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ACLTSHE-AMTS: KAEDAH-KAEDAH ADAPTIF BARU UNTUK 

PENINGKATAN DAN SEGMENTASI TUMOR OTAK 

 

ABSTRAK 

Pembahagian subkawasan tumor otak daripada imej multimodal Resonans 

Magnetik adalah tarikan minat terbesar untuk diagnosis tumor yang lebih baik. 

Ambang berbilang peringkat adalah salah satu pendekatan menonjol yang digunakan 

untuk pembahagian imej otak. Pada masa ini, apabila menggunakan ambang berbilang 

peringkat untuk pembahagian tumor otak, dua masalah penting mesti ditangani dengan 

teliti.. Pertama, imej otak MR yang mengalami kerumitan daripada kepekaan kepada 

ketidak-seragaman intensiti, kontras yang lemah dan perincian yang tersembunyi, 

menyebabkan kerosakan pada imej MR asal ketika diambil. Kedua, pendekatan 

ambang pelbagai lapis konvensional temasuk pendekatan ambang berasaskan 

pengoptimuman mempunyai beberapa isu utama seperti pelarasan manual ambang 

pelbagai lapisan, mendedikasikan kriteria ambang tunggal sebagai fungsi objektif 

membawa kepada kecenderungan ambang ke arah jenis imej MR tertentu, dan 

keperluan untuk menyesuaikan sebilangan besar parameter kawalan. Dalam tesis ini, 

pendekatan dua peringkat dicadangkan untuk menangani isu-isu ini. Diperingkat 

pertama, pendekatan terbaharu dikenali sebagai Penyamaan Histogram Klip Adaptif 

Had Saiz Jubin (ACLTSHE) telah dicadangkan untuk meningkatkan kontras, 

menyerlahkan perincian yang tersembunyi, dan mencapai taburan intensiti imej MR 

yang seragam. ACLTSHE mengabungkan Penyamaan Histogram Adaptif Kontras-

Terhad, Algoritma Pengoptimuman Paus Pelbagai Objektif, Entropi Diskrit (DE), 

Nisbah Isyarat-ke-Bunyi Puncak (PSNR), dan Indeks Persamaan Struktur (SSI) untuk 

meningkatkan kualiti imej MR sementara mengekalkan struktur asal imej MR. Pada 



xix 

peringkat kedua, pendekatan baharu yang dipanggil Pembahagian Ambang Adaptif 

Pelbagai Lapisan (AMTS) dicadangkan untuk pembahagian sub-rantau tumor otak 

tanpa seliaan daripada tisu otak biasa. Pendekatan AMTS membahagikan dan 

mengekstrak keseluruhan tumor, tumor teras, dan kawasan tumor yang 

dipertingkatkan dari imej MR otak, mengintegrasikan Algoritma Pengoptimuman 

Belalang Pelbagai Objektif, Entropi Kapur, Entropi Silang, dan kontur aktif setempat. 

Prestasi pendekatan ACLTSHE dan AMTS dinilai pada imej otak MR multimodal 

yang diperoleh daripada set data BRATS. ACLTSHE mampu menonjolkan butiran 

tempatan dan mengekalkan struktur imej MR asal tanpa amplifikasi bunyi dengan 

melaporkan nilai purata yang memberasangkan untuk DE, SSI, PSNR, dan Punca Min 

Ralat kuasa Dua (masing-masing 2.924, 0.862, 34.732 dan 2.882). AMTS digunakan 

untuk imej MR yang dipertingkatkan yang diperoleh daripada ACLTSHE dan 

mencapai skor purata dadu  0.901, 0.828, 0.843, dan 0.809 untuk membahagikan 

keseluruhan, teras, tidak dipertingkatkan, dan tumor yang dipertingkatkan, masing-

masing. Keputusan yang dilaporkan menunjukkan bahawa pendekatan AMTS 

mencapai prestasi pembahagian yang memberangsangkan dan kompetitif berbanding 

dengan skor dadue yang dilaporkan pendekatan pembahagian tumor otak yang 

canggih. Secara keseluruhan, hasil pendekatan ACLTSHE dan AMTS menunjukkan 

potensi mereka untuk diguna pakai untuk meningkatkan dan membahagikan imej MR 

multimodaliti dalam aplikasi diagnosis tumor otak. 
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ACLTSHE-AMTS: A NEW ADAPTIVE BRAIN TUMOUR ENHANCEMENT 

AND SEGMENTATION APPROACHES 

 

ABSTRACT 

Brain tumor subregion segmentation from multimodal Magnetic Resonance 

(MR) images is of great interest for better tumor diagnosis. Multilevel thresholding is 

one of the prominent approaches used for brain image segmentation. Currently, when 

applying multilevel thresholding for brain tumor segmentation, two important 

problems must be carefully addressed. First, the MR brain images suffer from 

sensitivity to intensity inhomogeneity, poor contrast, and hidden details, which corrupt 

the original MR image during capturing. Second, the conventional multilevel 

thresholding approaches, including optimization-based thresholding approaches, have 

several main issues, such as manual adjustment of multilevel thresholds, dedicating 

single thresholding criteria as objective functions, leading to the bias of the 

thresholding towards a specific type of MR image, and the requirement to tune a large 

number of control parameters. In this thesis, a two-stage approach is proposed to 

address these issues. In the first stage, a new image enhancement approach called 

Adaptive Clip Limit Tile Size Histogram Equalization (ACLTSHE) is proposed to 

improve contrast, highlight the hidden details, and achieve homogenized intensity 

distribution of MR images. The ACLTSHE integrates Contrast-Limited Adaptive 

Histogram Equalization, Multi-Objective Whale Optimization Algorithm, Discrete 

Entropy (DE), Peak Signal-to-Noise Ratio (PSNR), and Structure Similarity Index 

(SSI) to improve the quality of MR images while preserving the original structure of 

the MR images. In the second stage, a new approach called Adaptive Multilevel 

Thresholding Segmentation (AMTS) is proposed for unsupervised brain tumor 
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subregion segmentation from normal brain tissue. The AMTS approach segments and 

extracts the whole tumor, core tumor, and enhanced tumor regions from the brain MR 

images, integrating the Multi-Objective Grasshopper Optimization algorithm, Kapur 

Entropy, Cross-Entropy, and Localized active contour. The performance of the 

ACLTSHE and AMTS approaches is evaluated on multimodal MR brain images 

acquired from the BRATS dataset. The ACLTSHE was capable of highlighting the 

local details and maintaining the structures of the original MR image without noise 

amplification by reporting promising average values for DE, SSI, PSNR, and Root 

Mean Square Error (i.e., 2.924, 0.862, 34.732 and 2.882, respectively). The AMTS 

achieved an average Dice score of 0.901, 0.828, 0.843, and 0.809 for segmenting the 

whole, core, non-enhancing, and enhancing tumor, respectively. The reported results 

demonstrate that the AMTS approach achieves promising and competitive 

segmentation performance compared to the reported Dice scores of state-of-the-art 

brain tumor segmentation approaches. Overall, the outcomes of the ACLTSHE and 

AMTS approaches indicate their potential to be adopted to enhance and segment the 

multimodality MR images in brain tumor diagnosis applications.
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

According to the International Agency for Research on Cancer (IARC), the 

global statistics recorded up to 241,037 adult mortalities (135,843 males and 105,194 

females) due to brain and tumor-related brain disease, with an estimated 296,851 new 

cases in adults (162,534 males and 134,317 females) (Sung et al., 2021). The alarming 

mortality rate has increased calls for timely diagnosis and surgical planning to treat 

brain tumors. In general, clinical practices, brain tumor diagnosis, and prognosis are 

visualized using various imaging devices, such as Magnetic Resonance (MR), 

Computed Tomography (CT), and Positron Emission Tomography (PET). Despite 

their advanced technology, most available imaging devices require manual delineation 

of the target tumor area on the images produced to determine the tumor characteristics, 

such as the location, size, type, and shape, for effective treatment planning. 

Consequently, the manual task is laborious and time-consuming. Hence, the medical 

image analysis community has focused on providing automated and rapid solutions for 

brain tumor delineations or segmentation using the acquired digital images.  

MR imaging is preferable over CT and PET for anatomical analysis of brain 

tissues, given its ability to produce varying contrasting images with a greater spatial 

resolution that provides more details about the complexity of the brain tissues and their 

abnormalities. Generally, a brain tumor consists of multiple sub-regions, namely 

whole tumor, core tumor, and enhancing tumor. Thus, the challenge is to segment these 

tumor regions in a stack of MR images comprising normal brain tissues of white 

matter, grey matter, and cerebrospinal fluid. While numerous studies have been carried 
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out in the field of brain tumor segmentation, researchers are still struggling to develop 

accurate automatic segmentation of brain tumor sub-regions. Such challenges arise due 

to the complex nature of MR images that frequently exhibit inhomogeneity, poor 

contrast, and differing image values between each MR modality. 

1.2 Magnetic Resonance Imaging 

Magnetic Resonance Imaging is a non-invasive medical imaging device that 

employs computer-produced radio waves and a strong magnetic field to generate 

detailed images of the target tissues in the body. Notably, MRI can distinguish between 

grey matter, white matter, and cerebrospinal fluid in the brain and can differentiate 

suspicious brain tumor regions from healthy brain tissue without emitting harmful 

radiation on the patients’ healthy brain tissue. The brain anatomy in MR image is 

visualized in three different planes (views): axial, coronal, and sagittal. Practically, 

radiologists generate four MRI modalities for each patient, which consist of T1, T1-

contrasted (T1C), T2, and Fluid Attenuation Inversion Recovery (Flair), used for brain 

tumor sub-region segmentation (Zhalniarovich et al., 2013), as shown in Figure. 1.1. 

     

(a) (b) (c) (d) (e) 

Figure 1.1 MR visualizations comprising (a) Flair, (b) T1, (c) T1C image, (d) T2, 

and (e) Segmented results. 
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All these four modalities show a unique signature for each normal tissue and 

three tumor sub-regions, namely non-enhancing tumor (shown in red), enhancing 

tumor (shown in yellow), and whole tumor (shown in green) in Figure 1.1(e). The 

details provided by each of these MR modalities are defined below: 

1. In the Flair image, the whole tumor region (referring to the green box 

in Figure 1.1(a)) involves all three intra-tumor sub-regions, including 

the whole tumor region. This region, which includes the edema region, 

refers to the swelling surrounding the brain tissue in response to the 

tumor and core tumor. The whole tumor region appears in the Flair 

modality as a hyper-intense signal.  

2. In the T1C image (Figure 1.1(c)), the core tumor region (red box) 

involves the non-enhancing tumor and enhancing tumor regions. The 

non-enhancing core tumor appears as hypo-intense (darker region 

inside the red box in Figure 1.1 (c)), while the enhancing tumor region 

appears as hyper-intensity (the brighter region inside the red box in 

Figure 1.1 (c)). 

3. The T1 modality is typically used to identify normal brain tissues, 

which comprise White Matter (WM), Grey Matter (GM), and 

Cerebrospinal Fluid (CSF) that appear as the brighter, darker, and 

darkest regions, respectively, as shown in Figure 1.1 (b).  

4. The T2 modality can be used to provide information for the whole 

tumor region.  
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1.3 Motivation 

The segmentation of brain tumor regions from multimodality MR images is of 

great interest to better understand the intra-tumor heterogeneity, which is necessary 

for tumor diagnosis, grading, and surgical and postsurgical planning. Brain tumor 

segmentation approaches can be classified into three groups according to the degree 

of human interaction: (i) manual, (ii) semi-automatic, and (iii) fully automatic 

approaches. In manual brain tumor segmentation, MR images are annotated and 

labeled through human intervention. As a result, this approach is time-consuming and 

tedious for radiologists and prone to inter- and intra-rater errors. Even well-trained 

neurologists or surgeons could misjudge the tumor boundaries, which vary in volume, 

intensity, shape, and texture. To address these problems, accurate semi-automatic and 

automatic segmentation approaches are required to provide supporting solutions that 

significantly reduce the time needed to segment such insidious diseases. Semi- and 

fully automatic segmentation can be categorized into supervised and unsupervised 

approaches. The supervised method depends on ground truth samples to learn the 

representations of brain tumor sub-regions. However, this approach suffers from (i) 

large dependency on training samples, (ii) overfitting and less adaptive to unseen 

samples, (iii) data scarcity and imbalance, and (v) time and resource complexities. 

Alternatively, the unsupervised segmentation approach holds the key to overcoming 

the issues the supervised segmentation approach faces. The advantages of the 

unsupervised segmentation approaches include flexibility, adaptability, and efficiency, 

with the primary intention of eliminating the use of labeled data and training dataset 

dependency. Therefore, developing an unsupervised-based thresholding approach for 

segmenting brain tumor regions with better adaptability, efficiency, and flexibility in 

handling unbalanced data is necessary. 
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1.4 Problem statement 

In recent years, multilevel thresholding approaches have been widely reported 

in the literature for brain MR image segmentation (Dhal et al., 2020). However, these 

approaches still suffer from some challenges. These challenges can be classified into 

two main categories: (i) high sensitivity to poor MR image quality and intensity 

inhomogeneity and (ii) the subjective effect of manually setting the values of 

segmentation thresholds. The first challenge is the poor image quality of the MR 

images, which suffer from intensity inhomogeneity, poor contrast, and hidden details. 

These issues narrow the intensity distribution among the brain tumor regions and 

normal brain tissue, which often corrupts the original structure of the MR image (Shijin 

Kumar & Dharun, 2016, leading to over- or under-brightness and vague boundaries. 

The accuracy of manual and automated segmentation approaches is reduced due to the 

problems mentioned above (Despotović et al., 2015). Two image enhancement 

methods proposed by (Sled et al., 1998; Tustison et al., 2010) are commonly used to 

improve the quality of brain MR images. However, The resultant MR images 

persistently exhibit spatial variations in illumination, poor quality, and low contrast. 

The current methods cannot increase the richness of information and highlight the 

tumoral tissue's local details. Additionally, these methods cannot enhance the visual 

aspect or maintain a uniform intensity distribution among various subjects within a 

particular region, even with images from the same MR modality (Pereira et al., 2016). 

Based on the limitations in the current enhancement methods, the Contrast Limited 

Adaptive Histogram Equalisation (CLAHE) method proposed by (Zuiderveld, 1994) 

is frequently employed to achieve uniform intensity distribution and improve the 

contrast of the MR images  (Jintasuttisak & Intajag, 2014; Yoshimi et al., 2023). The 

CLAHE method includes two primary parameters, namely the Tile Size (TS) and Clip 



6 

Limit (CL), which are used to adjust image qualities. The CLAHE is a subjective task 

and heavily relies on the user’s prior knowledge to manually set the CLAHE 

parameters (TS and CL). As such, poor image quality and noise amplification may be 

obtained when improper TS and CL parameters are chosen. In addition, setting 

standard values of the TS and CL can be incompatible and non-adaptable with specific 

image characteristics, generating unnatural appearance and over or under-

enhancement.  

Accordingly, researchers have proposed various optimization algorithms, such 

as Particle Swarm Optimisation (PSO) and CLAHE (Mohan & Mahesh, 2013), Firefly 

and CLAHE (H. Singh et al., 2018), modified PSO and CLAHE (Aurangzeb et al., 

2021), Quantum Arithmetic Optimization Algorithm and CLAHE (Pashaei & Pashaei, 

2023) and Sparrow Search Algorithm and CLAHE (Fan et al., 2023) to select the 

optimal parameter values for the CLAHE heuristically. However, these approaches 

suffer from the following drawbacks: (i) Various parameters need to be tuned, which 

is time-consuming, subjective, error-prone, and highly affects the performance of the 

optimization algorithms. (ii) These algorithms dedicate a single objective to partially 

exploring the search space. Thus, other important features of the enhancement 

solutions could not be considered. Optimizing a single objective function, such as the 

Peak Signal-to-Noise Ratio (PSNR) or Discrete Entropy (DE), results in a biased 

enhancement task toward the optimized objective in the resulting image. The enhanced 

image is produced according to the selected criteria and disregards other crucial image 

quality factors, which may decrease the overall quality of the resulting image. (iii) The 

objective functions of these approaches are non-Pareto in nature, as they are 

formulated similarly to single objective functions through the multiplication or 

aggregation methods using positive weights. The major disadvantages of this approach 
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are the need to apply the optimization algorithm multiple times to obtain multiple 

optimal solutions, the requirement to consult the experts to determine the optimal 

weights, and the lack of information sharing between the resultant solutions during 

optimization. Additionally, these approaches using uniformly distributed weights for 

objective functions do not result in a uniformly distributed set of Pareto optimal 

solutions. Choosing the right optimization algorithm for the problem of selecting the 

optimal CL value depends on the problem's characteristics and the optimization 

objectives. Searching for an optimal single CL value from the CL range is considered 

a convex or single-modal objective function, meaning there are single peaks or valleys 

in the search space. Convex objective functions are characterized by their linearity. 

(iv) Selecting the optimum CL value from a wide range of decimal numbers, where 

the search space is too broad, leads to slow convergence and local optimum. This 

problem usually occurs when the search agents are randomly placed in a wide search 

space to be explored exhaustively.  

The second challenge lies in image segmentation using a multilevel 

thresholding approach to segment the brain tumor regions using image information, 

such as intensity and does not rely on prior information from the training dataset. The 

thresholding methods are considered subjective to user experience and t hus prone 

to errors and time-consuming since the computation of multiple thresholds must be 

repeated manually until desired segmented images are obtained (Chouksey et al., 

2020). Due to these limitations, researchers have directed towards adopting various 

optimization algorithms, such as PSO  (Kaur et al., 2016; M. Sharif et al., 2020), Crow 

Search Algorithm (CSA) (Oliva et al., 2017), Electromagnetism phenomenon 

optimization algorithm (EMO) (Sandhya et al., 2017), Ant Colony Optimization 

algorithm (ACO) (Khorram & Yazdi, 2019), Differential Evolution (DE) (Tarkhaneh 
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& Shen, 2019), Success-History based Adaptive DE (SHADE) (Oliva et al., 2021), 

Social Spider Optimization (Ghafourian et al., 2023) Fractional-Order Darwinian PSO 

(Hamdaoui & Sakly, 2023), Reptile Search Algorithm and the Runge Kutta Algorithm 

(Emam et al., 2023), and a Salp Swarm Algorithm (Halawani, 2023) to select the 

optimum multiple thresholds. These algorithms have been adapted to solve multilevel 

thresholding problems heuristically as optimization problems. However, the 

optimization-based thresholding approaches still suffer from two specific drawbacks. 

(i) Only one criterion (Kapur’s entropy or cross-entropy) is used as the objective 

function to guide the search for optimal solutions. This could lead to obtaining the 

optimum solutions according to the selected criterion but not the global best according 

to a set of segmentation attributes. Thus, these methods fail to provide a generic 

segmentation approach considering the varying image characteristics generally seen 

among MR images. Moreover, using Kapur’s entropy or cross-entropy as a single 

objective function could cause the segmentation task to become biased toward specific 

MRI characteristics. (ii) A large number of control parameters needs to be fine-tuned, 

which is time-consuming and highly affects the performance of the optimization 

algorithm (Upadhyay & Chhabra, 2020). (iii) The objective function for multilevel 

thresholding is considered non-convex or multi-modal, meaning multiple solutions 

exist in the search space. In multimodal optimization, sharing knowledge or 

information among agents is vital to effectively explore and converge multiple 

solutions or modes.  

Based on the two main issues stated earlier, three main research questions are 

addressed in this thesis concerning brain image enhancement and segmentation, as 

follows: 
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i. How can a suitable optimization algorithm be adopted to obtain the optimum 

CLAHE parameters for MR image enhancement and optimum multiple 

thresholding values for MR image segmentation? 

ii. How can the best feasible range of the candidate solutions vector be obtained 

to provide the most relevant or promising parts of the search space for CLAHE 

parameters? 

iii. How can the multi-objective functions be modeled to guide the search for 

optimal solutions to produce general enhancement and thresholding 

approaches applicable to different MRI modalities? 

1.5 Research Objectives 

The work in this study intends to answer the research questions via the 

collective use of new adaptive and automated enhancement and thresholding 

approaches for segmenting brain tumor regions from MR images. Thus, new 

alternatives are proposed to address the gaps in the CLAHE method for MR image 

enhancement and thresholding for image MR image segmentation by incorporating the 

optimization algorithms. The main objectives of this thesis are established as follows: 

1.  To formulate a new adaptive and automatic hybridized enhancement 

approach by integrating the Multi-objective Whale Optimization 

Algorithm, Discrete Entropy (DE), Peak Signal-to-Noise Ratio 

(PSNR), and Structure Similarity Index (SSI) to improve the quality of 

MR images while maintaining the original structure of the MR images. 

2. To improve the initial candidate solutions of CLAHE-based image 

enhancement automatically and adaptively by evaluating partial 

solutions or branches of the search space prior to optimizing the 
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CLAHE parameters to overcome stagnation into local optima and 

expedite the convergence rate. 

3. To formulate a new multilevel thresholding-based approach by 

integrating the Multi-objective Grasshopper Optimization Algorithm 

(MOGOA), Kapur’s entropy, cross-entropy, and localized active 

contour to segment the brain tumor sub-regions. 

1.6 Contribution of the Study 

The established sub-objectives in this study draw attention to three significant 

contributions, as follows: 

1. Propose a new adaptive version of the Histogram Equalization approach by 

integrating the MOWOA and new multi-objective function to provide an 

automated and adaptive parameter setting to the conventional CLAHE to 

enhance the brain MR images. The proposed enhancement approach improves 

the information richness and highlights the weak and blurred boundaries of the 

brain tumor regions, reduces the effect of noise and intensity inhomogeneity, 

and preserves the structure of MR images.  

 Propose a new multi-objective function comprising triple image 

quality measurements, including DE to highlight local details, PSNR 

to avoid noise amplification, and SSI to maintain the original structure 

of the MR images to guide the MOWOA for selecting the optimum 

pair of candidate CL and TS values used to produce good results. 

Instead of optimizing a single objective function, the proposed multi-

objective function aims to obtain compromise solutions that maximize 
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DE, PSNR, and SSI to provide a compromise solution between 

highlighting local details, preventing noise amplification, and 

preserving local structure in the output image. 

 Adapting the MOWOA to the image enhancement problem by 

selecting the optimal CL value for the CLAHE method. The 

search operators of MOWOA, such as the encircling prey and 

spiral updating mechanisms, allow whales to move efficiently 

toward the optimal solution in convex landscapes. These 

operators are well-suited to handling the linearity of convex 

functions, making MOWOA highly effective in handling the 

convex nature of optimizing CL value. 

2. Proposing a new heuristic-based domain knowledge method to improve 

the quality of the initial candidate solutions of the CLAHE parameters 

heuristically to obtain feasible ranges of CL and TS extracted locally 

from each slice. 

3. Proposing a new adaptive multilevel thresholding segmentation 

approach to segment brain tumor regions from brain MR brain images. 

The proposed approach considers the optimal selection of threshold 

values as an optimization task and uses MOGOA to select the candidate 

solutions (i.e., thresholds) that maximize Kapur’s entropy and 

minimize cross-entropy as contradictory objective functions utilizing 

the local spatial MRI characteristics.   

 Adapting the MOGOA to select the optimum threshold values for brain 

tumor segmentation problems. The MOGOA uses movement 
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strategies, such as attraction and repulsion, to update the positions of 

search agents. Based on these strategies, grasshoppers are typically 

attracted to the best solution while avoiding overcrowding around it, 

making it highly effective in handling the multi-modal nature of 

optimizing multilevel thresholding problems. Additionally, the 

MOGOA leverages the concept of sharing information among 

individuals in a swarm. By exchanging information, the search agents 

of MOGOA collectively contribute to identifying and converging to 

different modes in the objective function landscape simultaneously, 

facilitating the identification of optimal threshold values at multiple 

levels. 

 Formulating a new multi-objective function comprising two 

contradictory objectives to ensure that each threshold value would be 

simultaneously evaluated according to the maximum Kapur’s entropy 

and minimum cross-entropy so that a set of diverse but complementary 

solutions are achieved instead of optimizing a single solution. Using 

two types of thresholding criteria reduces the bias of the thresholding 

approach toward particular kinds of MR images. 

1.7 Scope of the Study 

This thesis focuses on developing a two-stage approach for brain tumor sub-

region segmentation. The first stage intends to enhance the brain MR images to 

improve the contrast and highlight the tumor regions’ boundaries through 

optimization. The second stage proposes an adaptive segmentation of the brain tumor 
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regions from the enhanced brain MRI results. The scope of this study is restricted to 

specific constraints as follows: 

 The radiologists selected the Flair MRI modality to delineate the edema 

region of brain tumors. Accordingly, this study is applied to segment the 

edema region of brain tumors from Flair MR images. 

 The radiologists selected the T1C modality to delineate the core, non-

enhancing, and enhancing tumor regions. Accordingly, this study is 

applied to segment the core, non-enhancing, and enhancing regions of 

brain tumors from T1C MRI results. 

1.8 Organization of the Thesis 

This thesis is organized into six main chapters. Following the introduction in 

this chapter, Chapter 2 provides a critical review of various brain tumor segmentation 

methods and image enhancement approaches. The literature review discusses the 

strengths and limitations of each considered method. Chapter 3 provides an overview 

of the two methodologies adopted in this thesis to enhance the information richness of 

MRI slices and segment the brain tumor regions from the enhanced slices. 

Furthermore, this chapter briefly describes the brain tumor dataset and quality factors 

used to assess the quantitative performance of the proposed approach. Chapter 4 

explains the first stage of this study, which involves the MRI enhancement approach 

via optimization algorithms and a thorough description of the proposed methodology. 

The results are compared and evaluated qualitatively and quantitatively against state-

of-the-art image enhancement techniques. Chapter 5 describes the second stage of this 

study, which outlines the development of an adaptive multilevel thresholding approach 
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for segmenting brain tumor regions from enhanced MRI using an optimization 

algorithm. This chapter also discusses the segmentation results qualitatively and 

quantitatively, as well as compares them against state-of-the-art brain tumor 

segmentation approaches to highlight the effectiveness of the proposed method. 

Finally, Chapter 6 summarizes the methodology used in this study and concludes the 

findings. The potential directions for future work are also presented. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Introduction 

This chapter mainly provides an overview of the adopted stages for brain image 

segmentation from MR images. These stages include (i) image enhancement methods 

and (ii) MR brain image segmentation methods. The structure of this chapter is 

organized as follows: Section 2.2 describes the categories of image enhancement 

methods that are well renowned in the literature. This is followed by a literature review 

on the state-of-the-art segmentation methods proposed for brain segmentation in MRI, 

as described in section 2.3. In both Sections 2.2 and 2,3, common issues related to 

image enhancement and segmentation methods are analyzed in detail. Finally, this 

chapter summarizes the segmentation methods, highlights their advantages and 

disadvantages, and analyzes the research gap. The discussion on research gaps and 

weaknesses concludes the direction of the work presented in this thesis.   

2.2 Image enhancement approaches 

The image enhancement approaches aim to achieve two main objectives: (i) to 

produce enhanced MR images that can be used for manual brain image analysis; 

Physicians prefer manual annotation on well-contrasted medical images, thus 

highlighting the available essential details of the target tissue. (ii) to obtain well-

contrasted medical images that can be used in subsequent tasks of computerized vision 

analysis, such as segmentation, feature extraction, and classification. It has been 

proved that the effectiveness of the automated and semi-automated segmentation 

methods depends on some ideal characteristics of brain images (Li et al., 2014). The 
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ideal characteristic supposes the particular tissue should always have similar intensity 

within its region in a single image and does not exhibit inhomogeneous intensity 

despite variability in the location in the image. This characteristic is desired to improve 

the performance of fully and semi-automated analysis methods such as segmentation 

and classification (Xu et al., 2013). Nevertheless, this ideal assumption never occurs 

in reality due to the existence of noises and unwanted artifacts, which can considerably 

affect the homogeneity of MR image intensity. Manual, semi-automated, and fully 

automated segmentation methods can greatly degrade accuracy due to various noise 

and unwanted artifacts in the MR images. The intensity variations induced by these 

artifacts result in inaccurate segmentation and classification results. This issue is more 

observed in multimodality MR image segmentation because these modalities provide 

complementary information about brain tumor regions by generating different types 

of contrast images of the same patient from different directions (sagittal coronal and 

axial) and time (slice sequence). The MR images often suffer from intensity 

inhomogeneity and over or under-brightness issues. For this reason, image 

enhancement methods are highly recommended to reduce unwanted noise and 

maintain a uniform intensity distribution for better qualitative and quantitative 

assessment of MRI volumes.  

Thus far, various research methods have been proposed to correct the intensity 

distribution of MR images and increase information richness. These methods are 

mainly categorized into prospective and retrospective (Vovk et al., 2007). These 

methods are proposed based on the assumption that inhomogeneity and unwanted 

artifacts smoothly vary the multiplicative field with an additive noise as expressed 

using Equation (2.1). 
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𝑅(𝑥, 𝑦)  =  𝐼(𝑥, 𝑦)𝐵(𝑥, 𝑦)  +  𝑛(𝑥, 𝑦) 2.1 

Where x and y represent the index of an image pixel,his noise is called scanner 

noise and follows the Gaussian distribution (Sijbers et al., 1998). Another noise 

representation is known as the additive model. This model assumes that the noise 

originated from the inhomogeneity of tissue 𝐵(𝑥, 𝑦) and may contain a higher signal-

to-noise ratio (SNR) (Prima et al., 2001). It is defined as follows: 

𝑅(𝑥, 𝑦)  = (𝐼(𝑥, 𝑦) +  𝑛(𝑥, 𝑦))𝐵(𝑥, 𝑦) 2.2 

The third assumption model for the noise and inhomogeneity field is a 

logarithmic additive (Van Leemput et al., 1999), which assumes the noise and the 

inhomogeneity field 𝑛 can be corrected by calculating the log-transformed intensities, 

where the multiplicative bias field becomes additive. 

𝑙𝑜𝑔𝑅(𝑥, 𝑦) = 𝑙𝑜𝑔𝐼(𝑥, 𝑦) + 𝑙𝑜𝑔𝐵(𝑥, 𝑦) + 𝑛(𝑥, 𝑦)  2.3 

The methods that work under prospective methods include mathematical 

models used to calibrate MR machines (Mcveigh et al., 1986), newly designed medical 

imaging sequences (Wicks et al., 1993), and shimming techniques (Weili Lin, 2005). 

These methods aim to improve and calibrate the MRI acquisition process and correct 

the inhomogeneity field produced by MRI hardware imperfections. Nevertheless, 

these methods cannot completely rectify the bias field because of the following: (i) 

they are required to rescan, and (ii) They cannot enhance all parts of an image at the 

same time. Meanwhile, the retrospective approaches can effectively remove patient-

specific intensity inhomogeneity as well as the inhomogeneity of information 

introduced by the MRI scanners, which directly deal with the inhomogeneity of MR 

slices. These methods perform correction tasks based on the intensities of images and 
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the prior information about the imaged target tissue. The retrospective methods for 

inhomogeneity field correction can be further classified into (i) surface fitting-based 

methods, (ii) filtering-based methods, (ii) segmentation-based methods, and (iv) 

histogram-based methods (Vovk et al., 2007).  

2.2.1 Surface-based methods 

Surface-based methods perform correction based on polynomial or spline 

functions to model the bias field and extract a set of image features representing 

inhomogeneity information from the MR images. The extracted features are fitted into 

a parametric surface to represent the inhomogeneity field. Despite using the 

polynomial or spline function in the fitting process, the effectiveness of these methods 

heavily depends on the selected set of image features. The surface-based methods can 

be further categorized into intensity-based and gradient-based methods depending on 

the various image feature sets used in the surface fitting process. Intensity-based 

methods assume that tissue intensities do not vary unless bias field artifacts corrupt 

them. These artifacts could be estimated by calculating the intensity variation inside 

the same region type of tissues (Vemuri et al., 2005; Zhuge et al., 2002). 

On the other hand, the gradient-based methods assume the noises and intensity 

inhomogeneity artifacts also alter the local gradient. Therefore, the local average of 

intensity gradients has been selected as an inhomogeneity elimination feature (Meyer 

et al., 1995). The main drawbacks of surface fitting methods are the requirement for 

clear region separation, large homogeneous areas, and longer processing time. 
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2.2.2 Filtering-based Methods 

Filtering-based methods consider the intensity inhomogeneity and noise as 

low-frequency artifacts that can be eliminated from the high-frequency regions of 

images using filtering methods. These methods are computationally inexpensive and 

have been widely adopted for both noise and inhomogeneity field removal in MRI 

studies, such as the Weiner filter  (Pitchai et al., 2021), anisotropic Diffusion filter 

(Khalil et al., 2020), Median filter  (Nyo et al., 2022; Sheela & Suganthi, 2022) 

Gaussian filters (Halawani, 2023). However, filtering-based methods reduce noise but 

suffer drawbacks: (i) They could not assure homogenized intensity distribution in the 

resulting images. (ii) the conventional filtering methods can mistakenly remove useful 

low-frequency intensities of tissue that closely resemble the inhomogeneity field. (iii) 

filtering methods may distort homogeneous tissues near the edges due to filtering 

artifacts produced by high contrast structures characterized at low frequencies. 

2.2.3 Segmentation-based methods 

The group of segmentation-based methods combines segmentation and 

inhomogeneity correction processes into a unified procedure to obtain better results 

for each step simultaneously. The methods produced better results by mutually 

iterating between segmentation and inhomogeneity correction  (Ahmed et al., 2002; 

Bansal et al., 2004; Pham & Prince, 1999). However, these algorithms are still 

sensitive to parameter initialization. These methods utilized metaheuristic approaches 

to improve segmentation results and perform automatic and adaptive parameter 

initialization, thus addressing the inhomogeneity artifacts (Maulik, 2009; C. Yang et 

al., 2015; Z. Yang et al., 2016). However, the effectiveness of these methods is still 
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limited because of the need to design effective fitness functions and subjective tuning 

of parameters. 

2.2.4 Histogram-based methods 

Histogram-based methods search for the inhomogeneity field spatially in the 

pixel intensity using an image histogram to redistribute (maximizing, minimizing, and 

histogram matching) the high-frequency bins of the tissue intensity (Shekari & 

Rostamian, 2023) (Vovk et al., 2007). Many of these techniques require proper 

initialization and prior knowledge about the intensity distribution of the image. 

Various techniques have been implemented under histogram-based intensity 

correction, such as the Nonparametric Nonuniformity Normalization (N3) technique 

(Sled et al., 1998). N3 is one of the well-known inhomogeneity correction techniques 

used in medical MR images. N3 iteratively smoothed the input image histogram by 

increasing the high-frequency bins. The method experimentally starts to find the 

intensity distribution of tissue using an image histogram. The affected image histogram 

was then deconvolved in the log intensity domain to remove inhomogeneity. By using 

linear interpolation, the produced histogram is utilized to correct the image intensity 

in each pixel. B-spline smoothed the residual field (the difference between corrected 

and original intensities), which yields the bias field (Tustison et al., 2010) proposed 

the N4 method, which improves the iterative schema of the N3 method. The Insight 

Registration and Segmentation toolkit (ITK) software has applied the N4 method. N3 

and N4 approaches require extraction of foreground regions, and effectiveness might 

depend on the accurate removal of background regions, initialization of histogram 

range of inhomogeneity field, and spline distance. In addition, these methods could 

not improve the visibility of the regions in the brain. In order to make the intensity 



21 

distribution and contrast of MR images more uniform across acquisition and subjects, 

the Histogram Equalization approaches are commonly used to achieve uniform 

intensity distribution and improve the contrast of the MRI image. The Histogram 

Equalization approach (HE) operates directly on the intensity of image histograms so 

that the pixels of the specific intensity level of images are redistributed spatially over 

the whole range of the grey levels to achieve homogeneous intensity distribution to the 

enhanced image. First, the Histogram Equalization approach calculates each grey-level 

bin's Probability Density Function (PDF). Secondly, the Cumulative Density Function 

(CDF) is then calculated. Eventually, the approach computed the transfer function to 

achieve the intensities redistribution of the image and produce the resultant image. 

Four derived groups from the Conventional Histogram Equalization (CHE) approach 

were developed to improve its performance and overcome its limitations. The four 

CHE-derived groups are Region Histogram Equalization (RHE), Image Division, 

Modified Histogram Equalization (MHE), and Metaheuristic-based Histogram 

Equalization. A descriptive diagram of the CHE and its sub-class methods is illustrated 

in Figure 2.1. 
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 Figure 2.1 Histogram equalization and its sub-classes. 
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2.2.4(a) Region Histogram Equalization 

Region histogram equalization is the first class derived from HE, which splits 

the histogram into regions. This approach improves image brightness based on 

formulated regions and produces enhanced images, such as the global histograms 

category. Some approaches are purposely designed under this sub-class to preserve 

image brightness in non-homogenous intensity images, such as exposure-based sub-

image HE (ESIHE) (K. Singh & Kapoor, 2014a), Exposure Region-based Multi-HE 

(ERMHE) (Tan & Isa, 2019), Median and Mean bi-HE plateau limit (Mean-BHEPL 

& Median-BHEPL) (Tang & Mat Isa, 2016), and adaptive bi-HE (ABHE) (Tang & 

Mat Isa, 2016). By applying the exposure threshold, the ESIHE approach splits the 

image's histogram into two areas, and both sub-histograms will be clipped using the 

grey level's mean value. Then, CHE is applied for sub-histograms. The ESIHE method 

offers good preservation of local details and contrast enhancement but does not 

perform properly with samples containing multi-exposure areas (i.e., normal, under, 

and overexposure). Both ABHE and BHEPL approaches are proposed to overcome the 

limitation of ESIHE by working with overexposure and underexposure regions (too 

dark or too bright regions). However, they do not perform well with images that have 

normal exposure areas. The ERMHE approach tackles the problem of multi-exposure 

regions. Although the approach offers high-quality brightness and lower noise in 

resulting images, one exposure area can be greater than the other(s). This issue can 

cause the problem of dominant high frequency over frequencies of lower intensity, 

thus causing loss of information in some parts. 
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2.2.4(b) Image Division 

Image division is the second sub-class derived from CHE. The image division 

approach was developed to address the limitations of CHE by modifying and 

improving the information richness of non-overlapping contextual grey-level regions 

derived from the image while retaining information by filtering through all image 

pixels. The division in this sub-class is classified by pixels and histogram-based 

divisions. The pixel division relies on cutting the image into small tiles. For example, 

an image with 100  100 pixels can be divided into ten tiles. The size of each tile is 10 

 10 pixels. The division of the histogram depends on a specific value computed from 

the image's histogram to divide it into sub-histograms. 

2.2.4(b)(i) Pixels-based division 

Pixels-based division techniques improve small grey-level regions and retain 

image details by mapping the limited scope of pixels of an image to the entire 

visualization range. It is designed to address the low contrast issues in the HE class by 

splitting the input image into a block of pixels (e.g., 6  6) called contextual regions. 

Some approaches proposed in this class include Adaptive Histogram Equalization 

(AHE) (Zimmerman et al., 1988), partially overloaded sub-image HE (POSHE) (J. Y. 

Kim et al., 2001), and Contrast-Limited Adaptive HE (CLAHE) (Zuiderveld, 1994). 

These methods address the intensity inhomogeneity drawback of CHE by operating on 

small blocks of pixels to produce a resulting image with uniform intensity instead of 

operating on whole image pixels. But these techniques amplify the resulting images' 

noise and consume long-running time. (J. Y. Kim et al., 2001; S. Mirjalili et al., 2017) 

The approaches of CLAHE and POSHE also suffer from unnatural appearances in the 

resultant images (Zimmerman et al., 1988).  


