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PEMODELAN LENGKUNG DAN PERMUKAAN MENGGUNAKAN FUNGSI

ASAS GHT-BERNSTEIN DAN MENGGUNAKAN KAEDAH

PENGOPTIMUMAN UNTUK MEMBINA PERMUKAAN YANG BOLEH

DIBANGUNKAN

ABSTRAK

Model Bézier dengan parameter bentuk ialah salah satu topik penyelidikan yang

berpengaruh dalam pemodelan geometri dan CAGD. Kerja ini menerangkan pembina-

an lengkung trigonometri hibrid umum Bézier menggunakan fungsi asas trigonometri

hibrid umum Bernstein dengan tiga parameter bentuk dan aplikasinya dalam pemodel-

an geometri. Formula rekursif dalam ungkapan eksplisit digunakan untuk menyamara-

takan fungsi asas trigonometri hibrid Bernstein darjah 2, dan fungsi asas trigonometri

hibrid mempunyai semua sifat geometri fungsi asas bernstein tradisional. Satu kelas

permukaan boleh dibangunkan GHT-Bézier dibina dengan menggunakan prinsip dua-

liti antara satah dan titik. Untuk meningkatkan kecekapan produk kejuruteraan yang

kompleks, permukaan boleh dibangunkan dengan tahap kebolehbangunan yang lebih

tinggi perlu diperolehi. Teknik pengoptimuman yang diilhamkan oleh Bio, dinamakan

sebagai teknik Pengoptimuman Particle Swarm dan teknik digunakan untuk mencari

parameter bentuk optimum untuk menentukan tahap kebolehbangunan. Tahap kebole-

hbangunan permukaan dianggap sebagai fungsi objektif dalam teknik pengoptimuman.

Contoh pemodelan menunjukkan keberkesanan kaedah yang dicadangkan dengan ke-

saksamaan permukaan. Perbandingan antara tahap kebolehbangunan yang diperolehi

oleh algoritma PSO dan I-GWO diberikan.
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MODELING OF CURVES AND SURFACES USING GHT-BERNSTEIN BASIS

FUNCTIONS AND USING OPTIMIZATION METHODS TO CONSTRUCT

DEVELOPABLE SURFACES

ABSTRACT

A Bézier model with shape parameters is an influential research topic in geomet-

ric modeling and CAGD. This thesis describes the construction of generalized hy-

brid trigonometric Bézier (GHT-Bézier) curves using generalized hybrid trigonometric

Bernstein (GHT-Bernstein) basis functions with three shape parameters and their appli-

cations in geometric modeling. The recursive formula in explicit expression is used to

generalize the hybrid trigonometric Bernstein basis functions of degree 2, and the new

generalized hybrid trigonometric Bernstein basis functions contain all the geometric

properties of traditional Bernstein basis functions. A class of GHT-Bézier developable

surfaces is constructed by using the principle of duality between the planes and points.

To improve the efficiency of complex engineering products, a developable surface with

higher developability degree is necessary to be obtained. The optimization techniques

named as Particle Swarm Optimization (PSO) technique and Improved-Grey Wolf (I-

GWO) technique are used to find the optimal shape parameters for determining devel-

opability degree. The developability degree of the surface is the objective function in

optimization techniques. The modeling examples demonstrate the effectiveness of the

proposed method with fairness of the surfaces. The developability degree obtained by

PSO and I-GWO algorithm is given.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Parametric representation of curves and surfaces are widely used in Computer

Aided Geometric Design (CAGD) and Computer Graphics (CG) to model various sur-

faces interactively as described in Han et al. (2008) and a brief survey of the fundamen-

tals of CAGD is given by Schmitt et al. (1986). The preliminary use of CAGD was to

express the data as a smooth surface for numerical control which quickly became no-

ticeable that the surfaces could be used for designing purposes. In this era of computer

technology, the users demand for a simpler method, for the construction of complex

geometric modeling and shape editing which also consumes less computational time.

For the first time, James Ferguson constructed the surface patch system in 1963

and described the concept of parametric surfaces which has become the merit because

it provides independence from an arbitrarily fixed coordinate system. Pierre Bézier

redefined the Ferguson idea in 1971, thus a draftsman could design a curve/surface

without any additional mathematical training. Bézier scheme was used by Renault

and became a turning point in the progress of CAGD that epitomized the difference

between the surface fitting and surface design given in Farin (2002). The purpose of

the design was to provide a draftsman such a computer tool that empowered him/her

to use appropriate mathematics of surface/curve representation with a strong intuition

about the shape but limited mathematical practice.
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Parametric curves/surfaces are not only a research initiative in CAGD but they

are also robust tools for shape designing presented in Hu et al. (2017a). Classical

Bézier curves are parametric curves defined by using the basis of Bernstein polyno-

mial and control points, which are widely used in CAGD due to their good properties

and have become one of the powerful technique for representing free form curves/sur-

faces. When Bézier curves/surfaces are designed, they usually need to be modified in

terms of shape to satisfy our design requirement. Creating more suitable techniques

for designing and modifying Bézier curves/surfaces is an important issue as well as a

dominant research area in Computer Aided Design (CAD), Computer Aided Manufac-

turing (CAM), and Computer Graphics (CG) technology.

A Bézier curve is defined by the set of control points P0 through Pn. It is used a lot

in computer graphics, often to produce smooth curves, and yet they are a very simple

tool (Farin, 2002). The Bernstein basis functions are used to construct a class of Bézier

curves and have many applications in the area of CAGD and CAD. The developable

Bézier surfaces are constructed by using optimization techniques which are used in

designing of mechanical engineering products.

Rational Bézier curve, B-Spline curve and traditional Bézier curve are frequently

used for designing in engineering. The researchers have studied both rational (Bashir

et al., 2012), and non-rational forms of Bézier curves (Dejdumrong, 2008), and both of

them have some deficiencies. To avoid these deficiencies, trigonometric splines with

shape parameters have achieved much attention in CAGD, particularly in curve mod-

eling. Various applications of these vigorous curves in object recognition, fingerprints

recognition, modeling objects, CAD/CAM, medical imaging and font designing, are
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the inspirations in the area of curve designing.

Due to better piecewise representation and shape control on the curve, the B-Spline

is more suitable choice for shape designing as compared to Bézier curve. Although,

with all these positive characteristics of B-Spline curves, it still have some deficiencies

like B-Spline is more complex than Bézier curve (Parekh et al., 2006). Thus for prac-

tical applications the Bézier curve is more preferable. Besides these applications, the

major inspiration to research this area is the importance of curve/surface designing in

robotics, computer visualization, and broadcasting.

Traditional Bézier curves, which are made up of polynomial Bernstein basis func-

tions, cannot be used to create complex designs since doing so takes a lot of time.

In order to overcome this cumbersome problem many researchers have constructed

various trigonometric Bézier curves with different shape parameters, because trigono-

metric Bézier curves have great smoothness as compared to polynomial Bézier curves.

Uzma et al. (2012) proposed quadratic trigonometric Bézier curves having two dif-

ferent shape parameters together with their geometric properties. The trigonometric

Bézier curve of higher degrees with shape parameters are also proposed in Misro et al.

(2017c), Dube and Sharma (2013), and Sharma (2016c) with their geometric proper-

ties, which are very useful for shape designing and modeling. For the construction

of complex shapes and curves, the continuity conditions are necessary to be derived

between two adjacent trigonometric Bézier curves of same/different degrees. The con-

tinuity conditions between two generalized trigonometric Bézier curves are derived by

Maqsood et al. (2020). So, the complex curve modeling can be constructed by using

these generalized trigonometric Bézier curves.
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In previous research, XiKun (2004), and Yan and Liang (2011) proposed polyno-

mial Bernstein basis functions for the construction of polynomial Bézier curve and

various curve modeling with the continuity conditions. By using the recursive ap-

proach, some new kind of Bernstein basis functions with adjustable shape parameters

are proposed. The shape parameters are used to modify the curves inside the con-

trol polygon. The continuity conditions between two adjacent Bézier curves can be

derived which are used for the construction of complex curve/surface modeling (Hu

et al., 2018a). In this work, a class of GHT-Bernstein basis functions with three ad-

justable shape parameters is proposed by using the recursive approach. The geometric

properties of Bernstein basis functions with graphical representation are given.

A class of GHT-Bézier curves with their properties, and parametric and geometric

continuity conditions is given. The duality principle between the points and planes is

described which is useful for the construction of a class of GHT-Bézier developable

surfaces such as Enveloping GHT-Bézier developable surface and Spine GHT-Bézier

developable surface. The conditions of G3 geometric continuity between two adjacent

GHT-Bézier developable surfaces are also described. The developable surfaces with

higher developability degree are useful for engineering construction. To find the de-

velopability degree of GHT-Bézier developable surfaces, the optimal shape parameters

need to be determined. For this, the bio-inspired optimization techniques by Mirjalili

et al. (2014) and Bonabeau et al. (1999) are used with the specified fitness functions.

The developabilty degree is obtained by using two different optimization techniques.

In case of PSO, the single objective function is used for determining optimal shape

parameters for developability degree while in case of I-GWO technique the multi-

objective functions are used to find optimal shape parameters for the developability
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degree.

1.2 Motivation

Parametric curves are powerful tools which can represent most geometric enti-

ties when properly define. As a valuable tool in CAD/CAM system, Bézier method

is one of the parametric representation which is used to generate curves that appear

reasonably smooth at all scales, and has received wide acceptance. Bézier curve has

been commonly used in CAGD for the construction of various free from curves and

surfaces. Several methods like curve manipulation, curve fitting, curve merging and

blending have been proposed over the years for better handling and enhancing the uses

of Bézier curves with every possible application in CAD domain.

As the researchers deal with both rational/non-rational forms of Bézier curves, the

non-rational form never yields complex results while solving (Han et al., 2009b). For

this reason, as opposed to the rational Bézier curves, the non-rational Bézier curves are

more suitable choice for curve modeling and other designing applications. Scholars

constructed various polynomial and trigonometric Bézier curves possess all the char-

acteristics of rational Bézier curve except having weight factors and instead of weight

factors these curves carry the shape parameters which is appropriate choice for modi-

fication of shape of the curve and has less computational cost. The major inspiration

to research this area is the importance of curve designing, which are used in various

CAD/CAM fields.

Our proposed GHT-Bézier curves are based on the novel idea that they can control

the shape of the curves using shape parameters without changing control polygon.
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Inspired from Hu et al. (2017a) and Han et al. (2009a), the GHT-Bézier curve and

GHT-Bézier developable surfaces are constructed and some design examples of the

surfaces are provided to show the significance of the suggested scheme. From the

optimization techniques mentioned in Mirjalili et al. (2014) and Bonabeau et al. (1999),

a study about the construction of GHT-Bézier developable surfaces with developability

degree is presented by using optimization algorithms. After comparison with previous

defined schemes, our suggested scheme of constructing GHT-Bézier curves and GHT-

Bézier developable surfaces with developability degree have a more simplified form

and clearer geometric meanings.

1.3 Objectives

The dominant purpose of this study is the development of the GHT-Bézier curves

with three different shape parameters and a feasible way for the construction of GHT-

Bézier developable surfaces. This study also provides a more convenient way for de-

signing of GHT-Bézier developable surfaces with higher developability degree, which

can be obtained by the optimal choice of shape parameters determined by the optimiza-

tion techniques. The objectives and expectations from the proposed research work are:

1. To propose the GHT-Bernstein basis functions of degree m and a family of GHT-

Bézier curves with three adjustable shape parameters along with their properties

and graphical representations.

2. To derive the parametric (C0,C1,C2,C3) continuity and geometric continuity

(G0,G1,G2,G3) conditions between two adjacent GHT-Bézier curves with mod-

eling examples.
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3. To construct a class of GHT-Bézier developable surfaces by using the duality

principle between the points and planes in 3D projective space with the geomet-

ric continuity (Gm,m ≤ 3) constraints between two adjacent GHT-Bézier devel-

opable surfaces.

4. To determine the developability degree of GHT-Bézier developable surfaces by

using the optimal shape parameters obtained from the two optimization algo-

rithms which are Particle Swarm Optimization (PSO) Algorithm and Improved-

Grey Wolf Optimization (I-GWO) Algorithm.

1.4 Problem Statements

Classical Bernstein basis functions have some distinguish properties as compared

to the other parametric functions. Various shapes of Bézier curves cannot be obtained

by using traditional Bernstein basis functions because they do not possess any shape

parameters to modify the curve. To overcome these shortcomings, the GHT-Bernstein

basis functions are used to construct GHT-Bézier curves. The GHT-Bernstein basis

functions cannot execute any optimal shape parameters from domain [−1,1] without

any optimization technique. So, the Bio-inspired optimization techniques need to be

studied, to determine the optimal shape parameters which are used for designing of var-

ious surfaces. By using GHT-Bernstein basis functions, two bio-inspired optimization

techniques Particle Swarm Optimization (PSO) and Improved-Grey Wolf Optimization

(I-GWO) techniques are described to execute the optimal values of shape parameters.
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1.5 Scope and Limitations

This research is focused on the modeling of curves in two dimensional space and

construction of developable surfaces in 3D projective space which are widely used

for engineering and CAD/CAM field. It is also focused on the optimization tech-

niques, which are used in this work for determining the optimal shape parameters to

construct developable surfaces with higher developability degree. For the purpose of

this research and to answer research objectives, the applications of curve are used in

engineering designing, sketching and modeling and the developable surfaces are used

for the construction of auto mobile bodies, ship hulls and air craft wings. Moreover,

the higher developability degree is used for fairness of the surfaces which are helpful

during manufacturing of products.

1.6 Outline of Thesis

This thesis is devoted to new techniques for the construction of GHT-Bézier curves

and surfaces with three adjustable shape parameters. The GHT-Bézier developable

surfaces are also constructed with highly accurate developability degree by using the

optimization techniques. The description of each chapter included in this thesis are as

follows:

Chapter 2 provides a detailed literature review about Bézier curves/surfaces, rational

Bézier curves/surfaces, developable Bézier surfaces and the continuity between these

curves/surfaces. The study review about various optimization algorithms such as Ge-

netic Algorithm, Cuckoo Search Algorithm, Particle Swarm Optimization Algorithm

and Grey Wolf Optimization Algorithm is also given.
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An overview of parametric curves and optimization algorithms, some related defi-

nitions and important terminologies are given in Chapter 3 to understand the proposed

research work properly. Moreover, some previous work done in this area, and the is-

sues that will address in the proposed research are also presented in this chapter.

Chapter 4 deals with the construction of GHT-Bernstein basis function and GHT-

Bézier curve along their properties and graphical representations. The parametric con-

tinuity (C0,C1,C2,C3) and geometric continuity (G0,G1,G2,G3) conditions between

two adjacent GHT-Bézier curves are derived. Several designing examples of contin-

uous connections are shown to verify the smoothness. The comparison of curvature

continuity between GHT-Bézier curve and traditional Bézier curve is also given.

In Chapter 5, the duality principle is defined between the points and planes, and

a class of GHT-Bézier developable surfaces with adjustable shape parameters is con-

structed by using the duality principle. The smooth G3 continuity conditions are de-

rived between two adjacent GHT-Bézier developable surfaces. Various modeling ex-

amples are given to verify the smoothness of continuity between GHT-Bézier devel-

opable surfaces.

Chapter 6 deals with the developability degree of GHT-Bézier developable sur-

faces. In this chapter, the optimization technique named as Particle Swarm Optimiza-

tion (PSO, in short) technique is used, which determine the optimal values of shape

control parameters from fitness functions and these optimal parameters are used to

construct GHT-Bézier developable surfaces, and to determine developability degree.

Few examples of GHT-Bézier developable surfaces with higher developability degree
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are also given.

In Chapter 7, to get more higher developability degree (with less number of iter-

ations), another optimization technique named as Improved Grey Wolf Optimization

(I-GWO, in short) is used. Three optimization models based on the minimum values

of fitness functions, (i.e arc length, energy and curvature variation energy of the dual

curve) are used to determine the optimal values of shape control parameters with fewer

iterations. Some examples of GHT-Bézier developable surfaces with higher developa-

bility degree are also provided.

Finally, the conclusion followed by some suggestions for future research is pro-

vided in Chapter 8.
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CHAPTER 2

BACKGROUND AND LITERATURE REVIEW

In the early times of manufacturing, products were designed in industry by the

manufacturer’s viewpoint. The expanding demand for comfort, functionality and aes-

thetics in products, have forced the designers to handle complex shapes leading to

the invention of new schemes to represent complex curves/surfaces. Developments in

computer hardware/software technology gradually made it possible to automatically

generate these free form curves/surfaces in a digital format with the help of mathemat-

ical representations.

The past few decades have witnessed many novel mathematical representations of

free form curves/surfaces with the need to make them more computers compatible.

Parametric representations of curves/surfaces have availed central importance of being

bounded in parameter range, having simple and short programming, which proved it

to be the most suitable shape description method.

2.1 Bézier curves and Bézier surfaces

Bézier curves are popular parametric curves that play a key role in CAGD, CG,

and many other disciplines (Hoschek and Lasser, 1993; Hu et al., 2015; Mainar et al.,

2001). However, they have some flaws such as lack of local control on the curve and

by changing the position of one control point affects the entire curve. These imperfec-

tions restrict their applications in engineering, animation, automobile industries etc.
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Creating curves using Bézier approach ensures that the path starts at the first control

point and ends in the last but does not guarantee interpolation of the intermediate con-

trol points. Besides, change of one control point affects the shape of the entire curve

which makes the approach difficult and not properly applicable.

Bézier surfaces are a species of mathematical spline used in computer graphics,

computer-aided design, and finite element modeling. Similar to Bézier curves, a Bézier

surface is defined by a set of control points, and first described in 1962 by the French

engineer Pierre Bézier who used them to design automobile bodies. It can be of any

degree, but bicubic Bézier surfaces generally provide enough degrees of freedom for

most applications. Similar to interpolation in many respects, a key difference is that

the surface does not, in general, pass through the central control points but they are

"stretched" towards them. They are visually intuitive and for many applications they

are mathematically convenient. Maqsood et al. (2021a) proposed generalized Bézier

trigonometric (GBT-Bézier) surfaces with some geometric and parametric continuity

conditions, along with some engineering applications.

2.2 Rational Bézier curves and Trigonometric Bézier curves

Rational Bézier curve is a robust tool for constructing free form curves/surfaces as

given by Duan et al. (2005) and Gregory et al. (1994). These curves can be adjusted by

introducing weight factors without changing their control points. However, they also

have many drawbacks due to their rational form, for instance, repeated differentiation

that produces curves of a very high degree. This drawback can be overcome by using

classical Bézier curves which possess shape parameters instead of weight factors. A
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class expansion of Bézier curve having one shape control parameter was introduced by

Wu et al. (2006), Houjun (2011) and Yang et al. (2011). Qin et al. (2008) proposed two

expansions for the cubic Bézier curves to increase shape adjustability. New expansions

for the quartic Bézier curves with multiple shape parameters were defined by Zhang

et al. (2009).

Han et al. (2008) presented the designing of various Q-Bézier curves/surfaces with

local and global control by using a class of m adjustable shape parameters. An ex-

tension of Bézier model with all its features was developed by Hu et al. (2018c). A

novel extension of Bézier curves/surfaces of degree m with various shape parameters

were described by Qin et al. (2013). These newly constructed curves/surfaces not only

shared most features with classical degree m Bézier curves/surfaces but also modified

their shapes by fluctuating the values of the corresponding shape parameters. Using

GBT-Bézier curves, Maqsood et al. (2021a) constructed a class of engineering surfaces

and described their shape adjustment using two different shape parameters. Hu et al.

(2017b) derived the continuity conditions between generalized Bézier-like surfaces

with modeling examples of smooth continuity. The generalized Bézier trigonomet-

ric curves and surfaces with their geometric properties and continuity conditions are

proposed by Maqsood et al. (2020).

Approximation of circular arcs using Bézier curves, is a fundamental topic in

CAGD, CAD/CAM areas and many other disciplines (Ahn and Kim, 1997; Goldapp,

1991; Kim and Ahn, 2007). However, Bézier curves cannot represent transcendental

curves accurately such as cycloid and helix due to their representation in polynomial

form (Mainar et al., 2001). In the past few years, many papers have investigated the
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trigonometric Bézier-like curves, trigonometric splines, and their applications. For the

first time, the trigonometric B-Splines were presented by Schoenberg (1964) and the

iterative relationship for random order trigonometric B-Splines was developed by Ly-

che and Winther (1979). In Computer Numerical Control (CNC) technology, Neamtu

et al. (1997) proposed some new techniques for designing CAM profiles using trigono-

metric spline. Applications of trigonometric spline in dynamic systems were discussed

by Nikolis and Seimenis (2005).

In recent years, geometric modeling using trigonometric polynomials has attained

much attention and a considerable amount of work has been done in this context. Su

and Zou (2012) used trigonometric spline to modify a trajectory for robot manipulators.

Using single and double shape parameters, quadratic and rational quadratic trigono-

metric Bézier curves were developed by Uzma et al. (2012) and Bashir et al. (2012)

respectively. Han (2004) constructed cubic trigonometric polynomial curves with one

shape parameter that can deal precisely with circular arcs, cylinders, cones and many

others. Meanwhile, Han (2006) proposed piecewise quartic polynomial curves with

a local shape parameter that can approximate an ellipse from both sides. The total

positivity property of cubic trigonometric nonuniform spline basis functions have been

proved by Yan (2016).

An exact representation of ellipse using cubic trigonometric Bézier (shortly, T-

Bézier) curves were presented by Han et al. (2009b). These T-Bézier curves were

further extended to construct spiral and transition curves (Misro et al., 2017c). Quartic

trigonometric Bézier-like curves with single shape parameter and their corresponding

surfaces were defined by Dube and Sharma (2013). Misro et al. (2017a) constructed
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quintic trigonometric Bézier curves with two shape parameters that later applied in

generating five templates of spiral transition curves. They also utilized T-Bézier curves

with two shape parameters to develop S-shaped and C-shaped transition curve satisfy-

ing G2 Hermite condition (Misro et al., 2017b).

To justify the work of Hongyi (2005), Yang and Zeng (2009) proposed Bézier

curves and triangular Bézier surfaces using m and 3m(m+ 1) = 2 shape parameters.

Using trigonometric polynomials, Su and Tan (2006) studied quasi-cubic B-Spline

curves and surface to show the exact representation of spheres, sine curves, circular

arcs and straight lines. Xumin and Weixiang (2008) presented a technique for model-

ing free form surfaces and provided several geometrical examples to show the effect of

adjustment of shape parameters over the surfaces. An algorithm for converting a rect-

angular patch of a triangular Bézier surface into a tensor product Bézier surface was

proposed by Lasser (2002). Sharma (2016c) and Sharma (2016a) suggested quartic

trigonometric, quasi-quartic trigonometric and a class of Bézier-type cubic trigono-

metric curves/surfaces, respectively.

2.3 Developable surfaces

Construction of developable surfaces has received much attention from various in-

dustries, including shipbuilding, automotive, architecture, clothing and footwear, com-

puter animation, and image processing. Chu and Chen (2005) presented that devel-

opable surfaces have many applications in engineering, manufacturing, and Computer

Numerical Control (CNC). Therefore, the developable surfaces have been widely in-

vestigated for modeling of industrial products such as architectural free-form surfaces
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and ship-hulls. Pottmann et al. (2008), Hwang and Yoon (2015), and Tang et al. (2016)

make a composition of multiple developable strips to represent free form shapes. De-

velopable shapes were widely used in metal sheet forming (Mancewicz, 1992), ship-

building (Nolan, 1971), windshield design, and clothing industries (Hinds et al., 1991;

Lamb, 1995; Wang et al., 2005). A process of designing shoe uppers by using trianglar

Bézier patches was explained by Chung et al. (2008). Geometric design of quadratic

and cubic developable Bézier patches from two Bézier boundary curves is studied and

the conditions for developability are derived geometrically from the de Casteljau algo-

rithm and expressed as a set of equations that must be fulfilled by the Bézier control

points (Chu and Séquin, 2002). The designing of various kinds of developable surfaces

such as Enveloping GHT-Bézier developable surfaces, Spine GHT-Bézier developable

surfaces and geodesic interpolation curve on GHT-Bézier developable surfaces has

been studied by Hu et al. (2020a), Ammad et al. (2021) and Maqsood et al. (2021b).

Rational (1,n)-Bézier surfaces are ruled surfaces which are generated by a one param-

eter set of straight lines and play a special role in technical use, as described in Lang

and Röschel (1992). Fernández-Jambrina (2017) addressed the issue of designing of

developable surfaces with Bézier patches, and also show that the developable surfaces

with a polynomial edge of regression are the set of developable surfaces which can be

constructed with Aumann’s algorithm.

The designing techniques for developable surfaces have two divisions, Point Geo-

metric Representation (PGR) and, Line and Plane Geometric Representation (LPGR).

Further, two particular approaches are there in PGR to design various kind of devel-

opable surfaces. The first approach is to build up a developable surface based on the

original direction and given directrix. The second approach is to formulate it by two
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interpolating boundary curves. Taking a Bézier space curve as directrix, Zhang and

Wang (2006) investigated the geometric design of Bézier developable surfaces.

As a generalization of algorithm in Aumann (2003), Fernández-Jambrina (2007)

provided a linear algorithm for constructing B-Spline control nets of developable sur-

faces of random order. Chu et al. (2008) proposed a technique to interpolate a strip in a

conical form specified by two space curves with developable patches. However, PGR

results in tough computation due to ambiguous descriptions of developable surface

and non-linearity of characteristic equations that limit its application area. Contrarily,

LPGR which is also known as dual representation, presents a developable surface as a

curve in dual projective space, which removes the flaws of PGR.

For the first time, Bodduluri and Ravani (1993) developed the dual Bézier and

B-Spline interpolations to create developable surfaces and made practical and effec-

tive use of cubic Bézier and B-Spline basis functions to design developable surface

with explicit expression. Encouraged from study of Bodduluri and Ravani (1993),

Pottmann and Farin (1995) defined rational developable Bézier and B-Spline surfaces.

Afterward, the LPGR technique was applied to approximate and construct developable

NURBS surfaces by Pottmann and Wallner (1999). Zhou et al. (2006) constructed

quartic and quintic developable Bézier surfaces.

Nevertheless, these developable Bézier surfaces have only one shape parameter,

which leads to the limited shape control in the composition of complicated developable

surfaces. In recent times, Hu et al. (2017c), Hu et al. (2018b), Hu and Wu (2019), and

Hu et al. (2020a) defined some straightforward schemes for the CAD of developable
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Bézier-like, H-Bézier, generalized quartic H-Bézier and generalized C-Bézier devel-

opable surfaces respectively with multiple shape parameters. They also calculated

their G2 continuity conditions along with application in geometric modeling.

2.4 Optimization Techniques

To construct the developable surfaces with highly accurate developability degree,

many Bio-inspired optimization techniques such as Bonabeau et al. (1999), Dorigo

et al. (2006), Mirjalili et al. (2014), and Haldurai et al. (2016) are studied. The genera-

tion of quasi developable Q-Bézier strip via PSO-based shape parameters are presented

by Cao et al. (2022). The developability degree was also determined. The shape op-

timization of developable surfaces by using Cukoo search algorithm is presented in

Hu et al. (2020b). Similarly, the generation of piecewise developable free form grid

surface is presented by using the plate components to overcome various difficulties

in the manufacturing process (Cui et al., 2021). Nadimi-Shahraki et al. (2021) and

Hou et al. (2022) proposed an Improved Grey Wolf Optimizer (I-GWO) for solving

global optimization and engineering design problems. This improvement is proposed

to alleviate the lack of population diversity, the imbalance between the exploitation

and exploration, and premature convergence of the GWO algorithm. The salp swarm

algorithm (SSA) was proposed by Lu et al. (2022) which describes the foraging habits

of a class of marine organisms. SSA has been widely noticed and applied in various

fields due to its advantages such as simplicity and strong robustness, and has achieved

good results. The implementation of particle swarm optimization (PSO) algorithm to

the electromagnetic system is presented by Robinson and Rahmat-Samii (2004).
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In response to existing approaches, our research work based on the construction

of new Bézier type curves called GHT-Bézier curves of order m(m ≥ 2) with simi-

lar features to the classical Bézier curves. As an alternative technique of representing

curves, these proposed curves not only have the valuable features of Bézier curves and

surfaces but also have an efficient shape modification feature. Moreover, to resolve the

problem of not being able to construct complex curves/developable surfaces using a

single curve/developable surface, Cm as well as Gm continuity conditions between two

adjacent GHT-Bézier curves/developable surfaces have been derived to make a smooth

connection among them, which is a novel method to design complicated curves/sur-

faces. The developable surfaces with higher developability degree is an important re-

quirement in industrial designing. Therefore, the Bio-inspired optimization techniques

such as PSO and I-GWO techniques are used to construct the developable surfaces

with higher developability degree.
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CHAPTER 3

PRELIMINARIES

This chapter includes some important mathematical terms that will provide a better

understanding of the current research work.

3.1 Curves

Mathematics has played a central role in the progress of curves in product design,

especially with CAGD technology development, particularly CAD, which has changed

product design in recent years. Designing curves, especially robust curves, which

are controllable, well behaved and easily worked out, contributes a special role in

computer graphics and geometric modeling.

3.1.1 Binomial Coefficients

For an integer k ≥ 0, the binomial coefficients usually derived from Pascal’s trian-

gle as in Farin (2002), (
m
k

)
=

m!
k!(m− k)!

. (3.1.1)

Note that particularly,
(m

0

)
= 1, and

(0
0

)
= 1.
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3.1.2 Bernstein Basis Functions

Over 150 years ago, the Bernstein functions were originally defined by Bernstein

to prove the famous Weierstrass Theorem and are formally expressed as (Farin, 2002),

bk,m(z) =
(

m
k

)
zk(1− z)m−k, 0 ≤ k ≤ m, z ∈ [0,1], (3.1.2)

where,
(m

k

)
is the binomial coefficient. The Bernstein functions are a key to under-

standing Bézier curves. The important properties that make Bézier curves useful in

design, mostly come from these basis functions. The Bernstein basis have many useful

properties for curve generation descried as Farin (2002).

1. Non-negativity: Bernstein polynomials are non-negative, that is, bk,m(z) ≥ 0,

z ∈ [0,1], k = 0, . . . ,m.

2. Partition of unity:
m

∑
k=0

bk,m(z) = 1. (3.1.3)

3. Symmetry:

bm−k,m(z) = bk,m(1− z). (3.1.4)

4. Recursion:

bk,m(z) = (1− z)bk,m−1(z)+ zbk−1,m−1(z), (3.1.5)

where, b0,0(z) = 1 and bk,m(z) = 0 for k =−1 and k > m.
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5. Degree Elevation:

bk,m(z) = (1− k
m+1

)bk,m+1(z)+
k+1
m+1

bk+1,m+1(z). (3.1.6)

6. Derivative at end points:

d bk,m(z)
dz

= m(bk−1,m−1(z)−bk,m−1(z)), (3.1.7)

where b−1,m−1(z) = bm,m−1(z) = 0.

3.1.3 Bézier Curve

Bézier curve is named after Pierre Bézier, who used it in 1960s for designing the

bodywork of Renault cars. A classical Bézier curve of degree m is described as,

Bk,m(z) =
m

∑
k=0

Pkbk,m(z), z ∈ [0,1], (3.1.8)

where Pk are the control points or Bézier points of classical Bézier curve and bk,m(z)

are the Bernstein basis functions.

The number of control points of Bézier curve increases as the degree of Bézier curve

increased.

3.1.4 Properties of Bézier Curve

Bézier curve has various properties that describe their nice behavior in geometric

modeling (Farin, 2002),
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1. Endpoint Interpolation: Bézier curve interpolates the first and last control

points P0 and Pm as given below,

Bk,m(0) = P0 (3.1.9)

Bk,m(1) = Pm (3.1.10)

2. Tangent Point Interpolation: Bézier curve has tangent to the first and last seg-

ments of the control polygon at the first and last control points respectively, in

fact

B
′
k,m(0) = m(P1 −P0) (3.1.11)

B
′
k,m(1) = m(Pm −Pm−1) (3.1.12)

3. Symmetry:

Bm−k,m(z) = Bk,m(1− z). (3.1.13)

With the same control points for a Bézier curve and specified in the opposite

direction, the same Bézier curve shape is achieved. The only difference will

be the parametric direction of the curve. The direction of increasing parameter

reverses when the control points are specified in the reverse order.

4. Affine Invariance: The property of Bernstein functions assure that the Bézier

curves are affine invariant concerning their control points. This means that any

linear transformation (such as rotation or scaling) or translation of the control

points define a new curve which is just the transformation or translation of the

original curve.
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5. Affine Transformation: Bézier curves are invariant under affine transforma-

tions and are also invariant under affine parameter transformations. That is,

while the curve is usually defined on the parametric interval [0,1], an affine trans-

formation mapping [0,1] to the interval [a,b], a ̸= b, yields the same curve.

6. Variation Diminishing: For a planar Bézier curve, the number of intersections

of a given line on the curve is less than or equal to the number of intersections

of that line with the control polygon.

7. Convex Hull Property: A Bézier curve always lies inside the convex hull

spanned by its control points.

3.1.5 Classical Bézier Surface

When the set of control points of the Bézier curve moving in three dimensionsal

space, new curves are generated. When these curves are moved smoothly, then they

formed a surface, which may be thought of as a bundle of curves. If each of the control

point is moved along a Bézier curve, then a Bézier surface patch is created. A tensor

product Bézier surface of degree (m,n) is defined by a set of (m+ 1)(n+ 1) control

points Pk, j,∈ R2 or R3(k = 0,1, ...,m; j = 0,1, ...,n) as,

Wm,n(z,z1) =
m

∑
k=0

n

∑
j=0

Pk, jbk,m(z)b j,n(z1), z,z1 ∈ [0,1] (3.1.14)

where bk,m(z) and b j,n(z1) (i = 0,1,.. m; j = 0,1,..., n) are Bernstein basis functions.

As the classical Bézier surfaces are also defined using Bernstein functions, so they

carry all geometric features that the classical Bézier curves have. The classical Bézier

surfaces possess convex polygon property, angular point interpolation property, shape
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