik (crisp) kepada kabur 

dengan menggunakan konsep teori set kabur, dan kemudian diperiksa oleh semua 

kaedah yang dicadangkan. Perbandingan berangka telah dibuat antara KUHK, 

KUHKB, KLUK dan KLUKB dengan penyelesaian berangka yang diperoleh 

menggunakan kaedah Runge-Kutta peringkat empat (RK4) dan perbandingan dengan 

kaedah sedia ada yang lain. KUHKB dan KLUKB yang diubah suai telah 

ditunjukkan sebagai kaedah yang sangat tepat dan cekap untuk menyelesaikan 

masalah yang sama. Kaedah-kaedah tersebut juga telah terbukti berguna dalam 

menerangkan tahap ketidakpastian sel imun dan beban virus pada pesakit, dengan 

mengambil kira kategori pesakit dan kekuatan sistem imun mereka juga dalam 

menggambarkan ketidakpastian sel yang tidak dijangkiti dan dijangkiti, serta zarah 
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virus bebas. Dalam bentuk yang terubahsuai berdasarkan fungsi kawalan optimum, 

keputusan menunjukkan bahawa sistem sedang bergerak ke arah keseimbangan sihat 

yang diingini. Kesan set parameter peringkat-r telah diwakili secara grafik untuk 

menunjukkan kesahihan penyelesaian anggaran kabur. Melalui perwakilan jadual, 

rajah dan analisis penyelesaian, kaedah yang dicadangkan mempunyai beberapa 

kelebihan yang ketara berbanding yang sedia ada kerana kewujudan penyesaian siri 

dalam bentuk selanjar. Kaedah yang dibangunkan ini tidak memerlukan pelinearan 

atau andaian terbatas, menjadikannya kurang terdedah kepada ralat pengiraan. Ini 

boleh membantu penyelidik dan ahli penjagaan kesihatan professional mendapatkan 

pandangan tentang dinamik penyakit, membuat keputusan termaklum dan dalam 

menilai kesan pencegahan dan rawatan. 
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APPROXIMATION METHODS FOR SOLVING HIV INFECTION MODELS 

IN FUZZY ENVIRONMENT 

 

ABSTRACT 

Fuzzy differential equations (FDEs) have a wide range of applications in 

physics, applied sciences, and engineering and has become undeniably an essential 

tool for modelling a wide range of real-life phenomena and even more so, those 

involved with uncertainties such as HIV infection models. Nevertheless, the majority 

of mathematical representations for fuzzy HIV infection, as depicted in nonlinear 

models, suffer from a deficiency in analytical solutions whereby these solutions are 

frequently elusive. Consequently, the prevalent approach to address fuzzy HIV 

models involves employing approximation methods, typically through numerical 

techniques. Such numerical methods yield solutions in numeric values. However, it's 

important to note that these approximate numerical methods face limitations in 

directly resolving fuzzy HIV infection models and necessitate the use of 

discretization or linearization. In contrast, approximate analytical methods prove 

versatile, as they not only apply to fuzzy HIV models without requiring linearization 

or discretization but also furnish continuous solutions. Therefore, in this thesis, the 

approximate analytical methods fuzzy homotopy perturbation method (FHPM), 

fuzzy variational iteration method (FVIM), and their modified versions are 

considered for solving several linear and nonlinear fuzzy HIV infection models under 

the concept of Hukuhara differentiability approach to provide approximate analytical 

solutions in the form of convergence series solution. The existence and uniqueness of 

the solution for linear and nonlinear fuzzy HIV infection models in this work have 

also been investigated. Numerical comparisons between the FHPM, FVIM, and the 
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exact solution have been performed, showing high accuracy results as well as 

comparisons with other existing methods. The methods have been found to be 

efficient in solving linear fuzzy HIV infection models. On the other hand, the 

complexity of nonlinear fuzzy systems makes it difficult to obtain an approximate 

analytical solution for an extended period using current approximate analytical 

methods such as the FHPM and FVIM. To address this, the use of the multistage 

fuzzy homotopy perturbation method (MFHPM) and multistage fuzzy variational 

iteration method (MFVIM) are proposed, constructed, and then applied to the 

models. Furthermore, the uncertainty effects on immune system corresponding to 

age, gender and feeding are important parameters in the HIV disease treatment. This 

implies to uncertain initial conditions, and often more suitable to model them using 

fuzzy numbers, therefore, some nonlinear HIV infection models were modified from 

classical (crisp) to fuzzy environment by using the concept of fuzzy set theories, and 

then examined by all proposed methods.  Numerical comparisons have been made 

between the FHPM, MFHPM, FVIM, and MFVIM with numerical solutions 

obtained using Runge-Kutta fourth-order method (RK4) and comparisons with other 

existing methods. The modified MFHPM and MFVIM have been shown to be highly 

accurate and efficient methods for solving the same models. The methods have also 

been shown to be useful in describing the uncertain levels of immune cells and viral 

loads in patients, taking into account the patient's category and the strength of their 

immune system also in describing the uncertainty of uninfected and infected cells, as 

well as free virus particles. In modified forms based on optimal control functions, the 

results indicate that the system is moving towards a desired healthy balance. The 

parameters r-level sets effect has been graphically represented to demonstrate the 

validity of the fuzzy approximate solutions. Through the representation of tables, 
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figures and solution analysis, the proposed methods have some distinct advantages 

over existing ones due to the depiction of series solutions in continuous form. The 

proposed methods do not require linearization or restrictive assumptions, making 

them less prone to computation round off errors. This can help researchers and 

healthcare professionals gain insights into the dynamics of the disease, make 

decisions and in evaluating the impact of interventions and treatments. 
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CHAPTER 1  

INTRODUCTION 

Human Immunodeficiency Virus (HIV) infection can be modelled in linear and 

nonlinear ordinary differential equations (ODEs) to describe various aspects of the 

interaction between HIV and the immune cells. However, in the real world, there are 

various HIV infected patients with different strengths of immune system causing 

uncertainty as to the immune cells level and the viral load during the different stages of 

the disease. The uncertainty is modelled by fuzzy differential equations (FDEs). This 

thesis presents approximate analytical methods, fuzzy homotopy perturbation method 

(FHPM) and fuzzy variational iteration method (FVIM), as well as their modified 

versions, multistage fuzzy homotopy perturbation method (MFHPM) and multistage 

fuzzy variational iteration method (MFVIM) to solve linear and nonlinear fuzzy HIV 

infection models using Hukuhara differentiability approach. The introduction of the 

thesis provides background on FDEs including fuzzy HIV infection models and states the 

problem being addressed, research questions, objectives, scope, and significance of the 

research. The organization of the thesis is also outlined. 

1.1 Fuzzy differential equations 

ODEs play a major role in the modelling of physical phenomena in applied 

sciences and engineering. Researchers have extensively used classic ODEs to make 

many issues under study more understandable. Frequently, data related to physical 

phenomena often contains uncertainties due to various factors such as measurement 

errors, experimental uncertainties, and inaccuracies in data collection and initial 

value determination. These uncertainties can affect the accuracy and precision of the 

data and must be taken into account when analysing and interpreting the results.  
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Various attempts have been made to describe and measure the uncertainties. 

One of the approaches leads to fuzzy set theory, which was introduced by Zadeh in 

1965, is a mathematical framework for dealing with uncertainty and vagueness in 

information. It uses fuzzy sets, which are sets whose elements have varying degrees 

of membership, as opposed to traditional sets in which elements have a binary 

membership of either belonging or not belonging to the set. From then on, properties 

and suggested applications have been revised by numerous researchers.  

FDEs are a type of mathematical equation that involves uncertainty 

(Mazandarani & Najariyan, 2022). The most important part of history of FDEs is 

formed by different definitions of fuzzy derivatives. As a matter of fact, since the 

concept of derivative is the fundamental element of a differential equation, the 

evolution of fuzzy derivatives plays a key role in the evolution of FDEs 

(Mazandarani & Xiu, 2021). The concept of a fuzzy derivative was first introduced 

by Sheldon and Zadeh in 1972, and later refined by Dubois and Prade in 1982 using 

Zadeh's extension principle. Seikkala (1987) also presented the concept of fuzzy 

derivative as a generalization of the Hukuhara derivative. The use of fuzzy 

derivatives in differential equations often requires additional information, such as 

parameter values, initial conditions, or functional relationships (Mazandarani & Xiu, 

2021). 

 Researchers have studied various aspects of FDEs, including the existence 

and uniqueness of solutions, and the initial value problem (IVP) for FDEs. In 1989, 

He and Yi provided a theorem of existence and uniqueness for the solution of FDEs, 

and later, in 1990, Kaleva conducted research on the existence and unique solution 

for the Cauchy problem for FDEs. Other researchers, such as Seikkala (1987) and 

Kaleva (1987), have also conducted research on IVP for FDEs. In 2005, Bede and 
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Gal developed a Newton–Leibnitz-type formula for FDEs using a concept of 

generalized differentiability. They also discussed the existence of solutions for FDEs 

and provided examples of applications to both partial and ordinary FDEs with fuzzy 

input data. In 2009, Nieto et al. further explained FDEs using a strongly generalized 

concept of differentiability which allowed for the examination of approximate 

solutions. They also showed that any numerical technique used for solving ODEs can 

also be applied to finding numerical solutions for FDEs under generalized 

differentiability. Khalilpour and Allahviranloo (2011) introduces the use of the initial 

value method for solving fuzzy boundary value problems (FBVPs) with two points 

and proves the existence and uniqueness of solutions under a strongly generalized 

concept of differentiability. This approach may provide a useful method for solving 

FBVPs in a variety of contexts. Abbasbandy et al. (2011a) introduced a new 

existence and uniqueness solution theorem for fuzzy initial value problems (FIVPs) 

using the extension principle of Zadeh and the concept of Hukuhara derivative. The 

Hukuhara derivative is used to ensure that the solution is unique and well-posed. 

This theorem provides a theoretical framework for solving FIVPs. Saberirad et al. 

(2018) introduced a highly effective approach for solving hybrid fuzzy differential 

equations (HFDE), employing the Hukuhara derivative to establish the existence and 

uniqueness of solutions. 

Nowadays, FDEs play an important role in various applications related to 

civil engineering, medicine, population models and particle systems (Ali & 

Ibraheem, 2020), nuclear physics (Das et al., 2013; Salahshour et al., 2015), viscosity 

(Ahmadian et al., 2017; Sin et al., 2018), liquid kinetics (Ahmadian et al., 2015), 

robotics (Deng, 2019), and HIV infection models (Hussian and Suhhiem, 2015).  
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However, until FDEs are solved, they will continue to be impractical. This is 

due to the fact that having answers to FDEs would enable researchers to make 

accurate predictions regarding the phenomena that are being investigated. The 

solution of FDEs is regarded challenging due to the parameters of uncertainty that 

are involved. 

The analytical approach and the approximation approach are the two primary 

methods that can be utilized in the solution of FDEs. The analytical method aims to 

provide solutions in the form of closed systems, which are mathematical expressions 

that can be written as the sum of fundamental functions, such as polynomials, 

exponentials, trigonometric, and hyperbolic functions. Closed form solutions are 

considered to be the best possible answer to a problem as they provide a 

comprehensive understanding of the solution (Kudryashov, 2020). Additionally, 

closed form solutions tend to require less computational work during the analysis 

process (Bulut et al., 2013). Nevertheless, the obtained solutions are generally 

limited to the linear category of FDEs (Panahi, 2017). It is unfortunate that most of 

the complex physical phenomena described using nonlinear FDEs lack analytical 

solutions (Hasan et al., 2017). In many instances, analytical solutions cannot be 

found (Ghanbari & Akgul, 2021; Verma & Kumar, 2020). Therefore, to deal with 

such instances in a more realistic manner, FDEs are commonly solved using the 

approximation approach (Hasan et al., 2017). 

Approximation approach can generally be divided into two categories: 

approximate numerical methods and approximate analytical methods. According to 

Moore and Ertürk's research from 2020, the approximate numerical methods provide 

answers that are approximately expressed in the form of numerical values, and the 

assessment of error makes use of mathematical operations. However, approximate 
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numerical methods cannot solve FDEs directly, instead they require transformation 

to linear system or discretization to convert the continuous problem into a discrete 

problem. The objective of the approximation methods is to arrive at a solution that is 

close to the true one; more specifically, these methods seek an open form solution 

rather than a closed form one.  

The approximate analytical methods are another subcategory of methods that 

fall under the umbrella of the approximation approach. This family of methods, in 

contrast to the approximate numerical class of methods, can be applied to linear and 

nonlinear models of FDEs without the necessity of linearization or discretization 

(Hasan et al., 2017; Khodadadi & Celik, 2013). The solutions of these equations will 

be presented in the form of a polynomial function series. This will make it simple to 

demonstrate the degree of solution and convergence of the solution through its 

presentation in graphical form. The methods have the capacity to determine the 

accuracy of the solution that was achieved without necessitating the use of the exact 

solution (close form) as a point of comparison. 

In reality, various mathematical models have been devised to depict the 

progression of HIV infection to AIDS (Sohaib, 2020). Typically, these models 

employ FDEs to characterize the dynamics of the virus within the body and the 

subsequent response of the immune system. Najariyan et al. (2011) proposed an HIV 

infection model using FDEs that incorporates factors such as gender, age, and 

feeding habits, known to influence the disease's progression. They also introduced a 

fuzzy control model to maximize uninfected cells in HIV disease. The utilization of 

fuzzy variables and fuzzy dynamical systems in this model enables a more precise 

and realistic representation of the intricate dynamics of HIV infection. Furthermore, 

Zarei et al. (2012) presented a fuzzy mathematical model of HIV infection deploying 
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fuzzy linear differential equations (FLDEs) to portray the uncertain levels of immune 

cells and viral load in HIV infected patients. This model accommodates the inherent 

fuzziness of the immune system's strength in these patients. Additionally, the 

proposed model integrates a fuzzy control function to determine drug dosage, and a 

fuzzy optimal control problem (FOCP) is formulated to minimize both viral load and 

drug costs. 

Solving these models aids researchers in comprehending the underlying 

mechanisms of the disease and serves as a means to evaluate the efficacy of diverse 

treatment strategies (Younus, 2021). In the study by Najariyan et al. (2011) 

employed numerical methods based on the generalized Euler method to solve a fuzzy 

nonlinear HIV infection model, and Fitting-based methods were applied to a fuzzy 

linear HIV infection model in Zarei et al. (2012). Furthermore, Maan and Ramle 

(2017) developed a numerical solution for the fuzzy linear HIV model introduced by 

Zarei et al. (2012) using the Runge-Kutta fourth-order method (RK4). 

Consequently, the aim of this study is to modify and improve approximate 

analytical methods for fuzzy HIV infection models, eliminating the necessity for 

linearization or discretization while delivering a continuous solution. The utilization 

of these methods enables graphical representation of solutions through series 

solutions, facilitating researchers and healthcare professionals in gaining a deeper 

understanding of the disease dynamics. This approach aids in making informed 

decisions and evaluating the effectiveness of interventions and treatments.  

1.2 Problem statement 

In the fuzzy HIV infection models, the solution of these models can help 

researchers understand the underlying mechanisms of the disease and can also be 

used to test the effectiveness of different treatment strategies (Younus, 2021). FDEs 
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including fuzzy HIV infection are commonly solved using the approximation 

approach (Hasan et al., 2017). 

However, the existing approximate numerical methods necessitate the 

transformation of fuzzy HIV infection models into linear systems or discrete 

problems, providing results at discrete points without an explicit functional 

representation, hindering graphical representation. In contrast, the proposed 

approximate analytical methods prove versatile, as they not only apply to fuzzy HIV 

models without requiring linearization or discretization but also furnish continuous 

solutions and allow for graphical representation of solutions (Khodadadi & Celik, 

2013; Hasan et al., 2017). 

Certain approximate analytical methods within ODEs, such as the homotopy 

perturbation method (HPM) and variational iteration method (VIM), have shown 

promise in ensuring solution convergence (Yang, 2022; Timothy et al., 2019). These 

methods require less computational effort compared to other approximate analytical 

methods such as Adomian decomposition method (ADM) and homotopy analysis 

method (HAM) (Shakil et al., 2013; Paliivets et al.,2021; Omar, 2021; Liao & Zhao, 

2016; AL-Juaifri & Mechee; 2018).  However, they are generally less suitable for 

solving nonlinear ODEs over extended time spans due to the intricate dynamics of 

hyperchaotic systems (Razali 2015; Heydari et al., 2015; Gokyildirim et al., 2018; 

Timothy et al., 2019; Yang, 2022). 

The modified methods, multistage homotopy perturbation method (MHPM) 

and multistage variational iteration method (MVIM), have demonstrated efficacy in 

solving nonlinear ODEs for prolonged periods, particularly in the context of HIV 

infection models (Merdan et al., 2011; Vazquez et al., 2014; Bastani, 2014; Kamboj 

& Sharma, 2016). 
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As well as in fuzzy ordinary differential equations (FODEs), FHPM and 

FVIM have been found to be capable of generating accuracy approximate analytical 

solution for FODEs. The convergence solution of FHPM for FODEs has been proven 

by (Najafi et al., 2013; Saberirad et al.,2018; Anakira, 2019). Besides, the 

convergence solution of FVIM for FODEs has been proven by many authors such as 

(Fard & Ghal, 2011; Abbasbandy et al., 2011b; Allahviranloo et al, 2014). During 

this study, we seek to obtain approximate analytical solutions for fuzzy HIV 

infection models, which are one of the real-life systems. This study utilizes systems 

of FODEs to examine the dynamics of fuzzy HIV infection models. 

As a result, this research aims to modify and improve approximate analytical 

methods FHPM and FVIM to directly solve linear fuzzy HIV models. The modified 

methods, called multistage fuzzy homotopy perturbation method (MFHPM) and 

multistage fuzzy variational iteration method (MFVIM), will be used to solve 

nonlinear fuzzy HIV infection models over a prolonged period.  

These methods provide a convergence series solution for a long-time interval. 

They do not require linearization or restrictive assumptions, making them less prone 

to computation round off errors. The proposed methods allow for graphical 

representation of solutions, providing a visual representation of the results that 

because of the series solutions. This can help researchers and healthcare 

professionals gain insights into the dynamics of the disease, make informed decisions 

and in evaluating the impact of interventions and treatments. The research will 

systematically investigate the existence and uniqueness of solutions for these models, 

in addition to assessing the convergence of these solutions, with the aim of 

evaluating the effectiveness of the proposed methods. 
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1.3 Research questions 

This study will address the following research questions: 

1. What methods are appropriate for solving a dynamic system of first-order 

linear and nonlinear fuzzy HIV infection models without discretizing 

variable?  

2. What are suitable methods for solving a dynamic system of first-order 

nonlinear fuzzy HIV infection models with long-time span?  

3. Are the modified and extended methods feasible for solving fuzzy HIV 

infectious models in the presence of treatment?  

4. How to measure the performance of the modified and extended methods?  

1.4 Research objectives  

The objectives of this thesis are: 

1. To modify approximate analytical methods in parametric form of fuzzy 

numbers based on FHPM and FVIM in approximating the solutions of 

first- order linear and nonlinear fuzzy HIV infection models.  

2. To extend the modified methods in (1) in approximating the solutions of first-

order nonlinear fuzzy HIV infection models in the context of dynamic 

systems over a long-time span.  

3. To apply the modified and extended methods in (1) for solving linear and 

nonlinear fuzzy optimal control of HIV infectious models.  

4. To compare the performance of the modified and extended methods with the 

exact solution and existing methods in terms of accuracy. 
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1.5 Research scope 

This research, within the framework of fuzzy sets theory, concentrates on 

modification FHPM, FVIM, MFHPM, and MFVIM to address two categories of 

problems related to FIVPs: linear and nonlinear fuzzy models of HIV infection 

employing Hukuhara derivatives, and the conversion of certain crisp nonlinear HIV 

infection models into fuzzy representations. Furthermore, this thesis investigates the 

existence and uniqueness of solutions for these models, along with assessing the 

convergence of the solutions to gauge the effectiveness of the proposed methods in 

the Chapters four and five. The experimental analysis of the models proposed in this 

study will be carried out using Mathematica 12 software.  

1.6 Research significance 

The proposed methods FHPM, FVIM, MFHPM, and MFVIM, represent 

approximate analytical methods aimed to surmount the limitations inherent in 

existing numerical methods such as RK4 method and the generalized Euler method. 

These proposed methods yield convergent series solutions applicable over extended 

time intervals. Notably, they obviate the need for linearization or restrictive 

assumptions, minimizing susceptibility to computation round-off errors. 

Furthermore, they enable the graphical representation of solutions, offering a visual 

depiction of outcomes facilitated by the series solutions. This visual representation 

can aid researchers and healthcare professionals in comprehending the disease 

dynamics, facilitating informed decision-making, and assessing the impact of 

interventions and treatments. The research will systematically investigate the 

existence and uniqueness of solutions for these models, in addition to assessing the 

convergence of these solutions, with the aim of evaluating the effectiveness of the 

proposed methods. 
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1.7 Thesis organization 

This thesis has six chapters. Chapter 1 introduces the main research 

framework. Chapter 2 reviews previous literature. Chapter 3 provides the 

mathematical background, description of approximate analytical methods, and 

introduction of fuzzy set theory. It also covers the analysis of FIVPs systems, 

description of the methods in a fuzzy environment as well as convergence analysis of 

the methods, models under study and research methodology used in this study. 

Chapter 4 discusses various approximate analytical methods for solving a first-order 

linear fuzzy HIV infection model and its modification. These methods are based on 

FHPM and FVIM and take into account fuzzy initial conditions under Hukuhara 

derivatives. The chapter also covers the existence and uniqueness of the solutions for 

the proposed models and includes a detailed analysis of the solutions. Chapter 5 

presents methods for solving nonlinear fuzzy HIV infection models, using modified 

approximate analytical methods based on FHPM, MFHPM, FVIM, and MFVIM. It 

also discusses the process of converting some nonlinear HIV infection models from 

crisp to fuzzy, with a focus on the existence and uniqueness of the solutions and the 

convergence of the methods. The chapter also includes an analysis of the solutions 

obtained. Finally, Chapter 6 presents the conclusions of this study and some 

suggestions for future work. 
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CHAPTER 2                                                                                                                                                                       

LITERATURE REVIEW       

2.1 Introduction 

FDEs are popular among mathematical researchers since they can be used in 

many branches of application, such as physics, astronomy, biology, and population 

dynamics. Finding the exact solution to FDEs is difficult, due to the complexity of 

parameters of uncertainty. Therefore, FDEs are commonly solved using the 

approximation approach which includes the approximate numerical and approximate 

analytical methods. This work marks the first implementation of the strategy to 

modify and apply approximate analytical methods FHPM, MFHPM, FVIM, and 

MFVIM, in the investigation of fuzzy HIV infection models. Therefore, this chapter 

discusses fuzzy HIV models in the form of a system of FIVPs and the approaches to 

solving them.  

2.2 Human Immunodeficiency Virus  

HIV is an infection that the virus attacks the immune system, which is the 

body's natural defense against illness and infection. A healthy immune system is one 

that is able to effectively defend the body against harmful pathogens and infections. 

This is achieved through a combination of physical barriers, such as the skin, and the 

activity of immune cells, which can identify and neutralize invading organisms. An 

unhealthy immune system, on the other hand, may be weakened or compromised in 

some way, making the body more susceptible to infection and disease. This can be 

caused by a variety of factors, including poor nutrition, chronic stress, and certain 

medical conditions (Gombart et al., 2020). HIV continues to pose a significant 

challenge to global public health, having led to the loss of 51.3 million lives to date. 
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Ongoing transmission persists across all nations, with certain countries witnessing a 

resurgence in new infections after previous declines. HIV is transmitted through body 

fluids, such as blood, semen, vaginal fluids, and breast milk. When a person is 

infected with HIV, the virus attacks and destroys a type of immune cell called CD4 

cells, which are also known as T-cells. These cells play a crucial role in helping the 

body fight off infections and diseases. As HIV destroys more and more CD4 cells, the 

immune system becomes weaker and less able to fight off other infections and 

diseases. This is why HIV is such a serious disease and can lead to Acquired Immune 

Deficiency Syndrome (AIDS), which is the most advanced stage of HIV infection 

(Franjic, 2020). What do CD4 cells do? What is AIDS? How is HIV transmitted? 

What happens to the body when HIV infection occurs? Hussian and Suhhiem (2015), 

and later Franjic (2020) have discussed these questions in more detail. In Perrin et al. 

(1996), the first model proposed for HIV infection was introduced in the early 1980s 

by Dr. William McLean and colleagues at the Centers for Disease Control and 

Prevention in the United States. This model estimated the number of secondary 

infections that would arise from a single infected individual in a susceptible 

population and was used to predict the spread of the HIV epidemic in the early years 

of the epidemic. Since then, many other models have been developed to describe the 

dynamics of HIV transmission and the impact of interventions such as antiretroviral 

therapy and behavioral interventions.  

There are several mathematical models that have been developed to describe 

various aspects of the interaction between HIV and the immune cells. These models 

can help researchers better understand how the virus infects and spreads within the 

body, as well as how the immune system responds to the virus. They can also be used 

to predict the course of the disease and to evaluate the effectiveness of different 
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treatment strategies. The basic and simple model of HIV infection that contains three 

state variables: healthy CD4+ T cells, infected CD4+ T cells, and viruses, is presented 

by Nowak and May (1991) which is a basic model of HIV dynamic. In Capistran and 

Solis (2009) is proposed a class of models based on the Nowak and May model to 

study reactivation of resting infected T-cells, 𝑇𝑟, during long-term HIV infection. 

These models incorporate classes of 𝑇𝑟 cells and cytotoxic T-cells, 𝑇𝑐 . In addition, a 

number of mathematical models have been proposed to understand HIV dynamics, 

disease process, anti-retroviral response in (Nowak & May, 2000; Perelson & Nelson, 

1999; Perelson et al., 1993; Perelson et al., 1996; Perelson, 1989).   

The dynamic multidrug therapy problem is modelled in Wein et al., (1997) as 

an optimal control model that maximizes the inhibition of HIV. In Kirchner et al. 

(1997), finite horizon open loop control tools are applied to an HIV chemotherapy 

model using an objective function based on a combination of maximizing T-cells 

count and minimizing the systemic cost of chemotherapy.  

In study by Mhawej et al. (2010), the authors introduced a control and drug 

dosage for the HIV infection. The study applied on an HIV mathematical model 

proposed by Perelson et al. (1993), in Croicu (2015) aimed to develop a theoretical 

optimal control treatment for HIV infection of CD4+ T cells using Pontryagin's 

classical control theory. The goal of the treatment was to decrease the concentration of 

free HIV virus particles in the blood while minimizing toxicity to patients. The 

mathematical model used in the study was a system of nonlinear differential equations 

that modelled the concentration of susceptible CD4+ T cells, infected CD4+ T cells, 

and free HIV virus particles in the blood. Next section (2.3) focuses on reviewing the 

existing concept of non-fuzzy HIV models, which serves as the basis for the proposed 

methods for solving the suggested fuzzy HIV models in this work. 
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2.3 Existing methods of crisp HIV infection models  

The models in the crisp case of HIV infection models have been validated by 

many methods, which can be summarized as follows. In the research conducted by 

Ghoreishi et al. (2011), the HAM has been effectively developed and employed to 

address a model for HIV infection of CD4+ T-cells, utilizing the time interval [0,1] as 

proposed by Perelson (1989). The HAM solution incorporates the auxiliary parameter 

providing a straightforward means to adjust and govern the convergence region of the 

resulting infinite series. The results obtained indicate that HAM is a precise and 

efficient technique for approximating the solution of HIV infection in CD4+ T cells. 

Nevertheless, it's crucial to note that the convergence of the series in HAM may be 

influenced by the selection of the convergence control parameter. The accuracy of the 

solution is contingent upon this parameter, and determining an optimal value can be a 

challenging task. HAM may encounter convergence challenges, particularly for highly 

nonlinear or intricate systems.  

The study by Merdan et al. (2011) explore the utilization of the VIM and its 

modified version, MVIM, for approximating and analytically solving nonlinear ODE 

systems, exemplified by a model representing HIV infection of CD4+ T cells 

(Perelson & Nelson, 1999) over the time interval [0,3]. The VIM method relies on 

Laplace transformation and Padé approximants. The authors introduce the MVIM 

method, incorporating Padé approximants to enhance the precision of the VIM 

approach. The study showcases the outcomes of applying these methods to solve ODE 

systems, comparing them with the RK4 method. The results demonstrate the accuracy 

and efficiency of both VIM and MVIM methods, which notably do not necessitate 

variable discretization. Moreover, the approach is conceptually straightforward and 

easily implementable, involving the construction of a correction functional and 
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employing an iterative process for solution refinement. VIM has found successful 

applications in diverse types of differential equations, encompassing both ODEs and 

PDEs. The theoretical establishment of convergence for specific problem types 

underpins the method's reliability under certain conditions. However, despite existing 

convergence theory in some instances, VIM may encounter challenges, particularly in 

highly nonlinear or complex systems, with convergence behaviours contingent on the 

nature of the differential equation. On the other hand, MVIM exhibits success in 

solving hyperchaotic systems, demonstrating high accuracy, particularly for large time 

domain sizes. 

Additionally, Ongun (2011) discusses the application of the Laplace Adomian 

Decomposition Method (LADM) in solving nonlinear ODEs, such as those modelling 

the HIV infection of CD4+ T cells (Perelson et al., 1993) within the time interval 

[0,1]. The author illustrates that LADM can generate highly accurate approximate 

solutions with minimal iterations, making it a viable approach for solving nonlinear 

systems without resorting to linearization, perturbation, or discretization. The paper 

presents numerical examples and plots to underscore the method's reliability and 

simplicity. Nevertheless, the precision of LADM is contingent on the selection of 

Adomian polynomials compared with RK4. The convergence of the method may be 

influenced by the accuracy of these polynomials, posing a challenge in identifying 

suitable ones for certain problems. Despite its versatility, LADM might not be the 

most efficient choice for specific types of differential equations or boundary value 

problems, leading to limited applicability in certain instances. Particularly for highly 

nonlinear problems, LADM may exhibit slow convergence or fail to converge in some 

cases. 
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In Yüzbaş's study (2012), the Bessel Collocation Method (BCM) is introduced 

for approximating solutions to a set of nonlinear ODEs, specifically addressing the 

HIV infection model of CD4+ T cells (Perelson et al., 1993) within the time range 

[0,1]. The methodology involves transforming the problem into a system of nonlinear 

algebraic equations by expanding the approximations using Bessel polynomials and 

unknown coefficients. The determination of these unknown coefficients employs 

matrix operations and the collocation method. The proposed approach is showcased as 

reliable and efficient through a numerical example and comparison with alternative 

methods like VIM, MVIM, LADM, and RK4. The computations can be readily 

executed using programming platforms such as MATLAB, Maple, and Mathematica. 

The fundamental concept of the method is anticipated to be applicable to analogous 

nonlinear problems. Nevertheless, the study's tabulated results indicate that the 

method exhibits high accuracy within the interval [0,7], diverging from the outcomes 

obtained by MVIM and RK4 beyond that point. Additionally, the tables suggest that 

the validation of VIM, LADM, and BCM is effective only for short time intervals. 

Moreover, certain issues may give rise to ill-conditioned matrices, potentially 

impacting the stability and accuracy of the method. 

Furthermore, Vazquez et al. (2014) detail the application of a mathematical 

approach known as the Multistage Homotopy-Perturbation Method (MHPM) to 

characterize the behaviour of CD4+ T cells during an HIV infection (Perelson et al., 

1993) spanning the time interval [0,70]. The study includes numerical comparisons 

between the MHPM, the standard HPM, MVIM, and the RK4. The findings indicate 

that the MHPM method exhibits greater accuracy than other methods (MVIM and 

HPM) in forecasting the progression of the infection over an extended period of 70 

days compared to the alternative techniques. These comparisons highlight the MHPM 
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as a highly accurate and effective algorithm for solving HIV models and other 

hyperchaotic systems. Additionally, simulations demonstrate that the validity of the 

method can be maintained for an extended duration. 

In 2014, Bastani applied the MVIM to address a diverse set of first-order 

ODEs. The study introduced a theorem that established the convergence of this 

method. Subsequently, MVIM was employed to tackle a model related to the HIV 

infection of CD4+ T cells within the time interval [0,1]. The numerical results 

showcased the remarkable effectiveness of MVIM, surpassing the performance of the 

LADM method when compared to the RK4 method. However, the computation of the 

correction functional after a few iterations in subintervals posed challenges, making it 

difficult to obtain accurate values. To address this issue, the study suggests performing 

only a minimal number of iterations (e.g., one or two) in each subinterval and 

employing a large number of subintervals (small time step size) to achieve greater 

accuracy in the solution. The proposed method presents distinct advantages over RK4, 

being utilized without imposing restrictive assumptions and remaining unaffected by 

computation round-off errors. Furthermore, the method provides a continuous form 

solution. 

Moreover, Khalid et al. (2015) introduced a novel Iteration Algorithm known 

as the Perturbation Iteration Algorithm method (PIAM) and applied it to solve a 

model describing the HIV infection of CD4+ T Cells over the time interval [0,1]. The 

algorithm utilizes an infinite series to compute the solution of the governing 

differential equation, with components that are easily calculable. The reliability and 

efficiency of this proposed approach were demonstrated through numerical examples 

and compared with other methods such as Euler's, Differential Transform, and RK4. 

The PIAM was identified as a straightforward yet potent mathematical tool suitable 
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for solving nonlinear problems in systems of nonlinear differential equations and 

dynamical systems. It proved to be an accurate and efficient method, particularly 

when applied to the HIV infection model of CD4+ T-Cells in comparison to 

alternative methods. However, it is worth noting that the method may involve intricate 

mathematical manipulations and computations, especially when dealing with higher-

order perturbations and series expansions, rendering it computationally intensive. 

Additionally, the success of the PIAM depends on the convergence of the iterative 

process, which, in some cases, may be challenging to achieve, making the method 

inapplicable. 

In the investigation conducted by Kamboj and Sharma (2016), mathematical 

models and the MVIM are employed to explore the impact of combined drug therapy 

on the growth of HIV and the dynamics of the CD4+ T-cell population within the time 

span [0,700]. The model is employed to gain insights into the existence and stability 

of both infected and uninfected steady states in HIV growth. The MVIM is adapted to 

yield rapidly convergent successive approximations of the exact solution, with no 

alterations or constraints imposed on the physical behavior of the problem. Numerical 

simulations are utilized to elucidate the consequences of the proposed drug therapy on 

the progression or decline of the infection. 

Later, AL-Juaifri and Mechee (2018) employed mathematical modeling to 

examine the HIV infection of CD4+ T cells over the time interval [0,1]. They utilized 

a set of nonlinear ODEs to depict the IVPs and subsequently employed two methods, 

HPM and VIM, to assess the population of uninfected CD4+ T cells in the organism. 

By comparing the outcomes derived from these two methods in relation to accuracy 

and computational time, they demonstrated the superiority and efficiency of these 

approaches. 
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Senthamarai et al. (2018) proposed a mathematical model for the dynamics of 

HIV infection over the time interval [0,1] using the HPM to obtain an analytical 

solution. The authors used the MATLAB software to generate graphical and 

numerical solutions and found that the HPM provided an approximate analytical 

solution for each compartment of the model. The analytical results were compared to 

simulation results and a satisfactory agreement was observed. The authors also noted 

that the HPM is a relatively simple method and can be used to solve other nonlinear 

equations. 

Additionally, Perturbation (2018) investigates a mathematical model 

portraying the HIV infection of CD4+ T cells over the interval [0,1] through the use of 

nonlinear ODEs. The primary goal is to employ the HPM and VIM techniques to 

assess the population of uninfected CD4+ T cells within the organism. The study 

includes a comparison of these two methods in relation to accuracy and computational 

time, demonstrating their efficiency in approximating solutions for the systems of 

ODEs. 

The study by Timothy et al. (2019) developed a linear mathematical model of 

HIV/AIDS dynamics that considers counselling and anti-retroviral therapy (ART) 

using ODEs over the interval [0,50]. The study used VIM to obtain solutions for the 

model and sub-models, which provided continuous solutions that can be used for 

further analysis. The solution when it exists is found in a rapidly converging series 

form. The results showed that the VIM method was an alternative to the RK4 method 

and that for effective counselling and ART to lead to eradication, it is necessary for 

the same proportion of males and females to be involved in ART. The study also 

found that the equilibrium state of the general model was locally and asymptotically 

stable.  
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Ali et al. (2019) employed the ADM to solve a model describing HIV infection 

in chronically infected CD4+T cells over the time interval [0,50]. The ADM was 

applied to a deterministic mathematical model featuring four compartments that 

represent latently infected CD4+T cells. The effectiveness and dependability of this 

method were illustrated through numerical examples, revealing that the ADM is 

capable of providing approximate solutions in a more efficient and reliable manner. 

Additionally, the ADM stands out for its practicality, as it does not necessitate 

specialized equipment or extensive time when implemented with computer programs. 

However, it's worth noting that the results lack a comparison with alternative methods 

in terms of accuracy. Furthermore, the accuracy of the ADM is contingent on the 

choice of Adomian polynomials, and the convergence of the method may be 

influenced by the precision of these polynomials. Selecting appropriate polynomials 

could pose a challenge for certain problems. 

In study by Bunga and Ndii (2020) the authors present a mathematical model 

of HIV with antiviral treatment and use the differential transformation method (DTM) 

to solve the model within the time span [0,50]. DTM is a semi-analytical technique 

that provides an iterative procedure to obtain the power series of the solution in terms 

of initial value parameters. The results of the DTM are compared to those of the RK4 

method and it is found that the DTM gives good agreement with the RK4 method for 

smaller time steps but fails for larger time steps. The authors suggest that some 

modifications may be required to enhance the performance of the DTM for larger time 

steps, but this is not the focus of the paper. 

Afterward, Shah and Sheoran (2022), studies the co-infection dynamics of 

pneumonia and HIV/AIDS through a mathematical model that includes different 

equilibrium points for each disease and co-infections. The main focus of the study is 
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to demonstrate the efficiency of the HPM in solving nonlinear ODEs within the time 

span [0,1]. The results obtained from the numerical simulations indicate that the HPM 

is reliable and converges quickly. The results also show the importance of preventive 

measures for HIV-infected individuals to protect themselves from co-infection with 

pneumonia. It is emphasized that HIV-infected individuals should be more aware of 

their health conditions and take the proper medications to avoid other infections. In 

addition, it is also stressed that individuals suffering from either disease should take 

their treatments at the right time to prevent the spread of co-infections. 

In summarizing this section, various methods utilized in HIV infection models, 

such as HAM, HPM, BCM, ADM, LADM, PIAM, DTM, and VIM, have proven 

effective in addressing nonlinear HIV infection models for short time intervals. 

However, their suitability diminishes when applied to nonlinear ODEs governing HIV 

infection models over extended durations due to the complex dynamics of 

hyperchaotic systems (Razali 2015; Heydari et al., 2015; Liao & Zhao, 2016; 

Gokyildirim et al., 2018; Timothy et al., 2019; Yang, 2022). An advantage of HPM 

and VIM is their lower computational requirements compared to other approximate 

analytical methods like ADM and HAM (Shakil et al., 2013; Paliivets et al., 2021; 

Omar, 2021; Liao & Zhao, 2016; AL-Juaifri & Mechee; 2018). In addition, they have 

shown promise in ensuring solution convergence (Yang, 2022; Timothy et al., 2019). 

Modified methods, MHPM and MVIM, have demonstrated effectiveness in solving 

nonlinear ODEs for extended periods, particularly in the context of HIV infection 

models (Merdan et al., 2011; Vazquez et al., 2014; Bastani, 2014; Kamboj & Sharma, 

2016). 

 However, in the real world, there are various HIV infected patients with 

different strengths of immune system causing uncertainty as to the immune cells level 
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and the viral load during the different stages of the disease (Zarei et al., 2012). None 

of the previous models can mirror the mentioned uncertainties. Proposing a 

mathematical model with fuzzy parameters which could reflect such ambiguities 

would be desirable (Hussian & Suhhiem., 2015). 

2.4 Fuzzy HIV infection models  

In HIV the uncertainty is modelled by fuzzy subsets, where two approaches 

are used to study continuous fuzzy dynamical systems in these models with several 

types of derivatives to represent the continuous variation rate that will appear. The 

fundamental difference of each one of the methods is the treatment given to the 

variation rate and/or how it is related to the state variables. The first approach evolves 

the derivative. Originally developed for functions with values in classical sets and 

subsequently adapted for functions with values in fuzzy sets (FDEs). The second 

approach differs from the other one because the rate is related to the state variables 

given by some fuzzy rules instead of an equation (Fuzzy Rule-Based Systems) (De 

Barros et al. 2017). In this work we will use the first approach to study fuzzy 

dynamical systems in fuzzy HIV infection models. The solution of fuzzy HIV 

infection models can help researchers understand the underlying mechanisms of the 

disease and can also be used to test the effectiveness of different treatment strategies 

and should provide useful information for the healthcare of the nation, as stated in the 

section of Ministry of Health Malaysia (2015) in the national strategic plan for ending 

AIDS (2016-2030).  

2.4.1 Derivative approach for solving fuzzy HIV infection models  

Once the concept of differentiability is defined for fuzzy mappings, it becomes 

possible to study FDEs and develop techniques for solving them. This is an active area 

of research, with ongoing efforts to better understand the behaviour of fuzzy systems. 
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In this approach, there are numerous existing methods to solve FODEs of type FIVPs 

including fuzzy HIV infection models. In general, the methods can be divided into 

two approaches: fuzzy approximate numerical and fuzzy approximate analytical.  

2.4.1(a) Fuzzy approximate numerical methods 

The fuzzy approximate numerical methods are a class of computational 

methods that are used to solve problems in fields such as physics, engineering, and 

other areas where real-world problems need to be modelled and analysed (Li & Chen, 

2018). The approximate numerical methods give solutions approximately in numeric 

value form, and the error in the solution can be estimated using arithmetic operations 

(Moore & Ertürk, 2020). This class of methods is described in more detail in Moore 

and Ertürk (2020). The classes of existing approximate numerical methods for fuzzy 

HIV infection models are available in some articles.   

In the study of Najariyan et al. (2011) suggested a nonlinear model of HIV 

infection with FDEs. Since the proportion of the disease depend on the gender, age, 

feeding, one needs to consider the variables in equations as fuzzy variables. Also, a 

fuzzy dynamical system is considered to control HIV disease. They used α-cuts to 

convert the system into two non-fuzzy ODEs, then used a discretization approach, and 

applied generalized Euler method for solving two systems. The authors suggest that 

treating the equation variables as fuzzy variables can lead to a more accurate 

representation of the HIV infection and can also help to manage the disease through 

the use of a fuzzy dynamic system. In addition, Euler method is a one-step numerical 

method that belongs to the family of Runge-Kutta methods and directly computes the 

values of the solution at discrete points. It is suitable for both linear and nonlinear 

problems. The method is generally accurate for a wide range of problems, especially 

when the step size is appropriately chosen. typically has a moderate computational 


