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RAMALAN BANJIR BERDASARKAN RANGKAIAN 

PEMBELAJARAN DALAM DENGAN PENGURAIAN MOD VARIANS 

ABSTRAK 

Perubahan iklim meningkatkan frekuensi kejadian cuaca ekstrem. Banjir dari 

limpahan sungai merupakan ancaman utama yang berpotensi membahayakan 

keselamatan manusia dan ekosistem. Naik turunnya paras air disebabkan oleh 

topografi dan curahan hujan menjadikan ramalan banjir semakin mencabar. Model 

ramalan banjir tradisional sering menghadapi kesukaran untuk menangani gangguan 

secara berkesan terhadap data hidrologi dan pembolehubah meteorologi yang 

mengakibatkan ramalan yang kurang tepat. Tesis ini bertujuan untuk meningkatkan 

ketepatan ramalan banjir dengan membangunkan dan menilai tiga model baharu 

pembelajaran mesin yang menggabungkan penguraian data, pemilihan ciri, dan 

mengoptimumkan parameter. Dua model pertama menggunakan data paras air bagi 

setiap jam. Model pertama menggunakan data hidrologi dengan menggabungkan 

kaedah Penguraian Mod Variasi (VMD) untuk mengurangkan gangguan, serta 

Rangkaian Memori Jangka Pendek Berarah Dua (BiLSTM) yang dioptimumkan 

dengan perhatian untuk tujuan peramalan. Model kedua meningkatkan keberkesanan 

ramalan dengan menggabungkan data meteorologi iaitu maklumat hujan, kelembapan, 

dan kelajuan angin. Model ini menekankan manfaat pengelasan komponen VMD dan 

pemilihan ciri dengan cara mempertimbangkan perubahan paras air untuk 

mengkategorikan Fungsi Modul Intrinsik (IMF) yang diperoleh dari kaedah VMD dan 

menggunakan pemilihan ciri melalui kaedah korelasi Pearson. Model ketiga 

menggunakan kaedah Unit Berulang Berpagar yang dioptimumkan dengan Rangkaian 

Konvolusi Temporal (GRU-TCN) untuk meramal data harian pada anggaran titik dan 
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dalam selang keyakinan. Model ini memperbaiki Anggaran Ketumpatan Inti (KDE) 

untuk menilai ketidakpastian ramalan secara lebih tepat dan meningkatkan 

kebolehpercayaan model. Ketiga-tiga model yang dicadangkan ini mampu mengatasi 

kelemahan kaedah tradisional dengan menggunakan data sebenar dari stesen Sungai 

Yangtze. Hasilnya, model-model yang diuji telah menunjukkan pengurangan ralat 

purata kuasa dua akar (RMSE) sebanyak lebih daripada 30%. Hasil analisis 

menunjukkan kaedah Penguraian Mod Varians (VMD) lebih berkesan untuk data set 

selang bagi setiap jam, manakala integrasi pembolehubah meteorologi meningkatkan 

ramalan jangka pendek terutamanya semasa musim tengkujuh. Model-model yang 

dicadangkan ini mempunyai potensi diaplikasikan dalam sistem pengurusan banjir 

bagi selang masa nyata dalam mengatur strategi respons bencana dan dapat memantau 

kejadian penyesuaian perubahan iklim dengan cara menyediakan ramalan dan simulasi 

yang tepat bagi kemungkinan berlakunya senario banjir di masa hadapan.   
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FLOOD PREDICTION BASED ON DEEP LEARNING NETWORKS 

WITH VARIATIONAL MODE DECOMPOSITION  

ABSTRACT 

Climate change increases the frequency of extreme weather events, causing river 

overflow floods that threaten human safety and ecosystems. Traditional flood 

prediction models face challenges due to fluctuations in water levels from topography 

and rainfall, leading to less accurate forecasts. This thesis aims to enhance flood 

prediction accuracy by developing and evaluating three new machine learning models 

that incorporate data decomposition, feature selection, and parameter optimization. 

The first two models use water level data for each hour. The first model utilizes 

hydrological data by integrating the Variational Mode Decomposition (VMD) method 

to reduce disturbances, along with Directional Bidirectional Long Short-Term 

Memory (BiLSTM) optimized with attention for forecasting purposes. The second 

model enhances prediction effectiveness by incorporating meteorological data 

specifically rainfall, humidity, and wind speed. This model emphasizes the benefits of 

VMD component classification and feature selection by considering water level 

changes to categorize Intrinsic Mode Functions (IMFs) obtained from the VMD 

method and using feature selection through the Pearson correlation method. The third 

model uses an optimized Gated Recurrent Unit - Temporal Convolutional Network 

(GRU-TCN) to forecast daily data at point estimates and confidence intervals. This 

model improves Kernel Density Estimate (KDE) predictions to assess forecast 

uncertainty more accurately and enhance model reliability. These three proposed 

models can overcome the weaknesses of traditional methods by utilizing real data from 

the Yangtze River station. As a result, the tested models have shown a reduction in the 
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Root Mean Square Error (RMSE) by more than 30%. The analysis indicates that the 

Variational Mode Decomposition (VMD) method is more effective for interval dataset 

for each hour, while integrating meteorological variables improves short-term 

forecasts, especially during the monsoon season. These proposed models have 

potential applications in real-time flood management systems for disaster response 

strategies and can monitor climate change adaptation events by providing accurate 

forecasts and simulations for potential future flood scenarios.  
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CHAPTER 1  

 

INTRODUCTION 

1.1 Research Background 

With global climate change, the frequency and intensity of extreme weather 

events have increased. Floods, as one of the primary forms of disasters, have a 

significant negative impact on human society and the natural environment. Such 

impacts lead to many material losses and long-term socio-economic problems 

(Mobini et al., 2022; Kou et al., 2019). Floods not only directly threaten the safety of 

human life and property but can also lead to agricultural losses, the spread of disease, 

transportation disruptions, and long-term environmental degradation. Flood impacts 

are particularly severe in areas that lack effective forecasting and emergency 

preparedness. The percentage of personnel losses caused by natural disasters in Asia 

is approximately 90%, usually attributed to floods (Skevas et al., 2023). As the planet 

faces the increasing disruptions of climate change, floods are becoming not only more 

frequent but also more destructive. The consequences of flooding are devastating, from 

the immediate destruction of infrastructure and homes to the long-term socioeconomic 

disruption that follows. Accurate flood forecasting has become a key focus for 

researchers and policymakers, it can help predict future floods and inform people to 

prevent and reduce loss of life and economic damage during floods (Jain et al., 2018), 

enhance emergency response efficiency, and reduce human casualties and economic 

losses while supporting more informed decision-making and community resilience 

building.  

Hydrologists and mathematical statisticians have been studying flood 

characteristics for a long time, trying to predict water level or volume changes by 
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constructing statistical models of hydrological processes. The research on flood 

prediction is mainly divided into two categories. One is based on meteorological and 

hydrological characteristics through satellite observation data (Jain et al., 2018), with 

the help of a geographic GIS system, combined with hydrology (Mondal et al., 2023), 

dynamics (Mondal et al., 2023), and other knowledge (Coelho et al., 2022; Kou et al., 

2017), to establish a flood prediction system, simulate the process from rainfall to 

flood formation, and carry out water level prediction. The other is based on combining 

traditional statistical models and other algorithms, such as the combination of time 

series models (Hadhbi and Kacem, 2022; Yang and Chen, 2019; Hakim et al., 2023), 

and deep learning (Kim and Han, 2020; Bentivoglio et al., 2022; Ma et al., 2024). 

With the development of Artificial Intelligence (AI), machine learning and deep 

learning have become the research hotspots of flood prediction. However, deep 

learning algorithms face challenges in parameter selection, model construction, and 

uncertainty assessment of predictions. Different research areas are suitable for 

different prediction models, and the oscillation of water levels during floods also 

increases the prediction difficulty.  

As the longest river in China, the Yangtze River has a total length of about 

6397 kilometers and flows through multiple provincial-level administrative regions. 

The total basin area is about 1.8 million square kilometers, accounting for about one-

fifth of China's land area. Although the Yangtze River provides irrigation and drinking 

water for China, it has also experienced multiple floods, causing significant losses to 

the Chinese people and property. This thesis will study the methods of flood prediction 

and conduct novel prediction models based on data from the Yangtze River stations, 

develop deep learning models with better prediction accuracy, analyze the uncertainty 

and reliability of prediction models, and verify the stability of the constructed models. 
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Aiming to provide more competitive prediction methods for flood prediction and more 

advanced methods for flood control and disaster reduction along the Yangtze River.  

1.2 Problem Statement 

The water level fluctuates dramatically during floods, and various noises are 

introduced due to wind and dust, making prediction more challenging. Several studies 

have employed data decomposition techniques like Empirical Mode Decomposition 

(EMD) and Variational Mode Decomposition (VMD) to enhance prediction accuracy. 

Examples include EMD-Arima (Wang et al., 2018), EMD- Artificial Neural Network 

(ANN)(Ahmad et al., 2024), EMD- Long Short-Term Memory (LSTM) (Yuan et al., 

2021), , and VMD based methods such as VMD-LSTM (Han et al., 2019; Guo et al., 

2023), VMD-Kernel Extreme Learning Machine (Liu et al., 2023), VMD-Time 

Convolutional Network (TCN)( Wang and Liang, 2021). However, the EMD 

algorithm lacks a solid mathematical foundation and relies on local features and 

extreme points in the signal to decompose signals, making it sensitive to noise 

(Civera and Surace, 2021). If the signal contains rapidly changing frequencies, EMD 

decomposition is prone to misidentify the noise and cause modal overlap (Guo et al., 

2023). VMD improves the accuracy of frequency separation and reduces mode overlap 

by solving the variational problem, but VMD's performance heavily depends on the 

parameter settings, such as the number of modes and the penalty parameters that are 

challenging to select. Intelligent optimization algorithms will be explored in this thesis 

to assist in identifying suitable parameters for VMD, thereby enhancing its efficacy in 

flood prediction models. 

Machine learning, deep learning, and LSTM have become popular methods in 

flood prediction analysis since 2019(as shown in Figure 2.1). Traditional linear models, 
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such as ARIMA, require data to be stationary and tested, and assume that errors are 

independently and identically normally distributed, which limits their applicability to 

the real-world (Hadhbi and Kacem, 2022; Valipour, 2015; Garg et al., 2023). Deep 

learning is a branch of machine learning, and LSTM is a widely used deep learning 

network It features gated memory units and the ability to model nonlinear data, 

particularly suitable for predicting random and complex signals like floods (Kim and 

Han,2020; Chen et al., 2023; Bentivoglio et al., 2022; Sun et al., 2023), but LSTM has 

difficulty selecting hyperparameters. Improper choice of hyperparameters may result 

overfitting or underfitting, leading to learning the noise in the training data or failing 

to capture the complex patterns, and LSTMs only pass information from front to back, 

ignoring the backward information to the current state, which may be less than optimal 

for predicting continuous water flows. It is imperative to develop deep learning models 

with multidirectional learning ability and build more accurate models with excellent 

generalization capabilities. 

The effectiveness of deep learning models heavily depends on the choice and 

configuration of parameters and their internal architecture. Incorrect parameter 

settings can lead to weakened performance, overfitting, underfitting, or even gradient 

vanishing, all of which negatively impact the model's predictive accuracy (Arora et al., 

2021; Ahmed et al., 2022). To overcome these challenges, this research will explore 

advanced parameter adjustment techniques and the construction of integrated networks 

to enhance the model's generalization ability and mitigate overfitting and underfitting. 

Combined with the meteorological data, the model constructed by VMD 

combined with CNN and LSTM can enhance spatial information extraction and 

improve model effectiveness (Guo et al., 2022; Wu et al., 2023), but the frequency of 

IMFs changes after the VMD decomposition, which makes it difficult to reasonably 
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match with multiple input variables (Guo et al., 2023).  Addressing this issue requires 

developing classification methods for VMD and feature matching of VMD IMFs with 

input variables.  

Most flood forecasting research focuses on point estimate forecasting, but it is 

difficult to estimate the uncertainty of flood forecasting, for it just provides a single 

predicted value, which inherently overlooks the variability and potential range of 

outcomes in complex flood systems, leading to potentially misleading predictions 

about flood risks and magnitudes (Beven and Freer, 2001; Khanesar and Branson, 

2021). Interval forecasting helps to give a better understand of the scope and risks of 

the flood prediction (Khanesar and Branson, 2021; Wang and Li, 2023; Pan et al., 

2020). Xu et al. (2022) and Wu et al. (2023) utilized both point and interval prediction 

to further quantify the uncertainty of the prediction results, but they lacked an in-depth 

analysis of error distribution. Further analyzing the prediction error distribution can 

reflect the stability of the predicting models and improve their performance.  

1.3 Research Questions  

Based on the problem statement above, we summarize the following research 

questions: 

(1)  In the data pre-processing stage, how can flood forecasting accuracy be 

improved by selecting appropriate noise reduction techniques (EMD or VMD) 

and decision parameters? 

(2) How can deep learning models with multi-directional learning ability and 

excellent generalization capabilities be constructed to achieve higher 

accuracy, especially during the flood-prone period? 
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(3) How to improve the performance and stability of the constructed deep 

learning models through parameter optimization and structural tuning? 

(4) Given that varying parameter selections can result in different VMD IMFs, 

how can a hybrid model be constructed to extract spatiotemporal input 

information and classify these different frequency VMD IMFs to match the 

input variables better? 

(5) How to interpret and evaluate the predictive models’ uncertainty and further 

prove the prediction models’ reliability? 

1.4 Research Objectives  

To address the research questions, the following research objectives are 

proposed: 

(1) To remove noise using the decomposition technique VMD and apply 

intelligent optimization methods for VMD parameter selection.  

(2)  To develop optimized hybrid flood prediction models based on VMD for 

short-term prediction. 

(3) To build neural networks with improved efficiency by avoiding gradient 

vanishing through adjustments in model structure, activation function, and 

optimizer.  

(4) To construct hybrid models by extracting spatiotemporal information from 

hydrology and meteorology data, with feature selection on multi-variable 

inputs.  
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(5) To evaluate the uncertainty and reliability of flood prediction models using 

interval prediction through non-parametric kernel density estimation (KDE) 

and bootstrap sampling.  

1.5 Scope of the Study 

This study focuses on the Yangtze River hydrological stations in Hubei 

Province, combined with the information of the surrounding meteorological stations. 

Using hourly and daily data, a comprehensive prediction study, aiming to improve the 

prediction accuracy and assess the uncertainty of the prediction is carried out. Firstly, 

based on hourly data under the VMD decomposition technique, the performances of 

models constructed only by hydrological data are compared with models that use 

hydrological and meteorological information. Then, the improvement effect of 

parameter optimization and feature selection on model prediction is explored. Lastly, 

based on daily data from 2017 to 2021, a novel hybrid prediction model that can learn 

the long pattern of the flood is established, and the model's reliability is proved by 

analyzing the distribution of prediction errors. Point prediction and interval prediction 

is compared, and the flood prediction error is analyzed.  

The research mainly involves five aspects: data decomposition techniques for 

noise reduction, model parameter optimization methods, hybrid deep learning model 

construction and structure adjustment, hybrid spatiotemporal model construction with 

feature selection, and model prediction comparison and error analysis.  

1.6 Significance of the Study 

The world is currently experiencing the impact of climate change, manifesting 

in ongoing floods that pose substantial threats to lives and property. Forecasts suggest 
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that by 2050, both the frequency and intensity of floods will escalate, potentially 

leading to substantial financial losses estimated at 1 trillion dollars (Huang et al., 2019), 

(Rahman et al., 2021). Floods commonly arise from factors such as intense rainfall 

and increased water levels in rivers and reservoirs. Precise prediction of water levels 

is crucial for optimizing water resource utilization and enhancing water resource 

management, which is conducive to promoting sustainable resource management 

development.  

During the flood period, water level fluctuations become more random, and 

frequency changes become more complex, introducing noise that complicates flood 

prediction. This study is crucial for advancing flood prediction methodologies, 

particularly as climate change heightens the frequency and severity of extreme weather 

events. By employing VMD for data preprocessing, the study effectively reduces noise 

and improves data feature interpretation, leading to more accurate predictions. The 

integration of hybrid models combining different approaches has demonstrated 

superior performance over traditional models, offering more reliable forecasts. 

Furthermore, optimal parameter selection enhances model stability and efficiency, 

while feature selection techniques ensure the use of the most relevant variables, 

significantly boosting predictive accuracy.  Additionally, incorporating interval 

prediction provides a comprehensive evaluation of model uncertainty by offering a 

range of potential outcomes, thus aiding in better error estimation analysis, and 

assisting practical application.  

Three novel models for flood prediction are proposed to improve the prediction 

accuracy of deep learning models. These models will enhance the applicability and 

effectiveness of hybrid models in complex environments, providing better support for 

the decision-making process in flood management. Specifically, their implementation 
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holds significant importance for predicting floods in the Yangtze River and aiding 

decision-makers in effectively mitigating such disasters.  

1.7 Thesis Organization and Contributions 

This thesis consists of 7 chapters. Chapter 1 describes the study on flood 

prediction, the research problem, and the objectives. It also gives the study area and 

data sources. Chapter 2 presents the literature review, covering research trends, 

research methods, deep learning-based flood forecasting methods, data decomposition 

techniques, and forecast error analysis. Summarize the main methods and research 

directions of flood prediction.  

Chapters 3 to 6 are the main contributions of this Ph.D. thesis. Chapter 3 is a 

preliminary analysis of the EMD and VMD decomposition predictions for the Yangtze 

River water level to identify more suitable data decomposition techniques for our study, 

and the logical and methodological connection of the research in chapters 4-6 is given. 

Chapters 4 and 5 introduce two innovative hybrid prediction methods based on hourly 

data. Chapter 4 (corresponding to the first paper in the list of publications) involves 

constructing hybrid deep-learning models based on hydrological data, focusing on 

VMD decomposition technique and parameter optimization, while Chapter 5 

(corresponding to the second paper in the list of publications) takes meteorological 

data into account, using BiLSTM to extract long-time information and CNN to extract 

spatial information, focusing on feature selection and VMD IMFs’ classification. To 

further explore the long-term variations in Yangtze River floods and evaluate the 

prediction model's uncertainty and reliability, Chapter 6 (corresponding to the third 

paper in the list of publications) progresses to daily data from hydrological and 

meteorological stations, where an advanced hybrid prediction model using GRU and 
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TCN is developed. This chapter conducts experimental simulations to assess the 

model's predictive performance across 2 station data and provides interval estimation 

results, a KDE nonparametric analysis is used to enhance the prediction model’s 

reliability.  

Finally, Chapter 7 provides a conclusion and future work section that 

summarizes the research contributions and limitations, offers directions and 

recommendations for future research.   
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CHAPTER 2  

 

LITERATURE REVIEW 

2.1 Introduction 

Floods are regional and seasonal, and flood prediction methods based on 

decomposition techniques and deep learning networks are widely researched and 

applied by scholars and decision-makers in various countries. Accurate flood prediction 

can improve the ability of human beings to cope with risks, which is conducive to 

managers making the correct assessment and decision-making. Hydrologists and 

statisticians have extensively studied flood characteristics to predict water level or flow 

changes by constructing hydrological statistical models. New data-mining techniques 

are providing better help in prompting researchers to obtain accurate flood prediction 

data. However, the water level fluctuates wildly and randomly during floods and often 

introduces a certain degree of noise, dramatically increasing the prediction difficulty. 

Data decomposition methods and feature selection can aid in reducing noise to smooth 

the data and enhance the accuracy of subsequent time-series predictions. This chapter 

aims to sort out the flood prediction methods based on deep learning networks and 

decomposition techniques, classify and analyze the research methods and the research 

trends, discuss the prediction uncertainty and reliability, summarize the research 

directions, advantages, and limitations, and give the research direction of this Ph.D. 

thesis.  

2.2 Flood Prediction Research Trends 

In this section, a comprehensive literature search is conducted for studies related 

to flood prediction methods using two well-known academic databases, Web of Science 
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and China Knowledge Network. By carefully screening and comprehensively analyzing 

the searched papers, this study aims to depict the research dynamics in flood prediction, 

clarify current trends, and identify the mainstream prediction methods. During the data 

collection process, particular attention is paid to information such as the year of 

publication, research organization, and number of citations, which helped determine the 

influence and popularity of different methods. The search results are classified and 

organized through statistical analysis of highly cited papers to determine which methods 

are more widely accepted and used in academia and practice and what the leading 

research directions are.  

2.2.1 Trends in Flood Prediction Methods                                                                                                                                                           

To understand the development trends of flood prediction methods, further 

research was conducted by combining searches for international literature in the CNKI 

(China Knowledge Network) database with the topic "flood prediction", selecting 

relevant literature from 2015 to 2024, totaling 1360 publications. A keyword analysis 

of the literature was performed, and Figure 2.1 presents the research trends of the main 

associated methods.  

Data Decomposition

 

Figure 2.1       Trends in flood prediction methods 

From Figure 2.1, it is evident that machine learning methods based on data 

decomposition combined with Artificial Neural Networks and Remote sensing are the 
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mainstream approaches for prediction. Since 2019, research papers related to deep 

learning and LSTM have begun to increase, and papers on flood prediction related to 

machine learning have also shown significant growth. This is because Google released 

the TensorFlow and PyTorch deep learning frameworks in 2015 and 2017 (Steiner et 

al., 2019, 2016), respectively, making building and deploying complex deep learning 

models more accessible and efficient. Deep learning algorithms excel at processing 

nonlinear data, yet they involve complex model structures and numerous parameters, 

making it challenging to configure the optimal model architecture and parameter 

settings for specific problems. These limitations underscore the crucial importance of 

parameter selection and model construction in enhancing the deep learning models' 

performance and applicability.  

2.2.2 Research Methods Analysis 

From the comprehensive literature analysis, approaches in flood forecasting 

include hydrological models, statistical methods, and data mining methods (Hakim et 

al., 2023). Current research in flood prediction mainly includes topics such as the 

development of early warning systems (Habibi et al., 2023; Syed et al., 2021), relation-

ship between climate change and floods (Nguyen et al., 2023; Yan et al., 2022), and the 

development of advanced flood prediction models (Schumann et al., 2022; Mosavi et 

al., 2018; Hu et al., 2019a; Yan et al., 2022; Chen et al., 2022a; Zhang et al., 2023).  

River flood prediction is mainly for water level, runoff, water flow, flood level 

prediction, flood frequency prediction, and flood duration prediction, combined with 

other data from hydrological stations (Mondal et al., 2023) and meteorological 

(Rahman et al., 2021; Coelho et al., 2022). Some researches also focus on the 

topographic characteristics of the research area (Syed et al., 2021), with the help of 
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Geographic Information System (GIS) systems (Chou et al., 2020a), to make a 

comprehensive prediction (Ahmed et al., 2022; Ma et al., 2024).  

Autoregressive integrated moving average (Arima), as a classic time series 

prediction method, is often used to extract statistical features of flood sequences 

(Elganiny and Eldwer, 2018; Yan et al., 2022) and construct time series prediction 

models (Subha and Saudia, 2023; Ab et al., 2016).  Arima model is often combined 

with Seasonal Arima (Saleh and Tei, 2019; Valipour, 2015) and Garch models 

(Pandey et al., 2018; Wang et al., 2023) to achieve more accurate forecasts. However, 

they are good at handling linear features and lacks predictive ability for complex 

nonlinear data (Jain et al., 2018). Support Vector Machine (SVM) is suitable for 

nonlinear regression problems, to identify the global optimal solution in flood 

models(Mirkazemi et al., 2023; Tehrany et al., 2015). However, SVMs face challenges 

in flood forecasting due to their sensitivity to parameter selection, scalability issues with 

large datasets, and difficulty in capturing complex, non-linear relationships in 

hydrological data (Samantaray et al., 2023).  

In response to the limitations of linear and nonlinear prediction methods like 

Arima and SVM, recent research has focused on joint prediction using spatio-temporal 

features (Noor et al., 2022; Chen et al., 2022a). By incorporating spatial and temporal 

data, models are better equipped to capture the complex interactions that influence flood 

events. Building hybrid models that combine machine learning and statistical 

approaches has become a popular trend (Samantaray et al., 2023; Xu et al., 2021; 

Yang and Zhang, 2022; Ji et al., 2021). These hybrid models aim to leverage the 

strengths of different techniques, improving prediction accuracy and robustness in 

handling both linear and nonlinear patterns.  
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With the development of AI, research trends have turned to data-driven models 

facilitated by machine learning and deep learning prediction methods (Ma et al., 2024; 

Sankaranarayanan et al., 2019; Hu et al., 2019a). Machine learning and deep learning 

prediction methods surpass Arima models in efficiently handling large datasets, 

capturing complex nonlinear relationships, and exhibiting superior predictive accuracy 

and adaptability with high-dimensional data (Garg et al., 2023; Hakim et al., 2023). 

Combined with data preprocessing (Wang et al., 2018; Guo et al., 2023) and feature 

screening (Habibi et al., 2023; Garg et al., 2023), exploring the construction of deep 

learning networks to enhance the learning ability of spatiotemporal data becomes the 

direction of flood forecasting research. Based on the comprehensive literature review, 

the main research directions about deep learning methods on flood prediction are shown 

in Figure 2.2 (Hakim et al., 2023).  
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Figure 2.2       Current Research Themes and Directions 
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From Figure 2.2, flood prediction is categorized into long-term and short-term 

predictions. Long-term forecasts are typically made weekly, monthly, quarterly, or 

yearly. They are usually based on climate patterns, historical precipitation data, land 

use, and hydrologic and hydrodynamic models, focusing on seasonal or annual flood 

risk prediction. Short-term predictions have a forecast period of hours and days and are 

considered essential research challenges, particularly in highly urbanized areas, for 

timely warning of residences to reduce damage (Zhang et al., 2018). It is of great 

practical value in technological innovation and emergency response strategies, 

especially in improving early warning systems' accuracy and response time. This 

research will focus on short-term prediction.  

          The predictive models are usually singular models and hybrid models. Hybrid 

models have been proven to enhance prediction accuracy and are currently a focal 

research point (Jain et al., 2018; Hakim et al., 2023). To improve flood forecasting 

accuracy, advanced models are constructed through data decomposition (Chen et al., 

2023; Liu et al., 2023), feature extraction (Habibi et al., 2023; Bui et al., 2019), 

parameter optimization (Li et al., 2021; Zhou et al., 2023), and adjustments in model 

structure (Yang et al., 2024; Wei et al., 2023), and the models are evaluated and 

compared through prediction error estimation (Yang et al., 2024). However, there are 

significant research gaps: more effective methods are needed for data decomposition 

and feature extraction to better capture flood data patterns; optimizing parameters and 

adjusting model structures are complex and require further development; and there is a 

need for more robust prediction error estimation techniques to accurately assess and 

compare model effectiveness.  
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2.3 Deep Learning Networks for Flood Prediction 

Deep learning is a branch of machine learning that explores high-level features 

and patterns in data through deep neural networks. In contrast to traditional machine 

learning methods, which often rely on manually extracted features, deep learning 

models can automatically extract complex features from raw data, thus simplifying the 

model development process. Deep learning is particularly adept at working with high-

dimensional data, such as images, sounds, and text. In addition, deep learning allows 

researchers to design a variety of network architectures based on application-specific 

requirements, enabling the training of stable and efficient models. Deep learning shows 

great potential for application, especially in prediction tasks.  

Deep learning can effectively simulate the memory function of the human brain, 

it is a multilayer neural network. Classic neural network algorithms mainly include 

Multilayer Perceptron (MLP) (Haribabu et al., 2021), Back Propagation (BP) (Zhao, 

2015), ANN (Kumar et al., 2021), CNN (Chou et al., 2020b), LSTM (Hochreiter and 

Schmidhuber, 1997), Recurrent Neural Network (RNN) (Dyer et al., 2016), GRU 

(Chung et al., 2014), TCN (Wang and Liang, 2021; Xu et al., 2021), and Transformer 

(Waswani et al., 2017). This section presents the application of these models in flood 

forecasting and provides an analysis of their advantages and disadvantages.  

2.3.1 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) are most commonly used Deep Learning 

(DL) method in flood prediction (Shamseldin, 2009; Tamiru and Dinka, 2021; 

Dtissibe et al., 2020), inspired by biological neural networks, ANN aims to mimic the 

way the human brain processes information through interconnected "neurons". 

Compared to most traditional models, ANNs possess acceptable generalization 
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capabilities and speed for flood prediction (Li et al., 2021; Cai and Yu, 2022). However, 

a major drawback of ANNs is that they typically process inputs in a one-off manner, 

unable to maintain state or memory across different time steps (Tu, 1996; Ni et al., 

2024). This results in relatively lower accuracy, the need for repeated parameter tuning, 

and a slow response to the gradient-based learning process (Deo and Şahin, 2015; 

Mosavi et al., 2018).  

2.3.2 Multilayer Perceptron (MLP) 

MLP refers to a network design with at least one hidden layer, while a feed-

forward neural network describes any network where data moves in one direction, from 

input to output (Aljaaf et al., 2021; V. Kumar et al., 2023b). MLPs require an effective 

training algorithm to adjust their weights, enabling accurate mapping of inputs to 

outputs. In the mid-1980s, Back Propagation (BP) provided an efficient method for 

MLP training, allowing the network to learn from input-output data (Lippmann, 1989). 

In practice, employing the BP algorithm usually involves using BP within the MLP 

structure for network training. MLPs and BP networks have extensive applications in 

assessing flood sensitivity and forecasting (Haribabu et al., 2021; Hong et al., 2016; 

Wang and Tang, 2018; J. Wang et al., 2017). Leveraging historical data and current 

meteorological conditions, MLPs can simulate and learn the complex nonlinear 

relationships within flood data, predicting the severity of flood events and significantly 

contributing to disaster risk management and emergency planning efforts. There 

remains a notable gap in the literature regarding the inability of MLPs to effectively 

learn the spatial and temporal structures of input data is a significant drawback for tasks 

involving images, video, and sequential data. Moreover, MLPs are prone to bias 

towards most classes when dealing with unbalanced data, which affects the prediction 

of flood peaks (Yang and Chen, 2019; Haribabu et al., 2021). There is a need to improve 



19 

the predictive ability and generalizability of MLPs by developing hybrid models, 

enhanced feature engineering and optimization algorithms.  

2.3.3 Convolutional Neural Networks (CNNs) 

CNNs use their convolutional operations to capture detailed features such as 

edges and corners within local regions and preserve the spatial relationships between 

them, demonstrating a strong learning capability for spatial data. CNNs were initially 

used to automatically and efficiently extract features from images using convolutional 

layers, which greatly improved the performance of image recognition tasks (LeCun et 

al., 2015). In 1998, LeCun et al. proposed LeNet-5, marking the early successful 

application of convolutional neural networks (LeCun et al., 1998). Recent studies have 

leveraged CNN for flood forecasting with promising outcomes. Sakpal et al. (2023) and 

Munawar et al. (2021) utilized satellite imagery, trained CNN models to distinguish 

between pre-flood and post-flood conditions, effectively identifying areas prone to 

flooding. These approaches demonstrated high accuracy in flood detection, 

underscoring its potential for real-time monitoring and disaster response. Furthermore, 

CNN models have been applied to data-driven flood forecasting, predicting river flood 

levels by analyzing historical data on river levels, rainfall, and other pertinent 

hydrological parameters (Yan et al., 2023; Guo et al., 2022; Wang et al., 2017). These 

models showcased the capability to forecast flood events days in advance with 

significant accuracy, highlighting the critical role of temporal data in prediction efforts.  

Additionally, CNNs have been employed to predict urban flooding resulting 

from heavy rainfall by integrating urban terrain and drainage data with meteorological 

inputs (Liao et al., 2023; Kumar et al., 2023a; Yuan et al., 2024). The findings revealed 

that CNNs could accurately predict the locations and extent of urban floods, offering 

valuable tools for city planning and infrastructure development (Liao et al., 2023; 
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Kumar et al., 2023a; Yuan et al., 2024). A novel research trend involves enhancing 

accuracy by combining CNN with other deep learning models or techniques (Nie et al., 

2021; Abid et al., 2023; Yang and Zhang, 2022). Studies have demonstrated that these 

hybrid approaches outperform single-method strategies and traditional hydrological 

models (Yan et al., 2021; Zhao et al., 2023). These advancements illustrate the 

enhanced predictive capabilities of CNNs have across various environments and scales, 

emphasizing the importance of integrating diverse data types (spatial and temporal) to 

improve flood prediction accuracy (Liao et al., 2023; Tang et al., 2020; Chou et al., 

2020b; Chen et al., 2022a). CNNs, while powerful in image recognition and fixed-size 

input processing, face limitations in time-dependent processing due to their inherent 

architectural design (Kratzert et al., 2018; Cai and Yu, 2022). Moreover, there is an 

inability to adequately capture complex spatio-temporal dynamic relationships and a 

lack of prediction accuracy for flood peaks in the presence of data imbalance (Shi et al., 

2015). Hybrid models combining temporal models with CNNs can be explored to 

develop enhancement methods for spatiotemporal features and data imbalance handling 

techniques.  

2.3.4 Recurrent Neural Networks (RNNs) 

RNNs, on the other hand, have a unique "memory" function that excels in 

sequence data analysis by utilizing information input from the past to influence future 

outputs, making them particularly suitable for applications in time series analysis such 

as flood forecasting (Dyer et al., 2016). Although RNNs have advantages in handling 

variable-length series data and real-time prediction updates (Cai and Yu, 2022; 

Hayder et al., 2023),  RNNs face challenges such as gradient vanishing when learning 

from long data sequences, and overfitting on smaller datasets, which makes it limited 
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when dealing with data-scarce or highly variable data in hydrologic models. (Fang et 

al., 2021; Gude et al., 2020).  

2.3.5 Long Short-Term Memory (LSTM) neural network 

As RNN is prone to gradient descent and gradient explosion problems during 

the data training process, LSTM is designed to overcome the vanishing gradient 

problem common in traditional RNNs. LSTM is a special kind of RNN with "memory" 

capability (Hochreiter and Schmidhuber, 1997). This network improves the gradient 

disappearance problem that occurs over time in RNNs during backpropagation, which 

introduces an internal mechanism called “gating” and enhances the learning capability 

for long-time sequences (Hochreiter and Schmidhuber, 1997).  

Recent studies have demonstrated LSTMs' superiority over traditional models 

in various flood prediction applications (Le et al., 2019; Li et al., 2021; Fang et al., 

2021; Noor et al., 2022; Zhou et al., 2023; Xia and Chen, 2020a), from river flow 

prediction to urban flood modelling, indicating a trend towards integrating deep 

learning techniques in environmental science (Kim and Kim, 2020; Cho et al., 2022a; 

Zhang et al., 2023). Parameter optimization (Sahadevan et al., 2022; Ruma et al., 2023) 

and data pre-decomposition techniques (Yuan et al., 2021; Sun et al., 2023; Sun et al., 

2022; Guo et al., 2023; Wang et al., 2023) are innovative approaches to improve the 

predictive performance of LSTM hybrid models. In Hu et al. (2019b), an integrated 

LSTM and reduced order model framework combined with two data decomposition 

methods was developed to improved flood prediction performance. Noor et al. (2022) 

considered the rainfall and flow at different stations, combined with the latitude and 

longitude information of the target area, used a spatio-temporal attention model 

integrated with LSTM to improve flood prediction performance further. It is confirmed 

that further combining spatio-temporal features to construct a hybrid model is 
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conducive to discovering the pattern of flood change and improving the performance of 

the prediction model (Hu et al., 2019a; Zhao et al., 2023). The water level prediction 

method based on LSTM improves the prediction accuracy, but the disadvantage of 

LSTM lies in its transmission of information only from front to back in one direction 

and its inability to encode information transmitted from back to front, and LSTM has 

many parameters that are prone to cause problems with hard training and overfitting.  

2.3.6 Gated Recurrent Unit (GRU) 

 GRU (Chung et al., 2014) is a variant of LSTM, which has the advantage of a 

more straightforward structure and fewer parameters than LSTM. In the case of small 

samples, GRU is more accessible to train and tune to obtain good flood prediction 

ability (Ji et al., 2021).  

With fewer parameters, the GRU efficiently addresses long-term dependency 

issues with less computational complexity, making it widely used in flood forecasting 

(Yan et al., 2023). Abid et al. (2023) proposed a multi-directional GRU with a CNN to 

improve the accuracy of load and energy forecasting. In the case of small samples, GRU 

is more accessible to train and tune to obtain good flood prediction ability (Ji et al., 

2021). However, the simplified structure of GRUs, while reducing the number of 

parameters and improving computational efficiency, may underperform on very 

complex sequence data, where the intricate gating mechanisms of LSTMs may provide 

superior performance (Cho et al., 2022a). Specific models need to be chosen reasonably 

according to the data characteristics, and GRUs are often used to construct hybrid 

models, such as LSTM-GRU (Zhang et al., 2023), GRU-CNN (Pan et al., 2020), SVM-

GRU (Dong et al., 2024) for more accurate flood forecasting and better efficiency.  
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2.3.7 Temporal Convolutional Networks (TCN) 

Time Convolutional Network (TCN) is a CNN network that utilizes convolution 

layers to process time series data. Unlike CNNs, which excel in spatial data analysis but 

may struggle with sequential data over long periods, TCNs are specifically designed to 

handle long-range temporal dependencies with their unique architecture, including 

dilated convolutions (Bai et al., 2018). In 2018, Bai et al.(2018) showed that TCNs, 

which use a particular convolution, do better than other common networks like LSTM 

and GRU in many different tasks. Since then, TCNs have been used extensively in flood 

prediction (Xu et al., 2021; Zhang et al., 2023) proved that the TCN-based model 

outperformed the LSTM-based model in flood and water level prediction. Moreover, in 

Li et al. (2024), three deep learning models, TCN, LSTM, and GRU, were used to 

predict water levels at five stations. The results showed that the hybrid model of TCN, 

LSTM, and GRU synthesized by Bayesian model averaging improved the prediction 

accuracy. TCN and TCN-based hybrid models show good prediction performance and 

application value in flood prediction (Wang and Liang, 2021; Shao et al., 2023; Sun et 

al., 2022; Yao et al., 2023). However, TCNs need more in-depth research to optimize 

the model's generalization ability and real-time prediction performance in dealing with 

long-term dependence and multivariate time series, and also face the same problems of 

parameter selection and model interpretability. 

2.3.8 Transformers 

The Transformer is a neural network that was firstly introduced by Waswani et 

al. (2017) as a groundbreaking architecture for solving machine translation problems. 

They have been early adopted in other application domains involving the analysis of 

fairly long input sequences, such as time series forecasting and classification (Li et al., 

2019). With the attention mechanisms, Transformers have shown promising results in 
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various time series forecasting tasks, including hydrological processes such as flood 

prediction (Liu et al., 2022; Castangia et al., 2023; Xu et al., 2023). In comparison to 

traditional methods, Transformer models in flood forecasting offer the advantage of 

being able to handle large, multidimensional datasets and capture long-term 

dependencies, which are crucial for understanding complex hydrological phenomena, 

and can potentially offer better performance for multi-step prediction tasks compared 

to LSTMs (Xu et al., 2024). They are also generally faster to train due to their ability to 

process data in parallel, and the improved transformer-integrated model can outperform 

a CNN or LSTM-integrated model (Jin et al., 2024; Wei et al., 2023).  However, they 

may require extensive data for training, and their performance might decrease with the 

increase in forecast lead time or sequence length, require large amounts of training data, 

need high computational resources, and face the potential risk of overfitting 

(Bentivoglio et al., 2022; Xu et al., 2023), in the case of limited data or limited 

computational resources, LSTM and TCN may achieve better prediction results.  

2.3.9 Summary of Deep Learning Models 

 Table 2.1 shows the advantages and disadvantages of different deep learning 

algorithms and related literature in flood prediction.  

 

 

 

 

 




