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(the above diagram is adapted from Chen and Meng, (2022) .......... 309 
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Figure 5.4 Schematic diagram of the proposed mechanism of AgNPs-GA 

toxicity based on the experimental data obtained in this study. 

Magnified metabolic alteration is presented below. Blue arrow 

represents A549 cells, yellow arrow represents BEAS-2B cells ..... 313 
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PENCIRIAN KESAN TOKSIKOLOGI NANOPARTIKEL PERAK 

BIOGENIK-GARCINIA ATROVIRIDIS DI DALAM SEL PARU-PARU 

MANUSIA NORMAL DAN KANSER 

ABSTRAK  

Penggunaan nanopartikel perak (AgNPs) yang disintesis daripada tumbuhan 

semakin meningkat dalam pelbagai industri, termasuk sektor farmaseutikal dan 

makanan. Penggunaan yang meluas ini telah menimbulkan kebimbangan mengenai 

profil keselamatannya. Kajian ini bertujuan untuk mengkaji kesan toksik dan 

mekanisme nanopartikel perak biogenik (AgNPs-GA) yang disintesis menggunakan 

ekstrak daun Garcinia atroviridis ke atas sel kanser paru-paru manusia (A549) dan sel 

paru-paru normal (BEAS-2B) secara in vitro. Toksisiti dinilai menggunakan ujian 

MTT untuk menentukan nilai IC50 AgNPs-GA di dalam kedua-dua jenis sel. Nilai IC50 

ini digunakan untuk merawat sel-sel yang berkenaan bagi menilai penghasilan reaktif 

oksigen spesies (ROS), apoptosis, kerosakan DNA, kepekatan ion perak, dan 

penyerapan selular melalui ujian CM-H2DCFDA, pewarnaan berganda DAPI dan 

AOPI, assai komet, ICP-OES, dan TEM. Ekspresi mRNA dan profil metabolik dinilai 

menggunakan PCR masa nyata secara kuantitatif dan metabolomik tak bersasar 

menggunakan kromatografi cecair prestasi tinggi ultra-spektrometri jisim Oribirtap 

(UHPLC-Orbitrap-MS). Hasil kajian menunjukkan bahawa AgNPs-GA merencat 

pertumbuhan sebanyak 50 % di dalam sel A549 dan BEAS-2B, dengan nilai IC50 

masing-masing antara 20–28 µg/ml dan 12–35 µg/ml. Nilai indeks selektif (SI) bagi 

AgNPs-GA adalah di bawah 3, mengklasifikasikannya sebagai agen sitotoksik tidak 

selektif, kerana ia telah mengaruh keseluruhan ketoksikan kepada kedua-dua jenis sel 

kanser dan bukan kanser. AgNPs-GA diserap dan disimpan di dalam lisosom, nukleus 
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dan mitokondria, menyebabkan peningkatan pelepasan ion perak (Ag+) ke dalam 

kedua-dua sel. Kedua-dua titisan sel menunjukkan peningkatan aras ROS selular dan 

kerosakan DNA yang serius. Terdapat peningkatan yang ketara dalam tahap ekspresi 

mRNA ATM, Ku80, dan DNA-PKcs dalam kedua-dua titisan sel. Sementara itu, 

ekspresi mRNA RAD51 didapati menurun di dalam sel A549 tetapi meningkat di 

dalam sel BEAS-2B. Melalui analisis pemprofilan metabolomik, AgNPs-GA didapati 

mengganggu laluan isyarat yang berkaitan dengan metabolisme glutation, nukleotida, 

dan tenaga di dalam kedua-dua jenis sel, dan ini telah menyebabkan pengekspresan 

yang berbeza kepada metabolit L-glutation, xantina, dan NAD+ selepas rawatan. 

Laluan-laluan ini diketahui berkait rapat dengan tekanan oksidatif dan kerosakan 

DNA, yang akhirnya menyebabkan kematian sel secara apoptosis. Ini seterusnya 

mengesahkan bahawa AgNPs-GA mempunyai kesan sitotoksik di dalam kedua-dua 

jenis sel kanser dan normal manusia pada kepekatan yang diuji dalam kajian ini. 

Kesimpulannya, penemuan ini memperlihatkan potensi risiko yang berkaitan dengan 

pendedahan kepada AgNPs-GA, dan ini menunjukkan kepentingan terhadap 

pertimbangan yang teliti, terutamanya untuk aplikasi bioperubatan dan terapeutik. 

Penemuan ini boleh digunakan sebagai bahan bukti  berasaskan kajian in vitro untuk 

menyokong pembangunan dasar berkaitan dengan pencirian keselamatan AgNPs 

biogenik pada masa hadapan.   
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CHARACTERISATION OF BIOGENIC SILVER NANOPARTICLES-

GARCINIA ATROVIRIDIS TOXICOLOGICAL EFFECTS IN NORMAL AND 

CANCER HUMAN LUNG CELLS  

ABSTRACT 

Silver nanoparticles (AgNPs) synthesized from plants are increasingly used 

across various industries, including the pharmaceutical and food sectors. This 

widespread use has raised concerns about their safety profiles. This study aimed to 

examine the toxic effects and mechanisms of biogenic silver nanoparticles (AgNPs-

GA) synthesized using Garcinia atroviridis leaf extract on human lung cancer cells 

(A549) and normal lung cells (BEAS-2B) in vitro. Cytotoxicity was evaluated using 

the MTT assay to determine the IC50 values of AgNPs-GA in both cell types. The IC50 

values were applied to treat the respective cells for evaluating reactive oxygen species 

(ROS) production, apoptosis, DNA damage, silver ion levels, and cellular uptake using 

CM-H2DCFDA assay, DAPI and AOPI double staining, comet assay, ICP-OES, and 

TEM, respectively. The mRNA expression and metabolic profiles were further 

assessed using quantitative real-time PCR and untargeted metabolomics based on 

ultra-high-performance liquid chromatography-Orbitrap mass spectrometry (UHPLC-

Orbitrap-MS), respectively. The results showed that AgNPs-GA inhibited 50% of the 

growth in A549 and BEAS-2B cells, with IC50 values ranging from 20–28 µg/ml and 

12–35 µg/ml, respectively. The selective index (SI) values of AgNPs-GA were below 

3, classifying it as a non-selective cytotoxic agent, as it induced general toxicity in 

both cancerous and non-cancerous cell types. AgNPs-GA were primarily internalized 

and deposited within lysosomes, nucleus, and mitochondria, leading to an increased 

release of ionic silver (Ag+) inside both cells. Both cell lines showed elevated cellular 
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ROS levels and severe DNA damage. A marked increased of ATM, Ku80, and DNA-

PKcs mRNA levels was observed in both cell lines. Meanwhile, RAD51 mRNA 

expression was downregulated in A549 cells but upregulated in BEAS-2B cells. 

Through metabolomic profiling analysis, AgNPs-GA was found to disrupt signalling 

pathways associated with glutathione, nucleotide and energy metabolism in both cell 

types, leading to differential expression of L-glutathione, xanthine and NAD+ 

metabolites after treatment. These pathways are known to be associated with oxidative 

stress and DNA damage, that ultimately causes apoptotic cell death. This further 

confirms that AgNPs-GA exhibited cytotoxic effect in both human lung cancer and 

normal cells at the concentration tested in this study. These findings highlight the 

potential risks associated with AgNPs-GA exposure and underscore the importance of 

careful considerations particularly for biomedical and therapeutic applications. These 

findings may serve as evidence based on in vitro studies to support the establishment 

of future policies regarding the safety profile of biogenic AgNPs.
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CHAPTER 1  

 
INTRODUCTION 

1.1 Research background 

Nanotechnology is a broad area of study that involves the application of various materials 

at the scale of 1 to 100 nanometers (1 nm=10−9 m), known as nanoparticles (Chandra et al., 2020). 

This technology is extensively applied in translational research. Nanoparticles hold immense 

potential for improving the efficiency of various medical procedures such as delivering drugs 

(Malik et al., 2022). Metallic nanoparticles (MNPs) are commonly used in biomedical sciences 

and engineering within the field of nanotechnology. Chandra et al., (2020) found that MNPs have 

been used for targeted drug delivery and magnetic resonance imaging (MRI). Besides, MNPs are 

an excellent contender for wound dressing materials and ideal materials for biosensor interface 

design (Cruz et al., 2020). The high surface-to-volume ratio and reactivity of MNPs can influence 

their potential in various medical applications (Cruz et al., 2020). These properties allow MNPs to 

interact more effectively with biological systems, improving their efficacy in drug delivery to 

specific cells or tissues, enhance imaging techniques, and develop sensitive diagnostic tests (Cruz 

et al., 2020). Among the inorganic metal-based nanoparticles, silver nanoparticles (AgNPs) are 

particularly notable for their attractive physicochemical properties and biological activities. 

There are various methods can be implemented to produce AgNPs, such as biological, 

chemical, and physical processes (Chandra et al., 2020; Zhang et al., 2020). There are two main 

methods used for the production of inorganic nanoparticles: the top-down and the bottom-up 

approaches (Zhang et al., 2020). The former involves breaking down the bulk materials into tiny 

structures in nanosized, which is often accomplished through mechanical processes, chemical, or 
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physical (Alharbi et al., 2022). The bottom-up approach, on the other hand, involves using 

biological or chemical resources to create basic units such as atoms and molecules to build up 

nanoparticles (Vigneswari et al., 2021).  

Various biological systems, such as plants (Varadharaj et al., 2019), fungi (Skanda et al., 

2022), bacteria (Truong et al., 2022), seaweed (Deepak et al., 2018), lichen (Goga et al., 2021) and 

algae (Chugh et al., 2021) have been studied to produce AgNPs. These include small biomolecules 

such as amino acids, carbohydrates, and enzymes (Vigneswari et al., 2021; Malik et al., 2022).  

According to a study conducted by Chandrakala and collegues, (2022), AgNPs can be 

utilized as a part of a strategy to deliver vaccines, nucleotides, and conventional medications. 

Furthermore, AgNPs are widely used in a wide range of products, such as humidifier, water 

filtration systems and toothpaste, due to their antimicrobial properties (Zhang et al., 2020). 

According to the study conducted by Zhang et al., (2020), AgNPs produced by plants are effective 

against various types of Gram-positive and Gram-negative agricultural pathogens. In addition to 

these abovementioned properties, the researchers noted that AgNPs exhibited antitumorigenic 

properties by inducing cytotoxicity against different leukaemia cell lines (Mostafavi et al., 2022). 

For instance, AgNPs produced by the plant extract of Catharanthus roseus leaf exhibited anti-

cancer effects by suppressing the growth, invasion and migration of HepG2 human liver cancer 

cells in vitro (Azhar et al., 2020). 

Moreover, due to their wide variety of applications, the toxicity of AgNPs has become a 

subject of increasing attention, and researchers have recently studied their effects on human health 

and well-being. (Ferdous and Nemmar, 2020; Nie et al., 2023). In most cases, AgNPs exposure 

can be initiated through inhalation during various stages of the production and handling process 

(Li and Cummins, 2020). Numerous studies have shown that inhaled NPs are more toxic than their 
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larger counterparts (macro-scale) when it comes to respiratory toxicity. These findings suggest 

that the higher surface reactivity of these substances can trigger the development of respiratory 

toxicity (Zhao et al., 2021).  

Malaysia is known for its rich supply of medicinal plants, which are regarded as the primary 

sources of substances used in pharmaceutical and therapeutic procedures (Bakar et al., 2018; Ali 

Alsarhan et al., 2021). Garcinia atroviridis (G. atroviridis) is one of the most frequent forms of 

medicinal plants discovered in Malaysia. The fruits and leaves are often used to cure a variety of 

ailments, including coughing and throat irritation, and pre- and postpartum medication (Al-

Mansoub et al., 2014; Hamıdon et al., 2017). Additionally, indigenous and Malay communities 

consume the leaves and fruits as a flavoring agent and in salad (Al-Mansoub et al., 2014; Zulkifli 

et al., 2020).  
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1.2 Problem statement 

For decades, the use of AgNPs has been widely explored in various fields, especially in 

pharmaceutical and biomedicine applications due to their unique pharmacological and 

physicochemical properties. In recent years, AgNPs have been widely used in wound healing 

(Kubavat et al., 2023) and bone graft procedures in dental sector (Narciso et al., 2021), due to their 

antimicrobial properties (Munhoz et al., 2023; Thomas and Thalla, 2023). AgNPs were discovered 

to have potential to be employed as biosensors for medical devices (Naqvi et al., 2023), drugs 

carriers (Shakeel et al., 2023), and as an effective treatment agent for cancer (Singh et al., 2023). 

Despite the various applications of AgNPs, the evaluation of their potential toxic effects is still a 

major concern for the environment and human health. Furthermore, underlying mechanisms 

responsible for the toxicological properties of AgNPs particularly derived from biosynthesised 

approaches are yet to be explored. 
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1.3 Objectives of the study 

1.3.1 General objective 

This study aimed to investigate the underlying mechanism responsible for the toxicological 

effects of biogenic silver nanoparticles (AgNPs-GA) in both A549 cancerous and BEAS-2B non-

cancerous human lung cell lines. 

To achieve the above-mentioned objectives, several specifics objectives have been 

conducted and measured in this study. The list of specifics objectives were as follow: 

 

1.3.2 Specific objectives 

1. To biosynthesise AgNPs-GA from Garcinia atriviris leaves extract and characterise its 

physicochemical properties. 

2. To evaluate the effects of AgNPs-GA on the growth inhibition, production of reactive 

oxygen species (ROS), silver ion (Ag+) release, mechanism of cellular uptake and cell 

death in both A549 and BEAS-2B cell lines.  

3. To evaluate the effects of AgNPs-GA on genotoxic activity and mRNA expression of 

related DNA damage and repair pathways (ATM, DNA-PKcs, RAD51, and Ku80) in 

both A549 and BEAS-2B cells. 

4. To investigate the effect of AgNPs-GA on metabolome profiles of A549 and BEAS-

2B cells. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Lung 

2.1.1 Anatomy, histology, and physiology 

The lungs are the major organs of the respiratory system and are categorised into sections 

or lobes. As shown in Figure 2.1, the right lung has three lobes (upper lobe, middle lobe, and lower 

lobe), while the left one only consists of two lobes (upper lobe and lower lobe). Each lobe is 

connected to a specific region of the bronchi (Homer and Britto, 2014). The structures of the lungs 

are composed of the respiratory bronchioles, the alveolar ducts, and the alveoli. These components 

are responsible for the exchange of gas (Mack et al., 2020). 

 

Figure 2.1 The lower respiratory system displays the relationship between the respiratory 
bronchioles, alveoli, and terminal bronchioles. Notice that the alveolar pores are connected to the 
alveoli. As the branch of the airways passes through the alveolar membrane, the smooth muscle 

fibers in the airways become shorter.  Extracted from Homer and Britto, (2014). 
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The lungs have two vital functions. The first function is ventilation-perfusion, which helps 

to deliver oxygen to the body and to remove carbon dioxide. Meanwhile, the other one is host 

defense against harmful chemicals, particulates, and airborne pathogens. These two functions are 

interrelated (Albertine, 2015). The goal of the airways is to provide the alveoli with clean and fresh 

air. This is done through the filtration of air that contains pollutants and micro particles. It also 

eliminates pathogens and viruses (Arroyo and Schweickert, 2015). The lungs can be divided into 

two parts: the gas exchange and the conducting zones. The former part comprises the respiratory 

and terminal bronchioles, while the latter includes the trachea, alveolar duct, and the bronchi. The 

respiratory zone is composed of the alveoli, alveolar ducts, and the respiratory bronchioles (Figure 

2.1) (Homer and Britto, 2014). 

 

2.1.2 Pathophysiology 

Lung disease can be categorised into two main categories, which are obstructive and 

restrictive. Obstructive lung disease is characterised by impaired expiration. For instance, it can 

result in a reduction in the forced expiratory volume (FEV1) and forced vital capacity (FVC) 

(Haddad and Sharma, 2022). Some of the secondary types of obstructive disease include cyctic 

fibrosis (CF) and non-cystic fibrosis bronchiectasis (NCFB) (Haddad and Sharma, 2022). Two 

main examples of this disease are chronic obstructive pulmonary disorder (COPD) and asthma 

(Haddad and Sharma, 2022). COPD is the primary lung pathophysiology whereby gastro 

oesophageal reflux (GOR) is a comorbidity in this disorder (Ward et al., 2018). Restrictive lung 

disease, on the other hand, is a type of lung disease that limits the lung's ability to expand. In terms 

of characteristics, restrictive lung disease can result in a decrease in the FEV1 and an increase in 

the FEV1/FVC. Some other conditions that can cause this type of lung disease include idiopathic 

pulmonary fibrosis, sarcoidosis, and pneumoconiosis (Haddad and Sharma, 2022). 
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2.1.3 Lung carcinogenesis 

The process of cancer development involves the transformation of normal cells into cancer 

cells. Lung cancer develops in the lungs through a process called carcinogenesis, which involves 

the accumulation of genetic mutations caused by factors such as smoking, environmental toxins, 

or genetic predisposition (Heng et al., 2021; Stading et al., 2021). These mutations disrupt normal 

cell regulation, leading to uncontrolled cell growth, resistance to apoptosis, and the eventual 

formation of malignant tumors that can invade surrounding tissues and metastasize (Hanahan, 

2022). Exposure to tobacco smoke is one of the leading causes of lung carcinogenesis (Vinay et 

al., 2021; Tang et al., 2022). It has been reported that individuals who continue to smoke have a 

20 to 50 times greater risk of developing lung cancer compared to non-smokers (Malhotra et al., 

2016). The length of time a person smokes is acknowledged as the most critical factor affecting 

the development of this disease (Malhotra et al., 2016). While nicotine does not cause lung cancer, 

tar in cigarettes can lead to the development of this disease (Akhtar and Bansal, 2017). 

Approximately 3,500 compounds in tar are known to be carcinogenic to humans. Most of these 

compounds are classified as polycyclic aromatic hydrocarbons (PAHs), such as 

dibenzo[a,h]anthracene (DBA), benzo[a]pyrene (BP), and 3-methylcholanthrene (MC) (Stading et 

al., 2021; Vinay et al., 2021). Other known carcinogens include aza-renes, aromatic amines, 

aldehydes, and aromatic amines (Bracken-Clarke et al., 2021). Tar also contains various inorganic 

compounds, such as arsenic, chromium, hydrazine, and several others (Akhtar and Bansal, 2017). 

Prolonged exposure to these compounds results in DNA adducts, which lead to genetic 

abnormalities and mutations (Stading et al., 2021). The failure of DNA repair mechanisms in 

response to this damage leads to the development of cancer cells (Tang et al., 2022).  

Nicotine is a significant component of tobacco smoke. Although it is known to be an 

addictive substance, nicotine is believed to be non-carcinogenic, as mentioned previously (Akhtar 
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and Bansal, 2017; Vinay et al., 2021). Nevertheless, nicotine can still cause cancer when it is 

converted to nitrosamine compounds, particularly nitrosamine ketone and nitrosonornicotine 

(Bracken-Clarke et al., 2021; Vinay et al., 2021). According to Bracken-Clarke et al., (2021) the 

use of nitrosamines can increase DNA methylation, which is believed to contribute to the 

development, survival, and invasion of cancer cells. It also increases the activity of the nicotinic 

aceylcholine receptor. The lack of evidence supporting the carcinogenic properties of nicotine has 

led to the development of devices that deliver this substance without the burning of tobacco. Some 

of these include electronic cigarettes and nicotine patches (Tang et al., 2022). The electronic 

cigarettes (e-cigarettes) and vaping fluids which are commonly used nowadays contain various 

carcinogens. Some of these include nitrosamine ketone, organometal compounds, PAHs, and 

aldehyde (Bracken-Clarke et al., 2021). e-cigarette nicotine can be nitrosated, producing 

nitrosamines and thereby causing two carcinogenic effects, namely DNA damage induction and 

DNA repair inhibition. It was also reported in a study that e-cigarette aerosol can cause 

carcinogenic in mice (Tang et al., 2022).  

Besides tobacco smoking, lung cancer can also be attributed by other factors, such as air 

pollution from vehicles and on-the-job exposure to toxic chemicals. The hazardous substances 

from outdoor air pollution include carbon monoxide, nitrogen oxide, and ozone (Loiselle et al., 

2019). Meanwhile, various types of chemical compounds from different types of industrial and 

occupational activities, such as radon, chromium, arsenic, and lead, have been linked to lung 

cancer (Loiselle et al., 2019). Poorly ventilated indoor spaces can expose individuals to radon, a 

radioactive gas that seeps from soil, rock, and construction materials into buildings (Akhtar and 

Bansal, 2017). Radon decays into radioactive particles that, when inhaled, emit alpha radiation, 

damage lung tissue, and increase the risk of lung cancer, particularly with long-term exposure 
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(Yoon et al., 2016). Besides coal burning, other sources of indoor air pollution include fireplaces 

and wood burning stoves within poorly ventilated houses release the particulate matter and 

carcinogenic compound like PAHs (Malhotra et al., 2016). These chemicals are known to induce 

cancer by causing the production of reactive nitrogen (NOS) and oxygen species (ROS), leading 

to DNA damage, chronic inflammation, chromosomal alterations, and effects on the cell cycle and 

its proteins. These genetic alterations can lead to the development of cancer (Akhtar and Bansal, 

2017; Vinay et al., 2021). 

Numerous studies have identified family history as a major risk factor for lung cancer. 

According to a study conducted by the International Lung Cancer Consortium, individuals with a 

first-degree relative (mother, father, and sibling) suffering from the disease have 1.5 times higher 

risk of developing lung cancer than those otherwise (Akhtar and Bansal, 2017). In another study, 

the presence of single-nucleotide polymorphic variants (SNPs) and mutations in the genetic code 

(15q25, 5p15, and 6p21 regions) were found to be associated with the development of lung cancer 

(Malhotra et al., 2016). Additionally, high consumption of alcohol, unhealthy diets, and obesity 

are known to increase the risk of developing lung cancer, and people who have respiratory 

conditions, such as tuberculosis and COPD, are more prone to developing the disease (Malhotra 

et al., 2016; Akhtar and Bansal, 2017). Exposure to ionising radiation (Malhotra et al., 2016) and 

Epstein-Barr virus, HIV, and human papillomavirus (HPV) infections have also been linked to 

lung cancer (Akhtar and Bansal, 2017).  

Generally, there are two types of lung cancer: 1) small-cell lung cancer (SCLC) and 2) non-

small cell lung cancer (NSCLC). These two types are the main contributors for most of the lung 

cancer cases, which derived from epithelial cells of lung (Centers for Disease Control and 

Prevention (CDC), 2023). Approximately 15 % of lung cancer cases are attributed to SCLC, while, 
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around 85 % of the cases are NSCLC (Basumalik and Agarwal, 2022). Compared to SCLC, 

NSCLC is less aggressive and more common. SCLC is more likely to spread to other organs and 

therefore, it is regarded as a highly malignant tumour that is mainly caused by the neuroendocrine 

cells. In 2016, a study conducted by Siang et al. revealed that secondary lung cancer occurs when 

the primary lung cancer cells metastases to other parts of the body, such as the bone, breast, and 

colon (Siang and John, 2016) .  

The major classifications of NSCLC include adenocarcinoma, large cell carcinoma, and 

squamous cell carcinoma (SCC). It was estimated that 40 % of all lung cancers are attributed to 

adenocarcinoma (Sánchez-Ortega et al., 2021). Adenocarcinoma, which starts in the glands located 

outside the lung, is most commonly found in people who are under 45 years old, women and non-

smokers (Jain et al., 2021). Another type of lung disease, SCC, is mainly attributed to individuals 

who have a history of smoking, i.e. within 25 to 30 % (Jain et al., 2021). The three main types of 

SCC are basaloid, keratinising, and non-keratising (Kadota et al., 2015). These tumours usually 

appear in the central part of the lung and can form cavities when they grow excessively (Xie et al., 

2022). A study by Jain et al., (2021) found that men are more likely to develop NSCLC than 

women. This can be attributed with typically higher smoking rates in men, increased exposure to 

carcinogens like radon, asbestos, and other chemicals in certain occupations, hormonal factors 

such as the protective role of estrogen in women, and men’s tendency to seek medical check-up 

less frequently, resulting in delayed diagnoses (Jemal et al., 2018). In most cases, the cancer starts 

in the larger bronchi of the lungs (Sánchez-Ortega et al., 2021).  Approximately 10-15% of the 

cases are classified as large cell carcinoma, which is the rarest of all lung cancers. This type of 

cancer usually develops rapidly in one area of the body and is often difficult to detect until it has 

spread (Sánchez-Ortega et al., 2021). Almost 70 % of all surgical cases are caused by 
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adenocarcinoma which accounts for 60% of all NSCLC cases (Gridelli et al., 2015). This 

malignant epithelial tumor is typically characterized by glandular differentiation and mucin 

production (Xie et al., 2022). The WHO classified all types of adenocarcinomas into four 

subclasses: micropapillary, solid, invasive, and colloid (Kadota et al., 2015). A 2017 review found 

that exposure to low molecular weight polycyclic aromatic hydrocarbons at 50 ng per cigarette 

from tobacco smoking can lead to SCLC, while exposure of peripheral lung tissue to nitrosamines 

at 110 ng per cigarette in tobacco smoke can result in adenocarcinoma (Akhtar and Bansal, 2017). 

Apart from its histological characteristics, lung cancer can also be classified based on 

molecular subtype. In recent years, the number of targeted genes used as biomarkers for both 

diagnosing and predicting the prognosis of the disease has increased. These include B-Raf proto-

oncogene (BRAF) mutation, human epidermal growth factor receptor-2 (HER2) mutations, Erb-

B2 receptor tyrosine kinase-2 (ERBB2) and RET proto-oncogene (RET) fusion (Rajadurai et al., 

2019). BRAF is a gene that encodes a protein involved in the MAPK/ERK signalling pathway, 

which regulates cell growth (Riudavets et al., 2022). Mutations in the BRAF gene, particularly the 

BRAF V600E mutation, have been identified in a subset of NSCLC patients (Guaitoli et al., 2023). 

Detection of this mutation can help guide the use of targeted therapies, such as BRAF inhibitors, 

which have shown efficacy in treating cancers driven by this mutation  (O’Leary et al., 2019; 

Perrone et al., 2022). Another example emphasizing the importance of biomarkers, such as 

programmed cell death ligand-1 (PD-L1), is its ability to predict favorable outcomes in lung cancer 

treatment (Rajadurai et al., 2019). According to Rajadurai et al., (2019), patients with advanced 

cancer who display high levels of PD-L1 expression are more likely to achieved better treatment 

outcomes.  
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Lung cancer in non-smokers differs from that in smokers in terms of the molecular 

characteristics of the cancer cells (Kuśnierczyk, 2023). According to Akhbar and Bansal, the 

mutation rates in EGFR, HER2, EML4-ALK, RET, and ROS1 genes, were significantly higher in 

non-smokers compared to tobacco smokers, who showed a higher mutation rate in the K-RAS 

gene (Akhtar and Bansal, 2017). The mutation rates in these gene variants among non-smoker 

suggest that lung cancer in this group may develop through distinct molecular pathway. These 

gene variants are often associated with oncogenenic drivers – mutations that directly contribute to 

cancer development by promoting uncontrolled cell growth. For example, mutations in EGFR 

(epidermal growth factor receptor) is common in non-smokers and can be targeted by specific 

therapies (Khaddour et al., 2021). In contrast, K-RAS mutations are more frequently observed in 

smokers, often linked to tobacco-related carcinogenesis, which involves the accumulation of DNA 

damage from carcinogens in cigarette smoke (Caliri et al., 2021; Wang, 2021). These findings 

highlight the importance of personalized treatment strategies, as the molecular profiles of lung 

cancer in smokers versus non-smokers, and those influenced by epigenetic factors differ 

significantly, affecting treatment options and outcomes.  
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2.2 Cellular Metabolism 

2.2.1 Fundamentals of cell metabolism 

Cell metabolism refers to the complex network of chemical reactions that occur within 

living cells to sustain life. These biochemical processes enable cells to obtain energy, synthesise 

necessary molecules, grow, reproduce, and respond to their environment (Zhu and Thompson, 

2019). Metabolism can be divided into two categories, namely catabolism and anabolism. 

Catabolism can be defined as the breakdown of complex molecules into simpler ones, releasing 

energy that the cell can use for various activities. Anabolism can be defined as the synthesis of 

complex molecules from simpler ones, which requires energy input and is used for building 

cellular components like proteins, nucleic acids, and lipids. Through these metabolic pathways, 

cells convert nutrients into usable forms of energy (like ATP), produce building blocks for 

macromolecules, regulate cellular activities, and eliminate waste products (Davis and Rosenbaum, 

2020).  

Cellular metabolism plays a crucial role in carcinogenesis, as cancer cells often undergo 

metabolic reprogramming to meet the increased energy and biosynthetic demands required for 

rapid growth and proliferation. Key pathways, such as glycolysis (Warburg effect), the 

tricarboxylic acid (TCA) cycle, and oxidative phosphorylation, are frequently altered in cancer 

cells, enabling them to sustain growth and resist cell death, thereby contributing to tumor 

development and progression (Vanhove et al., 2019). In general, normal cells rely on oxidative 

phosphorylation in the mitochondria as their primary energy production mechanism, as it is highly 

efficient at generating large amounts of ATP (Figure 2.2A) (D’Alessandro and Zolla, 2012).  

However, cancer cells preferentially rely on aerobic glycolysis for ATP production, rather 

than the oxidative phosphorylation pathway, a phenomenon known as the Warburg effect (Lebelo 
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et al., 2019). In the Warbug effect, cancer cells convert glucose into lactate (Figure 2.2B). This 

pathway produces significantly less ATP per glucose molecule compared to oxidative 

phosphorylation. However, this metabolic shift allows cancer cells to meet the high demand for 

biosynthetic precursors required for rapid cell growth and proliferation. This altered metabolism 

also facilitates cancer cells survive and thrive in the typically hypoxic (low oxygen) and acidic 

(low pH) environments found in cancers (Boedtkjer and Pedersen, 2020; Blaszczak and Swietach, 

2021).  

 
 

  

Figure 2.2 Normal and cancer cells metabolism. (A) Metabolism in a normal cell; increased 
flux of pyruvate into mitochondria for the generation of ATP; (B) Warburg Effect in the cancer 
cell; comprised of three main aspects: 1) enhanced glucose uptake 2) increased lactate secretion 

and 3) decreased oxidative metabolism (adapted from D’Alessandro and Zolla, 2012). 
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2.2.2 The hallmark of cancer metabolism  

The term "cancer metabolism hallmark" refers to the specific changes in metabolism 

observed in cancer cells compared to normal cells. These alterations play a vital role in supporting 

the growth and survival of the cancer cells. Figure 2.3 illustrates the synthesis process of 

nucleotides, proteins, and lipids in cancer cells that are derived from amino acids, glucose, and 

glutamine. The proliferating cells require glucose, which is then converted to pyruvate through 

glycolysis. The PI3k/Akt pathway is a part of the glycolytic intermediates flow that controls the 

retention and import of glucose. The Krebs cycle begins with the pyruvate-to-acetyl-CoA 

conversion. MYC also regulates the catabolism and uptake of glutamine, which ensures the 

adequacy of α-ketoglutarate (α-KG) to fuel the TCA cycle and nitrogen for nucleotide synthesis 

(Finley et al., 2013). Glucose can also be used as a carbon source in the pentose phosphate pathway 

(PPP) to produce ribose-5-phosphate, which is converted into nucleotides (RNA and DNA) (Liu 

et al., 2019). Serine and glycine metabolism can also contribute to the pool of one-carbon 

metabolites that aid in nucleotide biosynthesis. Citrate is recycled to the cytosol for use in lipid 

synthesis. Lactate (primarily from glycolysis) and ammonia (from catabolism to amino acids) are 

secreted as waste (Finley et al., 2013; Vanhove et al., 2019). 
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Figure 2.3 Cancer metabolism pathways (adapted from Finley et al., 2013); Highly 
proliferative cancer cell metabolism utilizes numerous pathways to generate energy, nucleotides, 

lipids, and amino acids. Signalling pathways controlling nutrient uptake and most common 
oncogenic events (shown in orange), metabolic enzymes (highlighted in red) and metabolites 
(shown in blue) whose levels, expression, or activity are altered in cancer, including tRNA.  

 
 
 

The hallmarks of cancer include characteristics that allow cancer cells to grow 

uncontrollably and evade normal physiological processes (Hanahan, 2022). One of the emerging 

hallmarks is metabolic reprogramming. Through metabolic reprogramming, cancer cells modify 

their normal metabolic pathways to meet the increased energy, biosynthetic, and redox demands 

required for rapid growth and survival. Cancer cells often produce energy through a process called 

aerobic glycolysis, even when oxygen is available. This is different from normal cells, which 

usually use oxidative phosphorylation. (Lebelo et al., 2019). As above-mentioned, this shift allows 
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cancer cells to generate ATP quickly and produce the necessary building blocks for 

macromolecules like nucleotides, lipids, and proteins, as well as maintain redox balance, 

supporting their aggressive proliferation and ability to evade normal cellular controls (Lebelo et 

al., 2019). 

Sustaining proliferative signalling, enabling replicative immortality, activating invasion 

and metastasis, evading growth suppressors, tumour-promoting inflammation, resisting cell death, 

avoiding immune destruction, inducing angiogenesis, genome instability and deregulating cellular 

energetics and mutation are hallmarks driven by metabolic reprogramming (Hanahan, 2022). Thus, 

this metabolic shift fuels key cancer hallmarks, and targeting these reprogrammed metabolic 

processes offers significant potential for the development of more effective cancer therapies.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3 Silver nanoparticles (AgNPs) 

2.3.1 Introduction 

Silver nanoparticles (AgNPs) is among the most widely used materials in nanotechnology-

based nanostructures (Abass Sofi et al., 2022). They are composed of simple silver with an 
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estimated diameter from 1 to 100 nm, which are characterised by their high specific surface area, 

catalytic performance, surface energy, and excellent surface plasmon resonance (Ijaz et al., 2022). 

Compared to ordinary silver (bulk state), AgNPs perform better in terms of anti-bacterial and non-

drug resistance properties (Thomas and Thalla, 2023) . They also have better anti-cancer 

characteristics (Alharbi et al., 2022; Garg et al., 2022). Due to their immense potential, the 

scientific community begins focusing on the development of AgNPs by utilising various 

processing methods, including biological, chemical, and physical routes. 

 
 
 

2.3.2 Synthesis of AgNPs 

Most of the time, the synthesis of AgNPs is carried out using top-down and bottom-up 

methods, as shown in Figure 2.4. In the former method, the size of Ag metal is reduced physically 

by using tools and milled down to the nano level. On the other hand, the latter is a biological or 

chemical method that involves the creation of larger particles by the assembly of molecules or 

atoms (Garg et al., 2022; Hasan et al., 2022). In this process, the reducing agent is used to dissolve 

Ag salt into solvent, which then allows the silver to be reduced into Ag nanoparticles. This process 

prevents the aggregation of Ag nanoparticles (Ijaz et al., 2022). 
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Figure 2.4 Different approaches to synthesized AgNPs (adapted and from Garg et al., 2022; 
Hasan et al., 2022) 

 
Various physical methods, such as laser ablation, litography, and evaporation-

condensation, are commonly used to prepare AgNPs. The advantages of these methods include 

quick synthesis and the absence of harmful reagents (Alharbi et al., 2022; Nie et al., 2023). 

However, there are several drawbacks of these methods, such as solvent contamination, low yield, 

energy consumption, and non-uniform distribution (Alharbi et al., 2022), as well as the 

requirement for high concentrations (Nie et al., 2023) . 

Chemical reduction using organic and inorganic reducing agents is also commonly used to 

produce AgNPs. This method requires a reductant to convert Ag+ into AgNPs, such as block 

copolymers, ascorbic acid, citrate, and sodium borohydride (Nie et al., 2023; Shakeel et al., 2023). 

In turn, silver nitrate (AgNO3) can be utilised as a precursor (Alharbi et al., 2022). The chemical 

reduction method has several advantages over the physical methods, such as time efficiency and 

the ability to produce high yields of nanoparticles (Alharbi et al., 2022; Nie et al., 2023). 
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Unfortunately, the chemical substances involved in the production of AgNPs, such as citrate, are 

often harmful and costly (Alharbi et al., 2022). Furthermore, compared to other methods, chemical 

reduction is more challenging when it comes to producing AgNPs with a well-defined size. It 

requires additional steps to prevent particle aggregation (Nie et al., 2023). However, considering 

its advantages and simple operations, chemical reduction is still considerably a preferred method 

for producing AgNPs. 

Considering the disadvantages of the chemical and physical synthesis processes of the 

nanomaterials, there has been a growing demand for more eco-friendly methods. With the key 

component of nanotechnology, the process of green synthesis of AgNPs is undergoing a 

progressive transformation. Various biological approaches were utilised for the synthesis of these 

nanomaterials, including plant extracts from leaves, flowers, roots, barks, and heartwood (Hasan 

et al., 2022; Medeiros et al., 2022; Kaithal et al., 2023), bacteria (Chauhan et al., 2023; Munhoz et 

al., 2023), fungi (Skanda et al., 2022), algae (Hasan et al., 2022), biopolymer (Rajawat et al., 2023) 

(Rajawat et al., 2023), and chitosan (Shakeel et al., 2023). In recent years, various industrial 

wastes, such as seed shells (Thomas and Thalla, 2023), pamelo peel (Barbhuiya et al., 2022), as 

well as rice husk and coffee husk (Hasan et al., 2022), were used to produce AgNPs. The process 

of producing these materials using microorganisms has been widely acknowledged due to their 

high protein content and promising yields. Yet, among the major drawbacks of this process are the 

difficulties of growth and culture maintenance (Alharbi et al., 2022). In addition, it also requires 

additional processes, such as isolation and identification of microorganism. Temperature control 

is also required (Hasan et al., 2022).  

The synthesising process of AgNPs using plant extracts has several advantages over the 

other methods. It is more eco-friendly, easy to handle, and offers a variety of advantages, such as 
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low toxicity, time and cost-effectiveness, and energy efficiency (Alharbi et al., 2022). The plant-

based approach also eliminates the risk of contamination during storage (Hasan et al., 2022). 

Various phytochemicals found in plants, such as polysaccharides, flavonoids, and lignins, are 

utilised in the process of synthesising AgNPs whereby these elements act as stabilising agents, 

reducing agents, and capping agents (Garg et al., 2022; Ijaz et al., 2022).  

The process of producing AgNPs from biological materials is simple and can be done with 

the help of AgNO3 and its biomolecule components. This interaction was employed in previous 

studies in various fields, as shown in Figure 2.5. 

 
 
 

 

Figure 2.5 General green synthesis of silver nanoparticles (adapted from Alharbi et al., 2022; 
Ijaz et al., 2022) 

 
The green synthesis process as shown in Figure 2.6 involves the formation of nanoparticles. 

They are mainly formed during three phases: the ion reduction reaction, the cluster formation, and 

the growth of the nanoparticles (Alharbi et al., 2022). In plant biomolecules, the presence of 

various hydroxy groups, including those found in polysaccharides, anthocyanins, amino acids, 

proteins, and flavonoids, can help to reduce and stabilise silver ions (Ag+) to Ag0. The reduction 
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to Ag+ triggers the creation of silver nuclei, leading to the production of AgNPs (Garg et al., 2022; 

Ijaz et al., 2022).  

 

Figure 2.6 Representative mechanism for green synthesis of silver nanoparticles (adapted 
and modified from Alharbi et al., 2022; Garg et al., 2022; Ijaz et al., 2022) 

 
The morphology and size of AgNPs are affected by various factors, such as the incubation 

period, light, temperature, pH, and the concentration of both AgNO3 and the extract (Alharbi et al., 

2022). In their study, Alharbi et al., (2022) noted that the increase in the reaction temperature and 

the pH level can decrease the dimensions of the nanoparticles. According to their review, the 

increase in the plant extract's concentration can also increase the absorbance output, attributable 

to the fact that the longer the incubation period, the more AgNPs are produced. Additionally, the 

change in the reaction mixture's colour intensity (i.e. from yellow to brown), exhibited the AgNPs' 

formation. As anticipated in the study, while the reduction of Ag+ ions can be completed in a few 

minutes under sunlight, the reaction duration is longer under the dark. This is because the photons 

from direct sunlight can trigger the green process and promote the AgNPs' production. The AgNPs 

that were synthesised using different parameters exhibited a wide range of UV-Vis spectra (400-
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500 nm) (Alharbi et al., 2022). Due to the varying environmental conditions during the green 

synthesis process, it is imperative to identify suitable biomolecular capping and stabilising agents 

that can be employed to form these nanoparticles.  

The selection of solvent is crucial when extracting bioactive compounds from plant 

materials (Ijaz et al., 2022). Water is commonly used because it can dissolve a wide range of 

phytochemicals (Rahim et al., 2022; Al-Mashud et al., 2022; Khare et al., 2022; Kaithal et al., 

2023; Singh et al., 2023). For instance, an aqueous extract of Alstonia angustiloba leaves has been 

used to synthesize silver nanoparticles, with alkaloids, flavonoids, and steroids acting as reducing 

agents (Rahim et al., 2022). Similarly, an aqueous extract of Premna integrifolia roots contains 

polyphenolic compounds, fatty acids, esters, ketones, flavonoids, and quercetin, which served as 

capping and stabilizing agents (Singh et al., 2023). The use of aqueous plant extracts is beneficial 

because it eliminates the need for toxic chemicals, making the synthesis process more 

environmentally friendly (Garg et al., 2022). In some cases, other solvents, such as ethanol or 

methanol, are employed, depending on the specific phytochemicals targeted and their solubility 

(Alharbi et al., 2022). For example, the methanolic extracts of Madhuca longifolia and Pimenta 

dioica leaves contain amino acids, alkaloids and polyphenols that reduce silver ions (Ag+) to silver 

nanoparticles (AgNPs) (Kaithal et al., 2023). Table 2.1 summarises the various synthesis 

approaches for the production of AgNPs.  
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