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RANGKAIAN BERTENTANGAN GENERATIF PENGURANGAN 

KEBISINGAN BERDASARKAN PEMETAAN CIRI AUGMENTASI DATA 

YANG DIPERTINGKATKAN UNTUK SINTESIS IMEJ 

ABSTRAK 

Rangkaian bertentangan generatif (GAN) telah menjadi topik penyelidikan 

yang penting dalam pembelajaran mendalam untuk sintesis imej. GAN boleh 

menghasilkan hasil yang pelbagai dan berkualiti tinggi melalui kerjasama antara 

penjana dan diskriminator. Walau bagaimanapun, membina model GAN yang teguh 

dan stabil kekal sebagai cabaran penting. Penyelidikan terdahulu telah cuba 

meningkatkan GAN asal dengan menggunakan pelbagai algoritma untuk mengukur 

perbezaan antara pengagihan data, melaksanakan struktur rangkaian yang berbeza, 

atau menggabungkannya dengan struktur lain untuk mencapai hasil yang lebih baik. 

Walau bagaimanapun, penambahbaikan ini selalunya terhad kepada satu perspektif. 

Kertas kerja ini memperkenalkan GAN Pemetaan Ciri Denoising (DNFM-GAN), 

varian GAN yang meningkatkan kestabilan latihan model dengan menambah baik 

komponen penjana dan diskriminator. Khususnya, keupayaan penjana dipertingkatkan 

dengan menambahkan data dengan hingar sebagai input tambahan. Ini memerlukan 

penjana untuk mempelajari cara menjana imej daripada data yang rosak separa, yang 

membawa kepada perwakilan yang lebih baik yang dipelajari daripada data tersebut. 

Untuk memastikan kestabilan dan keteguhan penjana, adalah penting untuk 

meminimumkan turun naik yang disebabkan oleh kehilangan penjana. Selain itu, 

menjana dua jenis data, G(z) dan G(z+noise) boleh meningkatkan kesukaran 

diskriminasi untuk diskriminasi apabila digabungkan dengan data sebenar. Selain itu, 

GAN tradisional sering menghadapi isu bahawa Jensen-Shannon Divergence 
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mengukur perubahan dalam jarak pengedaran secara tidak tepat, menjadikannya sukar 

untuk mengoptimumkan penjana. Untuk membimbing penjana dengan lebih baik agar 

sesuai dengan pengedaran data sebenar, kajian ini mencadangkan DNFM-GAN, yang 

menggunakan helah pemetaan ciri yang dipertingkatkan untuk mengemas kini penjana. 

Ini membolehkan penjana mendapatkan maklumat kecerunan yang lebih lancar, 

menghasilkan kestabilan latihan yang lebih baik. Eksperimen yang dijalankan pada set 

data menara CelebA dan LSUN menunjukkan bahawa DNFM-GAN boleh 

menghasilkan hasil yang memuaskan tanpa mengalami keruntuhan mod. Berbanding 

dengan ImprovedDCGAN, VAEGAN, dan WGAN-GP, model ini mencapai skor FID 

yang lebih rendah sebanyak 15.963 pada CelebA dan 12.956 pada menara LSUN, dan 

skor Inception yang lebih tinggi sebanyak 9.742 pada ClebA dan 8.225 pada menara 

LSUN pada resolusi 128×128. Dalam penilaian kualitatif berdasarkan AWT, DNFM-

GAN mencapai peratusan tertinggi iaitu 51% dan 57%. Ini menunjukkan bahawa imej 

yang dijana oleh DNFM-GAN kelihatan unggul secara visual daripada perspektif 

manusia. 
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A DENOISING GENERATIVE ADVERSARIAL NETWORK BASED 

ON ENHANCED FEATURE MAPPING OF DATA AUGMENTATION FOR 

IMAGE SYNTHESIS 

ABSTRACT 

Generative adversarial networks (GANs) have become a significant research 

topic in deep learning for image synthesis. GANs can produce diverse and high-quality 

results through the collaboration between the generator and discriminator. However, 

building a robust and stable GANs model remains a significant challenge. Previous 

research has attempted to enhance the original GANs by utilizing various algorithms 

to measure divergence between data distributions, implementing different network 

structures, or combining them with other structures to achieve better results. But these 

improvements were often limited to a single perspective. This research introduces the 

Denoising Feature Mapping GAN (DNFM-GAN), a GAN variant that enhances the 

stability of the model's training by improving both the generator and discriminator 

components. Specifically, the generator's ability is enhanced by adding data with noise 

as an extra input. This requires the generator to learn how to generate images from 

partially damaged data, leading to better representations learned from the data. To 

ensure the generator's stability and robustness, it is important to minimize the volatility 

caused by generator loss. Additionally, generating two types of data, 𝐺𝐺(𝑧𝑧) and 𝐺𝐺(𝑧𝑧 +

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛)  can increase the difficulty of discrimination for the discriminator when 

combined with real data. Moreover, traditional GANs often encounter the issue that 

Jensen-Shannon Divergence inaccurately measures changes in distribution distances, 

making it difficult to optimize the generator. To better guide the generator to fit the 

real data distribution, DNFM-GAN employs an enhanced feature mapping trick to 
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update the generator. This allows the generator to obtain smoother gradient 

information, resulting in improved training stability. Experiments conducted on the 

CelebA and LSUN towers datasets demonstrated that DNFM-GAN can produce 

satisfactory results without experiencing mode collapse. Compared to 

ImprovedDCGAN, VAEGAN, and WGAN-GP, this model achieved a lower FID 

score of 15.963 on CelebA and 12.956 on LSUN towers, and a higher Inception score 

of 9.742 on CelebA and 8.225 on LSUN towers at 128×128 resolution. In the 

qualitative assessment based on AWT, DNFM-GAN achieved the highest percentage 

with 51% and 57%. This suggests that images generated by DNFM-GAN appears 

superior results from a human perspective. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Research Background 

With the recent advancements in deep learning, it has made significant 

achievements in the tasks of computer vision, especially image classification, image 

synthesis, etc. Generally, the task of image classification based on machine learning 

needs to predict data labels from input images. With recent advances in machine 

learning and artificial intelligence techniques (especially deep learning models), it 

achieves a great success that sometimes reach or even surpass human performance, such 

as in visual object recognition and object detection or image segmentation. As 

mentioned before, the task of image classification is to predict image label based on 

input image features. Specifically, the essence of this training process is to learn the 

conditional probability 𝑝𝑝(𝑦𝑦|𝑥𝑥) , that is, the output of these models should be the 

probability of image label 𝑦𝑦 under the condition of given image sample 𝑥𝑥. Ultimately, 

the decision boundary is used to distinguish between different types of images. 

Nowadays, as long as there is enough training data for these kinds of tasks, the 

prediction accuracy rate can be relatively high. Many notable models such as Support 

Vector Machine (Boser et al., 1995), Alexnet (Krizhevsky et al., 2017), Resnet (He et 

al., 2015), Mobilenet (A. Howard et al., 2019; A. G. Howard et al., 2017; Sandler et al., 

2019) can be classified into this category. 

However, as American theoretical physicist Richard Frynman pointed out, 

"what I cannot create, I do not understand". Creating data itself may be a better indicator 

of understanding the data than data classification. Image synthesis based on deep 

learning is more difficult than discriminative tasks, which currently requires the help of 

generative models to produce richer information, such as complete images with certain 
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details and changes. Generative models focus on the sample distribution and model the 

data distribution. To be specific, it includes both latent variable models and supervised 

models. Where the latent variable model requires the model to be able to generate 

higher-dimensional results that conform to the real data distribution from the lower-

dimensional code. These high dimensional results can be structured data, such as images, 

videos or audios, etc. For example, the hidden variable model can be defined as 𝑝𝑝(𝑥𝑥 , 𝑧𝑧), 

where 𝑥𝑥 is the real image itself, and 𝑧𝑧 is the hidden variable, the process of image 

synthesis is to transfer code 𝑧𝑧 from a 100-dimensional hidden variable to a 64×64 

resolution image. Eventually, the model will learn the distribution of the real data that 

can produce images which are similar to the real data. Basically, this method requires 

the model to have a strong ability to match the objective distribution. The other is 

supervised learning models, which needs to consider the information of the image label 

as an extra constraint during the training process. So that, the supervised learning model 

needs to learn probability density 𝑝𝑝(𝑥𝑥 ,𝑦𝑦). For example, 𝑦𝑦 is a label of Arabic numeral 

6, and 𝑥𝑥 is a generated image under the 𝑦𝑦 label, When the model generates images, it 

not only needs to consider the quality of the generated images, but also needs to consider 

the constraints of label information on the results. At present, there is extensive research 

on both models and both have a wide range of applications. 

Nowadays, the advancement of image synthesis technology can not only 

facilitate the further development of traditional computer vision and graphics tasks, but 

also the related applications which are closely to people's lives are becoming 

increasingly mature. For example, people can combine image synthesis with text to 

control the generated images that conform to the current description or control the local 

features (Figure 1.2) of the generated facial image (Choi et al., 2018; Karras et al., 2019), 

such as change the facial expression, beard, hairstyle which is shown in Figure 1.2. 
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Moreover, many applications, such as the task of discriminative models, often require 

a large number of training sets, but obtaining these training set data is expensive and 

time-consuming, and image synthesis models can provide a way to solve this problem 

very well. Furthermore, the image synthesis model can do style transfer (Zhu et al., 

2020), such as converting ordinary paintings into paintings of well-known painters 

(Figure 1.1), which also took a lot of time in the past by traditional way. To sum up, 

image synthesis is an important research direction in the field of computer vision, and 

it has significant research value from perspectives of both research and applications. 

 

Figure 1.1 The Example of Style Transfer 
 
 

 

Figure 1.2 The Example of Feature Control 
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1.2 The Current Research Works 

The research on image synthesis has been going on for a long time. The early 

study is generally based on the relationship between image pixels. These kinds of 

models often need to manually design features, which is relatively simple to implement 

and does not need to consume a lot of calculations. However, it is only suitable for 

images with simple content and lower resolution, once the content of image is complex, 

the effect will not work very well.  

The development of machine learning has brought new opportunities for image 

synthesis technology. During this period, many models based on machine learning have 

made progress in image synthesis tasks, but the architecture of these models are 

generally shallow with a fixed model structure, and deal with specialized problems, so 

there are certain limitations in the capabilities and application scenarios of these models.  

In recent years, image synthesis focusses on process of generating new images 

from a set of input parameters, the goal of image synthesis in this stage is to create 

realistic images that are not present in the original dataset, such as creating new faces 

from a dataset of faces, or creating new landscapes from a dataset of images of 

landscapes. the combination of deep neural network and probabilistic graphical model 

has produced many new models. For instance, the Autoregressive model (Oord, 

Kalchbrenner, & Kavukcuoglu, 2016; Oord, Kalchbrenner, Vinyals, et al., 2016) is a 

kind of linear prediction, which uses the linear combination of random variables at 

several moments in the past to describe the linear regression model of random variables 

at a certain moment in the future. The network structure of this model can adopt 

recurrent neural network or convolutional neural network based on different task 

requirements. Besides, another model is called Variational autoencoder (VAE) 
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(Kingma & Welling, 2013) which the structure is similar to that of autoencoder. The 

encoder and decoder structures remain unchanged, but the encoder of VAE does not 

directly output latent code, but outputs two codes 𝑚𝑚 and 𝜎𝜎, which represents the mean 

and variance of distribution. Intuitively, VAE can be regarded as a normal autoencoder 

adding noise to the input. After reconstruction process, the original image can be 

obtained. Another model is called Flow-based models (Dinh et al., 2015, 2017) that use 

normalizing flows to transform a simple latent variable distribution (such as a standard 

Gaussian) into a target distribution. The training of this kind of model is faster than 

auto-regressive model, and the optimization goal is the maximum likelihood estimation 

instead of optimizing the Evidence Lower Bound (ELBO) like the VAE, so the training 

is easy to implement. Basically, Flow-based models have been used for a variety of 

applications, including image synthesis, super-resolution, and generative design. They 

have also been used for tasks such as denoising, inpainting, and style transfer.  However, 

Flow-based models have some limitations, it is difficult to model complex distributions. 

In addition, Calculating the Jacobian Matrix can be costly and hardly handle discrete 

variables or non-differentiable operations. Besides, the generated samples sometimes 

lack diversity and have inferior quality. Currently, the best quality of generated images 

is achieved by Generative Adversarial Network (GANs) (I. J. Goodfellow et al., 2014) 

which are currently mainly used in image synthesis, text generation, style transfer and 

other directions. Especially in the field of image synthesis, the achievements of GAN 

are impressive. GANs is different from previous models in that it does not directly 

estimate the probability density of the target distribution, but relies on its specific model 

structure to judge the difference between the distribution of generated data and real data. 

Basically, GAN consists of two important components which are the generator and the 

discriminator. Both structures are neural networks. The main task of the generator is to 
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generate high dimensional data through the lower dimensional input code 𝑧𝑧 from prior 

distribution, the objective of generator is to "fool" the discriminator as much as possible, 

that means the generated image 𝐺𝐺(𝑧𝑧) can be considered by discriminator to be a real 

data instead of a fake data. While, the role of the discriminator is to judge whether the 

data is real data or the data generated by the "generator" which works like a binary 

classifier. The training process can be defined as follows: where 𝑥𝑥 indicates the input 

data of discriminator, and the output 𝐷𝐷(𝑥𝑥) represents the probability that 𝑥𝑥 is real data. 

If it is 1, it means discriminator has 100% confidence that 𝑥𝑥 is the real data. Meanwhile, 

if the output is 0, it means that it cannot be regarded as real data. In this way, generator 

and discriminator constitute a dynamic confrontation (Minmax gaming). As the training 

(confrontation) progresses, the data generated by generator is getting closer to the real 

data, and the level of discriminator's identification data is also getting enhanced. In an 

ideal state, generator can produce data that is enough to "confuse the real". But for 

discriminator, it is difficult to determine whether the data generated by the generator is 

real or not, so 𝐷𝐷�𝐺𝐺(𝑧𝑧)� equals to 0.5. After training, it is possible to get a generative 

model that can be used to generate “real data”. Although the quality of the images 

generated by GANs is very high, due to the differences in the tasks of the generator and 

the discriminator, the training of GANs is difficult to maintain stability, which is the 

current direction for researchers to improve GANs. 

Through the review of image synthesis technology, it can be found that the 

development of this field has made great progress, and it is also one of the hotspots of 

computer vision research. However, ensuring the high quality, diversity, and robustness 

of the generated images remains a significant challenge for the models to overcome. 
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1.3 Research Problems 

Image synthesis refers to the generation of new images through computer 

algorithms. It can be used in various applications such as image restoration, image 

generation, image style transfer, etc. GAN plays an important role in image synthesis 

as it can learn the data distribution and generate high quality images. The generator 

generates synthetic images by learning the statistical characteristics of the data, while 

the discriminator evaluates the similarity between the generated images and real images. 

The training process of GAN can be summarized as a confrontation game between the 

generator and the discriminator. The generator tries to generate realistic images to fool 

the discriminator, while the discriminator tries to distinguish between generated images 

and real images. Through this adversarial training, the generator gradually improves the 

quality of the generated images to the point where the discriminator cannot accurately 

distinguish between generated images and real images. Therefore, GAN is one of the 

commonly used methods in image synthesis. It can generate high-quality, realistic 

images and is widely used in fields such as computer vision, image processing, and 

artistic creation.  

Despite the great success of GANs, it still has some problems that cannot be 

ignored. Firstly, the generator needs to map the data from the low-dimensional 

distribution to the high-dimensional distribution and there is no constraint on generator 

to constraint the generation space that cause insufficient robustness of the generator 

(Radford et al., 2016), which badly affects the generated results. So, how to make the 

generator more robust is one of the research problems of this paper. In order to better 

explain the problem, the experiment of original GAN training was trained 150k steps 

on the Fashion_Minist dataset and illustrated the change of generator loss. It could be 

found that although the overall loss shows a downward trend, there is big volatility of 
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loss of generator which suddenly become larger. Meanwhile, images with this larger 

loss are extracted at steps 96600 and 112600, it was found that the quality of these 

images is poor with many strange textures. This reflects the lack of robustness of 

generator, and it is tough for generator to learn a good intermediate representation of 

data. The reason for this phenomenon is largely due to the training mechanism of GANs. 

GAN does not need to directly estimate the probability density of the target distribution. 

It lacks a clear training goal such as optimizing ELBO like VAE. Hence, the generator 

is too arbitrary in training and lacks robustness. If there is no constraint on the generator, 

the quality of the generated images will be badly affected. This phenomenon is shown 

by figures 1.3 and 1.4. 

 

Figure 1.3 The Loss of Generator Training on Fashion_Minist 
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Figure 1.4 The Generated Results at Step 96600 and 112600 
 
 

In addition, GAN requires generator and discriminator alternate training. But it 

is difficult for the generator and discriminator to converge at the same time. Most of the 

deep model training takes gradient descent optimization algorithm to reach at optimized 

point of the loss function and eventually reach at the local minimum or saddle point. 

Generative adversarial neural network requires both generator and discriminator to keep 

an equilibrium situation during the training game (I. Goodfellow et al., 2014). For the 

above reasons, the optimization methods with a same gradient direction may reduce the 

gradient for generator, but increase gradient of discriminator. Even sometimes the two 

sides of the game finally reach at equilibrium point, they are constantly offsetting each 

other's progress. This leads to that generator and discriminator cannot reach at the 

optimal convergence point simultaneously. In addition, the difference in the difficulty 
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of the two components also makes it difficult for them to converge synchronously. The 

discriminator only needs to complete data discrimination, which is relatively easy to 

train, while generator needs to complete the mapping from low-dimensional data to 

high-dimensional data, and the task is relatively more complicated. Because the latent 

code 𝑧𝑧 is usually sampled from normal distribution or gaussian distribution randomly 

at the beginning of training, fake data distribution is too far away from the real data 

distribution and the image is just a low-dimensional manifold in a high-dimensional 

space, so it is difficult to have overlapping areas between different distributions or even 

if there is any overlap, it can be ignored. This cause the problem of gradient vanishing 

of generator, that is when the ability of discriminator is very powerful, the loss of the 

discriminator quickly equals to 0, which cannot provide a reliable path to continue to 

update the gradient of the generator, causing the gradient of the generator to vanish 

(Salimans et al., 2016). Therefore, increasing the discrimination difficulty of the 

discriminator so that it is not easy for discriminator to distinguish between real and fake 

samples in the early stages of training can avoid the loss of discriminator being too 

small, thus improving the stability of the model. 

Moreover, the optimization goal of generator is to minimize the distance 

between the target distribution and the generated distribution, and this goal is often 

difficult to achieve in training. To be specific, the loss function of discriminator from 

original GAN is defined as:  

𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝐸𝐸𝑥𝑥~𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥)] + 𝐸𝐸𝑥𝑥~𝑝𝑝𝑝𝑝 �𝐿𝐿𝐿𝐿𝐿𝐿�1− 𝐷𝐷(𝑥𝑥)�� (1.1) 

Where, 𝐸𝐸  indicates mathematical expectation, and 𝑥𝑥~𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , 𝑥𝑥~𝑝𝑝𝑝𝑝  represents data 

from real distribution and generated distribution respectively. And discriminator needs 

to maximize the equation below during training process: 
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𝐷𝐷∗ = 𝑎𝑎𝑎𝑎𝑎𝑎max
𝐷𝐷

𝑉𝑉(𝐷𝐷,𝐺𝐺) (1.2) 

Obviously, discriminator should maximize the value of 𝐷𝐷(𝑥𝑥)  if 𝑥𝑥~𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 , and 

minimize the value of 𝐷𝐷(𝑥𝑥) if 𝑥𝑥~𝑝𝑝𝑝𝑝. Integral transformation of formula (1.1) can get: 

𝑉𝑉(𝐺𝐺,𝐷𝐷) = 𝐸𝐸𝑥𝑥~𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥)] + 𝐸𝐸𝑥𝑥~𝑝𝑝𝑝𝑝 �𝐿𝐿𝐿𝐿𝐿𝐿�1− 𝐷𝐷(𝑥𝑥)��
 
 

= �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥)𝑑𝑑𝑑𝑑
 

𝑥𝑥
+�𝑃𝑃𝐺𝐺(𝑥𝑥) log�1−𝐷𝐷(𝑥𝑥)�𝑑𝑑𝑑𝑑

 

𝑥𝑥 
 

= � �𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑥𝑥) + 𝑃𝑃𝐺𝐺(𝑥𝑥) log�1 −𝐷𝐷(𝑥𝑥)��𝑑𝑑𝑑𝑑
 

𝑥𝑥
(1.3)

 

Assuming 𝐷𝐷(𝑥𝑥) is any function, then only need to find 𝐷𝐷(𝑥𝑥)=𝐷𝐷∗(𝑥𝑥), when 𝐷𝐷∗(𝑥𝑥) 

reaches the maximum value, the formula 1.3 obtains the maximum value. Let  𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) 

= 𝑎𝑎, 𝑃𝑃𝐺𝐺(𝑥𝑥) = 𝑏𝑏, 𝐷𝐷(𝑥𝑥) = 𝐷𝐷, the formula 1.3 can be: 

𝑓𝑓(𝐷𝐷) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐷𝐷) + 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏(1− 𝐷𝐷) (1.4) 

The extreme point of formula 1.4 can be get by: 

𝑑𝑑𝑑𝑑(𝐷𝐷)
𝑑𝑑𝑑𝑑 = 𝑎𝑎 ×

1
𝐷𝐷 + 𝑏𝑏 ×

1
1 −𝐷𝐷 × (−1)  

 

𝐷𝐷∗ =
𝑎𝑎

𝑎𝑎 + 𝑏𝑏 

 

𝐷𝐷∗ =
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑃𝑃𝐺𝐺(𝑥𝑥) (1.5) 

So that, when 𝐷𝐷(𝑥𝑥) = 𝐷𝐷∗, 
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max
𝐷𝐷

𝑉𝑉(𝐺𝐺 ,𝐷𝐷∗) = 𝐸𝐸𝑥𝑥~𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 �
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑃𝑃𝐺𝐺(𝑥𝑥)� + 𝐸𝐸𝑥𝑥~𝑃𝑃𝐺𝐺 �
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑃𝑃𝐺𝐺(𝑥𝑥)� 

 

= � 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑃𝑃𝐺𝐺(𝑥𝑥) +� 𝑃𝑃𝐺𝐺(𝑥𝑥)𝑙𝑙𝑙𝑙𝑙𝑙
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥) + 𝑃𝑃𝐺𝐺(𝑥𝑥)

 

𝑥𝑥

 

𝑥𝑥
 

 

= −2𝑙𝑙𝑙𝑙𝑙𝑙2 +𝐾𝐾𝐾𝐾(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑||
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝐺𝐺

2 +𝐾𝐾𝐾𝐾(𝑃𝑃𝐺𝐺||
𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝐺𝐺

2 ) 

= −2𝑙𝑙𝑙𝑙𝑙𝑙2 + 2𝐽𝐽𝐽𝐽𝐽𝐽(𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∥ 𝑃𝑃𝐺𝐺) (1.6)  

As can be seen from above formula (1.6) that maximizing 𝐷𝐷∗ is maximizing the Jensen-

Shannon divergence (JSD) between 𝑃𝑃𝐺𝐺  and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 . Similarly, for the generator, it is 

necessary to minimize the distance between 𝑃𝑃𝐺𝐺  and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 which can be described by 

𝐺𝐺∗ = 𝑎𝑎𝑎𝑎𝑎𝑎min
𝐺𝐺

max
𝐷𝐷

𝑉𝑉(𝐺𝐺,𝐷𝐷).  

However, there are some problems with adopting Jensen–Shannon divergence 

(JS) to measure the difference of two distributions that this metric does not accurately 

measure the distance between two distributions, since according to the nature of JS 

divergence, even if the distance between two distributions is closer than the previous 

iteration, if two distributions do not overlap, the distance between them will always be 

𝑙𝑙𝑙𝑙𝑙𝑙2  (Arjovsky et al., 2017) (Figure 1.5). Since the images are only the low-

dimensional manifolds in a high-dimensional space, and during training, all data is 

sampled from 𝑃𝑃𝐺𝐺  and 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, there is almost no overlap between them, or even if there 

is overlap, the overlapping area can be ignored. Under this condition, the generator will 
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not be able to obtain useful gradient information to update, resulting in the failure of the 

entire training. Therefore, how to accurately measure the difference between the 

generated distribution and the real distribution to guide the generator to produce better 

quality data is also a problem. 

 

Figure 1.5 The Shortcoming of JS Divergence 
 
 

According to the analysis above, the research problems are defined as follows: 

1. There are no constraints on the generator, which can cause volatility in loss 

values and make it difficult for the generator to learn a good intermediate 

representation of the data. 

 

2. The discriminator is able to easily distinguish between generated data and 

real data during training, causing the discriminator's loss to approach 0.  

 

3. The Jensen-Shannon Divergence is not an accurate measure of the 

divergence between the real and generated distributions, which can cause 

unstable training for the discriminator and hinder the generator's 

convergence. 
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1.4 Research Questions 

According to the issues identified in this study, there are three main challenges 

that need to be addressed. Firstly, the generator lacks constraints, leading to inadequate 

robustness, difficulty in acquiring a good representation of data, and the inability to 

stably produce high-quality images. Secondly, the high-dimensional space presents a 

challenge for the image manifold. This causes a lack of overlap between real and 

generated data, making it easier for the discriminator to distinguish between the two 

and resulting in a small loss. Finally, the use of JS divergence as a measure for the 

distance between different distributions is not accurate, thus guiding the generator 

towards unsatisfactory results. 

Therefore, the focus of this research is to answer three significant questions. The 

first question is how to introduce appropriate constraints to the generator to increase its 

robustness and enable it to generate high-quality images consistently. The second 

question is how to address the issue of the lack of overlap between real and generated 

data in the high-dimensional space to improve the performance of the discriminator. 

The third question pertains to the development of accurate measures for the distance 

between different distributions to guide the generator towards generating high-quality 

images. By answering these questions, the research aims to overcome the challenges 

identified and improve the quality of the generated images. 

 
1. What constraint can enhance the robustness of generator? How to design 

this constraint? 

 

2. How to increase the difficulty of discrimination for discriminator? How to 

combine this concept into loss function? 
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3. How to design the optimization objective of generator to accurately 

measure the distance change between real data and fake data? 

1.5 Research Objective 

This research sheds light on the drawbacks of GANs. Presently, GANs 

encounter several problems that need to be addressed. Firstly, one significant issue 

entails the absence of any constraint on the generator in traditional GANs. This results 

in the volatility of loss values and lower quality of produced samples. Therefore, it is 

vital to impose constraints on the generator to limit the generation space and enhance 

its robustness. Implementing bounds on the generated samples can enable the generator 

to produce more controllable and predictable results by preventing it from generating 

unrealistic samples. This can be achieved through various techniques, including 

regularization or gradient penalty methods. These methods enable the generator to learn 

a more accurate and stable representation of the domain, which makes it less sensitive 

to input perturbations, leading to better results. Additionally, maintaining a balance 

between the generator and discriminator is crucial for optimal performance of GANs. 

In conclusion, by adding constraints to the generator, GANs can effectively resolve the 

current issues and improve the quality and robustness of the generated data, resulting in 

more accurate and reliable output for a variety of applications. 

Next, due to the task difference between generator and discriminator. 

Discriminator can easily distinguish between real data and generated data in the stage 

of training, and the value of loss will be very small. This will make it difficult for 

generator to obtain effective gradient information, and it is necessary to increase the 
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difficulty of discrimination of the discriminator. Under this condition, it is not too easy 

for discriminator to distinguish between real data and fake data.  

Furthermore, the optimization method of generator needs to be improved, 

according to the characteristics of JS divergence, using JS divergence to measure the 

distance of different distributions has certain limitations, if the generator just simply 

maximizes the value of output form discriminator, this will cause the problem of 

gradient vanishing, and generator cannot obtain smooth gradient information to update. 

In general, the objectives of this work are as follows: 

1. To enhance the stability of generator, the structure with an additional 

decoder will be included to reconstruct data with noise, this will enable the 

generator to learn a more stable and effective intermediate representation of 

the data. 

 

2. To design a mechanism that can increase the difficulty of discrimination of 

the discriminator, so that the loss of the discriminator will not be too small 

which can be better to provide gradient information to generator. 

 

3. To propose the enhanced feature mapping optimization method for 

generator to get more accurate convergence of generator and stable training 

process, this will improve the results of image synthesis. 

1.6 Research Scope 

The primary focus of this study is to design a new variant of Generative 

Adversarial Networks (GANs) to get the high-quality results of image synthesis, with 

the objective of achieving consistent production of high-quality and varied images. 
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Specifically, the research is focused on addressing three key aspects of GANs: namely, 

reducing the instability of the generator’s loss, enhancing the discriminator’s ability to 

accurately discriminate between real and generated data, introducing a more effective 

approach to measuring the divergence 0 between distributions of real data and fake data. 

By improving these critical aspects of GANs, this research aims to push the boundaries 

of what is currently possible in the field of generative image synthesis, providing more 

sophisticated and refined outputs with greater consistency and diversity.  

It also designs corresponding experiments to verify the effectiveness of these 

three improvements. Concretely, the dataset CelebA (Z. Liu et al., 2015) and LUSN 

towers (Yu et al., 2016) are used to train the proposed model. These two datasets contain 

rich face and tower samples respectively, which are common for training generative 

models (Denton et al., 2015; Larsen et al., 2016; Roth et al., 2017; Zhang, Xu, et al., 

2019). The resolution of generated images by this proposed model is 128×128, which 

is used for evaluation and compare to other models, They are WGAN-GP (Gulrajani et 

al., 2017), ImprovedDCGAN (Salimans et al., 2016), and VAEGAN (Larsen et al., 

2016). Furthermore, Since there is currently no unified standard for evaluating 

generative models, in order to evaluate the model more comprehensively, this study 

takes two objective metrics Inception score (IS) (Barratt & Sharma, 2018) and Fréchet 

Inception Distance (FID) (Heusel et al., 2018) as the criteria for evaluation of the 

performance of model, these two metrics are commonly used in current research on 

generative models. In addition, this research also takes an evaluation standard Amazon 

Mechanical Turk (AMT) (Shaham et al., 2019) based on human subjectivity as a 

supplementary evaluation criterion. However, other datasets and evaluation metrics are 

not considered in this study. 
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1.7 Research Contributions 

Generating realistic images is one of the key goals of image synthesis tasks. The 

advantage of GAN in image synthesis is its ability to learn the statistical characteristics 

of the data and generate images similar to the training data. It has the ability to generate 

high-quality, realistic images, and can achieve more precise control and diversity by 

adjusting the model's structure and training strategy. This research proposes a variant 

of GANs model called DNFM-GAN. Compared with the traditional GAN, the 

following improvements are made. First, it learns more robust data features through a 

denoising structure. To be specific the model adds an additional encoder, which can 

convert 𝐺𝐺(𝑧𝑧 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) into 𝑧𝑧̅ and generator needs to minimize the difference between 

𝑧𝑧 and 𝑧𝑧̅. This can help generator to learn more robust representation from data. It can 

be found from the experimental results that this method can improve the ability of 

generator. Moreover, these generated data with noise are put into discriminator together 

with real data and generated data for discrimination. This method increases the 

difficulty of discriminator's discrimination, so that the loss of discriminator will not be 

too small. Finally, DNFM-GAN adopts discrepancy of mean and standard deviation as 

a measure of distribution in feature mapping. The mean value can reflect the feature 

center, while the standard deviation can describe the feature spread. If the mean and 

standard deviation of the two data is very close, they are more likely to come from the 

same distribution. This trick can help generator to generate data closer to real data than 

using mean as metric alone. Experiments have shown that this method is effective, and 

no mode collapse was found in the experiments. The contributions of this paper as 

shown in the following: 
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1. A denoising structure that can improve the robustness of generator for image 

synthesis on learning good intermediate representation of data which alleviate loss 

volatility,  

 

2. A mechanism of data augmentation that can increase the difficulty of 

discrimination to avoid the gradient vanishing of the discriminator, 

 

3. An enhanced feature mapping which is based on the discrepancy of mean and 

standard deviation of distributions that can better measure the difference of 

distributions which help generator to produce more realistic images. 

1.8 Thesis Outline 

The first chapter provides an overview of the fundamental principles of image 

composition and the importance of investigating this field. Moreover, it delivers a brief 

examination of existing methods that are commonly employed in this area of study. 

Building on these foundational concepts, the research queries are introduced, which 

defines the aims of the study and summarizes the principal contributions it aims to 

achieve. 

In the second chapter, the evolution and limitations of image synthesis 

techniques are described in detail, including early techniques and techniques based on 

deep learning models, especially generative adversarial networks. According to the 

research objectives, this chapter reviews the application of techniques which can 

improve the robustness of model. At the same time, it also refers to the improved 

method which can enhance the stability of model training, including the improvements 

about model structures, objective functions and the optimization methods. The models 
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introduced in these documents are sorted out, and their advantages and limitations are 

illustrated.  

Inspired by literature review, chapter three proposes a GAN model name 

DNFM-GAN, which describes in detail how to solve the proposed research problems. 

the model architecture is illustrated and explained in detail, the improved loss function, 

and training steps of the entire model are also specifically presented. The 

hyperparameters of this model is shown in this chapter also.  

In chapter 4, the proposed method is subjectively and objectively evaluated on 

different dataset which shows that this model is stable in training and can generate high 

quality images, it also be compared with other previous models.  

Finally, the conclusion, limitations and future work of this research are 

discussed in chapter 5.  
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CHAPTER 2  
 

LITERATURE REVIEW 

This chapter collects and organizes relevant literatures about image synthesis. 

First of all, it reviews the development of image synthesis technology, mainly including 

image synthesis models based on pixels and textures, image synthesis models based on 

shallow structure, and image synthesis models based on deep learning. These parts 

mainly introduce the background of image synthesis models and their respective 

characteristics. Then, the improvements of GANs models, which is closely related to 

this research problems are discussed in terms of robust structure and improvements of 

model training stability, the strengths and limitations of these models are also discussed. 

Finally, it introduces the current evaluation criteria for image synthesis. 

2.1 The Development of Image Synthesis Models 

Image synthesis refers to the process of generating new images using computer 

algorithms. The development of image synthesis technology can be traced back to the 

1980s. As mentioned before, image synthesis technology often needs to be linked with 

generative models. In the early days, limited by the calculation power of devices and 

the development stage of computer vision technology, image synthesis was mainly 

based on pixel relationships and texture structures to generate some simple line 

segments and regular components. Strictly speaking, the model at this stage cannot be 

regarded as a real image synthesis model, since it just simply stitches or transfers some 

parts of the image. With the development of machine learning, image synthesis models 

began to combine with machine learning technology, resulting in some models such as 

Independent Component Analysis model (ICA) (Aapo et al., 2001), Gaussian mixture 

model (GMM) (Permuter et al., 2003), Hidden Markov Model (HMM) (Starner & 
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Pentland, 1995), Restricted Boltzmann Machine (RBM) (Salakhutdinov & Hinton, 

2009) and so on. These models need to use manual feature learning to establish relevant 

features for the original data. Compared with the previous models, these models can 

generate the texture and simple objects better, but the depth of these models is often 

shallow and the structure of the network is fixed for specific tasks. Although they do 

not cost much computation power, it is not capable to process images with complex 

structures, rich content, and high-resolution.  

In recent years, the development of deep learning and representation learning 

provides effective means for image synthesis technology (Hinton & Salakhutdinov, 

2006). During this period, the combination of deep learning models and probabilistic 

graphical models gave birth to classic models such as Autoregressive model, 

Variational Auto Encoder (VAE), Flow-based Model and GANs. These models often 

have more complex model structures with deep layers and can better learn the 

distribution of the target data, compared with the previous model, they made great 

strides in image synthesis tasks. 

2.1.1 The Early Models 

The research on image synthesis has been going on for a long time, and the early 

research on image synthesis is generally based on the relationship between image pixels 

or texture information. But these methods only realize some simple tasks, such as 

background color change (Smith & Blinn, 1996), image patching (Criminisi et al., 2003), 

image extrapolating (Efros & Leung, 1999), simple image texture synthesis (Heeger & 

Bergen, 2014), and image enhancement (Chakkarwar & Shandilya, 2013) which are 

shown in Figure 2.1. Strictly speaking, these methods cannot be regarded as real image 

synthesis. Meanwhile, these kinds of models are based on manual ways, researchers are 

required to have domain knowledge, which is difficult to implement. Although it does 
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not need to consume a lot of computation, it is only suitable for generating images with 

simple content and low resolution. If the content of the image is complex, the effect will 

not work very well. 

 

Figure 2.1 The Examples of Image Synthesis by Early Models 
 
 

The advances of machine learning and feature representation learning provide a 

new way for image synthesis. Some novel models such as Independent Component 

Analysis model (Hyvärinen et al., 2004), Gaussian mixture model (Permuter et al., 2003; 

Theis et al., 2012; Xu & Jordan, 1996), and Hidden Markov Model (Starner & Pentland, 
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1995) have been developed. Since these models have a relatively fixed structure, they 

cannot fit more complex image distributions, so it is basically suitable for images with 

regular, simple objects. Subsequent models such as Markov Random Field (Harrison, 

2001; Ranzato et al., 2010) and Restricted Boltzmann Machine (Hinton, 2002; Hinton 

& Salakhutdinov, 2006; Salakhutdinov & Hinton, 2009) have achieved great success in 

image synthesis compared with previous model, but they often need to consume a lot 

of computation to repeatedly calculate the Markov chain, and the expression of 

nonlinearity of these models is relatively not enough. At that time, there was still a lack 

of a means to handle image synthesis with high-resolution, complex content task. 

2.1.2 Autoregressive Model 

The development of deep learning has made it possible to train multi-layer 

neural network models. Since that time, the capability of neural network model has 

made great progress and the image synthesis technology has opened a new development 

mileage with the help of deep learning. Pixel Recurrent Network (PixelRNN) (Oord, 

Kalchbrenner, & Kavukcuoglu, 2016) was enlightened by the idea of Recurrent Neural 

Networks (RNN) (Lipton et al., 2015) in sequence generation and proposed Pixel 

Recurrent Network (PixelRNN). More specifically, the aim of this study is to model a 

density distribution or likelihood function 𝑝𝑝(𝑥𝑥) of the data. It depends on chain rule to 

decompose log-likelihood into the product of one-dimensional distribution. Once the 

likelihood functions are defined, the training objective is to maximize the likelihood of 

the training data under this definition, pixel by pixel, until a complete image is generated. 

However, determining the optimal order of each pixel can be challenging. PixelCNN 

(Oord, Kalchbrenner, Vinyals, et al., 2016) has basically the same idea as PixelRNN, 

but took differences in network structure. Basically, PixelRNN or PixelCNN needs to 

use the chain rule to calculate the maximum likelihood function as below: 


	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	LIST OF ABBREVIATIONS
	LIST OF APPENDICES
	ABSTRAK
	ABSTRACT
	CHAPTER 1   INTRODUCTION
	1.1 Research Background
	1.2 The Current Research Works
	1.3 Research Problems
	1.4 Research Questions
	1.5 Research Objective
	1.6 Research Scope
	1.7 Research Contributions
	1.8 Thesis Outline

	CHAPTER 2   LITERATURE REVIEW
	2.1 The Development of Image Synthesis Models
	2.1.1 The Early Models
	2.1.2 Autoregressive Model
	2.1.3 Variational Auto-Encoder
	2.1.4 Flow-based Model
	2.1.5 Generative Adversarial Networks

	2.2 The Improvements of GANs
	2.2.1 Reduction Volatility of Loss
	2.2.2 Improvements for Ability of Discriminator
	2.2.3 Optimization of GANs Training

	2.3 The Evaluations for Generative Models
	2.3.1 Inception Score
	2.3.2 Fréchet Inception Distance Score
	2.3.3 Amazon Mechanical Turk

	2.4 Summary

	CHAPTER 3   RESEARCH SOLUTIONS
	3.1 Research Methodology
	3.2 Model Design
	3.2.1 Generator with Denoising Structure
	3.2.2 Increasing Discrimination Difficulty of Discriminator
	3.2.3 Enhanced Feature Mapping

	3.3 Theoretical Analysis
	3.4 Model Architecture and Training Process
	3.5 Model Hyperparameters
	3.5.1 The Configuration of Hyperparameters
	3.5.1(a) The Settings of Learning Rate
	3.5.1(b) The Trick of Batch Normalization
	3.5.1(c) The Selection of Activation Function
	3.5.1(d) Optimizer

	3.5.2 The Network of Each Component


	CHAPTER 4   EXPREMENTS RESULTS AND DISCUSSIONS
	4.1 Dataset Introduction and Experiments Design
	4.2 The Hyperparameter of Noise Penalty Term
	4.3 The Effectiveness of Denoising Architecture
	4.4 The Effectiveness of Data Augmentation
	4.5 The Effectiveness of Enhanced Feature Mapping
	4.6 Ablation Experiment of DNFM-GAN
	4.7 Comparisons to Other Models

	CHAPTER 5   CONCLUSION AND FUTURE WORKS
	5.1 Conclusion
	5.2 Future Work

	REFERENCES
	APPENDICES
	APPENDIX C THE RESULTS OF DNFM-GAN ON chest scan images
	LIST OF PUBLICATIONS


