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KESAN KAEDAH KRIOAWETAN TITISAN-VITRIFIKASI PADA       

Ludisia discolor UNTUK PEMULIHARAAN GERMPLASMA              

JANGKA PANJANG 

ABSTRAK 

Ludisia tergolong dalam kumpulan orkid terestrial yang tumbuh perlahan dan 

ditanam kerana mempunyai daun hiasan yang menarik, biasanya dirujuk sebagai 

'Orkid Permata'. Orkid ini semakin berkurangan dalam populasi semula jadi melalui 

kehilangan habitat dan pengumpulan orkid liar secara sembarangan. Oleh itu, 

krioawetan sebagai pendekatan penyimpanan jangka panjang menawarkan strategi 

pemuliharaan pelengkap yang melindungi daripada kehilangan secara tidak sengaja. 

Walaupun beberapa kaedah krioawetan telah dibangunkan untuk beberapa genera 

keluarga Orchidaceae, kaedah krioawetan untuk spesies Ludisia belum didokumenkan 

sebelum ini. Oleh itu, kajian ini melaporkan percubaan pertama penyimpanan jangka 

panjang L. discolor, menggunakan kaedah titisan-vitrifikasi. Kajian ini bertujuan 

untuk mengkaji kesan pengkrioawetan orkid L. discolor disokong dengan analisis 

kualitatif menggunakan mikroskopi, biokimia, dan molekul. Parameter kritikal seperti 

kepekatan sukrosa dan tempoh prakultur, tempoh dan suhu larutan vitrifikasi 

tumbuhan 2 (PVS2), medium pemulihan pertumbuhan, dan spektrum diod pemancar 

cahaya (LED) berbeza telah dinilai. Kemandirian tunas aksil ditentukan menggunakan 

analisis spektrofotometri 2,3,5-triphenyltetrazolium klorida (TTC) dan pemeriksaan 

secara visual. Kemandirian optimum diperolehi apabila 4 – 5 mm tunas aksil 

diprakultur dalam medium Murashige dan Skoog (MS) separuh kekuatan yang 

mengandungi 0.2 M sukrosa selama 24 jam, diikuti oleh osmo-perlindungan dalam 

larutan pemuatan selama 20 minit, dehidrasi dalam larutan PVS2 selama 10 minit pada 



xvi 

0 °C, dan diinkubasi dalam nitrogen cecair selama 1 jam. Selepas itu, tunas aksil telah 

dicairkan dengan cepat dalam larutan penyahmuat dan dipindahkan ke medium 

pemulihan pertumbuhan yang ditambah dengan 0.05 µM melatonin, yang membawa 

kepada peluang kemandirian yang lebih baik (16.67 %) untuk L. discolor yang telah 

dikrioawet. Cahaya putih sejuk (400 – 700 nm) dan kombinasi biru dan merah pada 

1:1 (puncak panjang gelombang masing-masing pada 440 dan 660 nm) adalah 

spektrum yang paling sesuai untuk kemandirian tunas aksil L. discolor yang 

dikrioawet. Tekanan osmotik dan pengeluaran berlebihan spesies oksigen reaktif 

(ROS) semasa peringkat krioawet boleh mengakibatkan kecederaan krio dan 

kemandirian yang rendah apabila peningkatan paras prolin (5.51 µmol/g), katalase 

(85.64 U/g protein), peroksidase (565.37 U/g protein), dan aktiviti peroksidase 

askorbat (12.19 U/g protein) dikesan selepas peringkat dehidrasi, prakultur, pencairan, 

dan, pemuatan. Penilaian histologi ke atas tunas aksil mendapati pecah dan kerosakan 

pada struktur dinding sel mengurangkan peluang kemandirian. Penilaian kestabilan 

genetik menggunakan penanda DNA DAMD dan ISSR masing-masing mempunyai 

sampel yang stabil sebanyak 83.78 dan 95.35 % apabila dibandingkan dengan 

tumbuhan kawalan. Kedua-dua penanda DNA mengesan polimorfisme dalam tunas 

aksil yang dikrioawet dan yang tidak dikrioawet dengan lebih kepekaan dalam DAMD 

(mengesan 16.22 % jalur polimorfik dalam tunas aksil yang dikrioawet). Keputusan 

ini mengesahkan bahawa, dengan perancangan dan ujian yang teliti, L. discolor sesuai 

untuk penyimpanan jangka panjang.  
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EFFECTS OF DROPLET-VITRIFICATION CRYOPRESERVATION 

METHOD ON Ludisia discolor FOR LONG-TERM                         

GERMPLASM CONSERVATION 

ABSTRACT 

Ludisia belongs to a group of slow-growth terrestrial orchids cultivated for 

their attractive ornamental leaves, commonly referred to as ‘Jewel Orchids’. They are 

steadily dwindling in their natural population through habitat loss and indiscriminate 

collection of wild orchids. Therefore, cryopreservation as a long-term storage 

approach offers a complementary conservation strategy that safeguards against 

accidental loss. Although some cryopreservation methods have been developed for 

several genera of the Orchidaceae family, the cryopreservation method for Ludisia 

species has not been documented before. Therefore, this study reported the first 

attempt of long-term storage of L. discolor, using a droplet-vitrification method. The 

present study sought to examine the effects of cryopreserving L. discolor orchid 

supported with qualitative analyses using microscopy, biochemical, and molecular. 

Critical parameters such as preculture sucrose concentrations and durations, plant 

vitrification solution 2 (PVS2) durations and temperatures, growth recovery medium, 

and different light-emitting diode (LED) spectra were assessed. The survivability of 

axillary bud was determined using 2,3,5-triphenyltetrazolium chloride (TTC) 

spectrophotometric analysis and visual inspection. The optimal survival was obtained 

when 4 – 5 mm axillary buds were precultured in half-strength Murashige and Skoog 

(MS) medium containing 0.2 M sucrose for 24 hours, followed by osmoprotection in 

loading solution for 20 minutes, dehydration in PVS2 solution for 10 minutes at 0 °C, 

and incubated in liquid nitrogen for 1 hour. Subsequently, axillary buds were 
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rewarmed rapidly in dilution solution and transferred to a growth recovery medium 

supplemented with 0.05 µM melatonin, which led to an improved survival chance 

(16.67 %) for cryopreserved L. discolor. Cool white light (400 – 700 nm) and the 

combination of blue and red at 1:1 (peak at 440 and 660 nm, respectively) were the 

most suitable spectra for surviving cryopreserved L. discolor axillary buds. The 

osmotic stress and the overproduction of reactive oxygen species (ROS) during 

cryopreservation stages may result in cryoinjuries and poor survival, as increased 

levels of proline (5.51 µmol/g), catalase (85.64 U/g protein), peroxidase (565.37 U/g 

protein), and ascorbate peroxidase activities (12.19 U/g protein) were detected after 

dehydration, preculture, rewarming, and loading stage. Histological assessment of 

axillary buds found ruptures and damages in the cell wall structure hindered the 

chances of survival. Genetic stability assessment using DAMD and ISSR DNA 

markers attained stable samples of 83.78 and 95.35 % when compared to control 

plantlets, respectively. Both DNA markers detected polymorphism in both 

cryopreserved and non-cryopreserved axillary buds with more sensitivity in DAMD 

(detected 16.22 % of polymorphic bands from the cryopreserved axillary buds). These 

results confirmed that, with careful planning and testing, L. discolor is suitable for 

long-term storage. 

 

 

 

 

 

 



1 

CHAPTER 1  
 

INTRODUCTION 

One of the most diverse and globally distributed flowering plant families is the 

Orchidaceae (Christenhusz & Byng, 2016) with up to 972 species in 159 genera 

recorded in Peninsular Malaysia alone (Ong et al., 2017; Besi et al., 2023). Ludisia 

belongs to a group of terrestrial orchids cultivated for their attractive ornamental 

leaves, commonly referred to as ‘Jewel Orchids’. These ground-dwellers are native to 

China and Southeast Asia, including Malaysia (Cheah, 2020).  

The global orchid market stands firm with over US$ 4 billion of commercial 

orchid trading (Zhang et al., 2018) for numerous purposes, including medicine and 

food, as well as ornamental plants (Hinsley et al., 2018; Teoh, 2019). Given their 

unique symbiotic relationship with mycorrhizal fungi, specific pollinators, and their 

poor germination rates, most species are found in explicit habitats (Zhang et al., 2018; 

Gale et al., 2019). As a result, the population of certain species are steadily dwindling 

across the ecosystem due to over-exploitation, loss of habitat, indiscriminate 

collection, and degradation.  

Substantial development and extensive progress of in vitro germination and 

propagation technology were achieved to support in situ conservation efforts, which 

could not solitarily preserve all the orchids (Shiau et al., 2005; Chugh et al., 2009; 

Poobathy et al., 2019). However, the maintenance of in vitro orchids collections 

through repeated subcultures requires intensive labour and is costly, apart from the 

growing risks of somaclonal variations and contamination in the materials over time 

(Kulus & Zalewska, 2014; Coelho et al., 2020). As a result, these limitations have led 

to the advanced development of safer and more stable long-term conservation 
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strategies via the cryopreservation of plant organs and tissues (Reed, 2017; Popova et 

al., 2023).  

Cryopreservation refers to the ultra-low temperature storage of biological 

materials, usually in liquid nitrogen (LN) at –196 °C (Sakai & Engelmann, 2007). 

Theoretically, all cellular division (including cell suspensions, seeds, lateral and 

axillary buds, and stems apices) and metabolic activities of biological materials (such 

as respiration) cease to function at such temperature conditions, reducing the risk of 

somaclonal variations or genetic alterations, thus, providing indefinite conservation 

(Benson, 2008). Practically, biological materials of commercially valuable crops, 

plants with horticultural values, and endangered plants have survived various durations 

of storage in LN, ranging from 1 – 48 hrs (Mikuła et al., 2011; Edesi et al., 2020) to 

1.5 – 28 years (Caswell & Kartha, 2009; Mikuła et al., 2011; Volkova et al., 2015; 

Beulé et al., 2018).  

One of the recently adopted and continuously developed orchid 

cryopreservation methods is the droplet-vitrification (González-Arnao et al., 2020), 

which combines the rapid cooling and warming approach in the presence of 

cryoprotectant mixtures containing dimethyl sulfoxide (DMSO), ethylene glycol, and 

sugar, such as glucose and sucrose, at high concentration to prevent ice nucleation and 

growth (Panis et al., 2005). 

Despite its effective use, the vitrification-based methods lead to various 

stressful conditions, including treatment with highly concentrated cryoprotectants, 

dehydration, excision, and osmotic and freezing injuries from rapid temperature 

changes that disrupt the growth after rewarming. This leads to the accumulation of 

Reactive Oxygen Species (ROS) and consequently generates oxidative stress 
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(Uchendu et al., 2010; Antony et al., 2019). The ROS, which includes singlet oxygen 

(1O2), hydrogen peroxide (H2O2), superoxide radical (O2
•−), and hydroxy radical 

(OH•), are generated in the chloroplasts, peroxisomes, and mitochondria (Suzuki et 

al., 2012) at an equilibrium state under typical growth environments. However, the 

overwhelming generation of ROS would exceed the capacity of the antioxidants to 

restore cellular impairment, which could stimulate biological degradation (Suzuki & 

Mittler, 2006). Thus, precautionary steps are applied to promote cell tolerance and 

growth recovery, for example, through sugar addition in the preculture media (Bissati 

et al., 2020), combining different cryoprotectants, altering the duration of exposure, 

the surrounding temperature (Elliott et al., 2017), light source parameters (Edesi et al., 

2017), and adjusting the growth recovery media either through substance addition 

(Uchendu et al., 2014; Diengdoh et al., 2019) or the removal of growth hormones 

(Gupta & Reed, 2006).  

Nevertheless, particular uncertainties related to the harmful effects on the 

cryopreserved tissues or cells remain a focal point of discussion. Cell damage could 

take place during the cooling-rewarming stages or from the accumulation over several 

hours to days. In view of this, various analytical tools, such as histological observations 

and biochemical analyses, can be employed to reveal further understandings of the 

influence of cryopreservation at the cellular level. In addition, the superoxide 

dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) are antioxidants 

that protect the plant cells by scavenging excess ROS and can be used as biomarkers 

to determine the defence mechanism as a result of the various imposed oxidative stress 

throughout the sequential cryopreservation stages (Poobathy et al., 2013; Antony et 

al., 2019).  
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Plant tolerance was indicated by the accumulation of starch grains, abnormal 

membrane structures, cell plasmolysis, and cell walls after being exposed to ultra-low 

temperatures (Mubbarakh et al., 2014a; Wesley-Smith et al., 2014). Apart from that, 

it is essential to modify the cryopreservation protocols through the incorporation of 

various stressing conditions, including clonally stable plants, to enhance the survival 

and regeneration process. Previously, genetically-stable regenerants have been 

verified through numerous molecular markers, for example, the Directed 

Amplification of Minisatellites DNA (DAMD), Inter Simple Sequence Repeats 

(ISSR), Random Amplified Polymorphic DNA (RAPD), and Start Codon Targeted 

Polymorphism (SCoT). Other reports had demonstrated the use of cryopreservation 

without or with minimal genetic changes in the regenerated Dendrobium orchids 

(Antony et al., 2015; Bhattacharyya et al., 2015), date palm (Purayil et al., 2018), kiwi 

fruit (Zhang et al., 2020), and violet (Żabicki et al., 2021).  

1.1 Rationale and significance of study 

A long-term storage approach via cryopreservation is highly suggested to 

preserve the slow-growing jewel orchids, which are facing extinction as a result of 

overharvesting and rapid loss of habitat. While most attention has been given to 

developing the micropropagation method using seeds and nodal segments, maintaining 

the delicate tissue cultures is laborious, unaffordable, and vulnerable to in vitro 

contaminations.  

Despite the implementation of various cryopreservation methods on various 

genera of the Orchidaceae family, which include desiccation, preculture desiccation, 

encapsulation-dehydration, vitrification, and droplet-vitrification, none of the reports 

has focused on the development of cryopreservation techniques for Ludisia species. 
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Hence, there is an urgency to explore an alternative conservation strategy to protect 

the endangered jewel orchid species from the imminent threat of extinction.  

1.2 Research objectives 

The main aim of this study is to investigate the feasibility of an ex situ 

conservation strategy of L. discolor via the droplet-vitrification cryopreservation 

method. The following objectives were outlined in order to accomplish the aim of this 

study:  

I. To assess the feasibility of L. discolor axillary buds to the proposed 

droplet-vitrification cryopreservation technique, 

II. To identify changes in the biochemical properties of L. discolor at 

different cryopreservation stages through different biochemical 

assessments, 

III. To examine changes in the cellular morphology of L. discolor using 

histological and transmission electron microscope (TEM) analyses, 

IV. To evaluate and compare the genetic stability of cryopreserved and 

non-cryopreserved L. discolor with that of the stock culture via DAMD 

and ISSR molecular markers. 
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CHAPTER 2 

 

LITERATURE REVIEW 

2.1 Biodiversity and popularity of orchids 

One of the most plenteous and dispersed flowering plant families in the world 

is the Orchidaceae (Christenhusz & Byng, 2016) with up to 972 species in 159 genera 

recorded in Peninsular Malaysia alone (Go et al., 2015; Ong et al., 2017; Besi et al., 

2019; Besi et al., 2023). In fact, Penang Hill boasts at least 136 documented species 

from the Orchidaceae family (Go et al., 2011). The high variability among orchid 

species and habitats contributes an essential role in plant biodiversity worldwide with 

the most diverse orchid species was reported in the Andes of Colombia and Ecuador 

as well as in the tropical rainforests of Borneo, Madagascar, New Guinea, and Sumatra 

(Cribb et al., 2003; Swarts & Dixon, 2009).  

Although orchids are flowering plants with diversely and highly evolved taxon, 

the distribution of most of the species is limited in certain habitats given their 

symbiotic association with specialised pollinators, mycorrhizal fungi, and poor 

germination rates (Zhang et al., 2018). Recently, Go et al. (2020) produced a case study 

related to the orchid extinction in Malaysia, which highlighted the gradually dwindling 

population of orchids due to several factors, especially loss of habitat, over-collection 

of wild orchids, and the lack of suitable methods for domestication. Furthermore, the 

growing global market for orchid trading has multiplied the demand for orchid-cut 

flowers and potted plants (Pal et al., 2016), which has transformed into industrial-scale 

commerce in a number of countries, including Malaysia, Singapore, Australia, and 

Thailand (Chugh et al., 2009).  
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The ancient Chinese civilisation was the first to recognise the medicinal value 

of orchids (Pant, 2013) from the native Cymbidium and Dendrobium species to treat 

various illnesses, including allergies, diabetes, and fatigue (Ng et al., 2012; Liu et al., 

2014). All parts of the plant are utilised for medicinal purposes including flowers, 

bulbs, leaves, and roots (Pant, 2013). In addition, the components of orchids are 

frequently utilised in the food and beverages industry, such as vanillin extracts of 

Vanilla planifolia seed pods. Realising the beneficial use of orchids, numerous orchid 

species are commercially traded as food ingredients, medicinal value, and ornamental 

plants (Popova et al., 2016; Hinsley et al., 2018; Teoh et al., 2019).  

Small and large industries have relied on conventional and advanced breeding 

programmes that exploit the available genetic resources for orchid propagation (Paek 

& Murthy, 2002; Liu et al., 2014). At the same time, there is a continuous interest 

among the public and scientific community to acquire wild species for novel gene 

combinations in which over a hundred new variations are registered annually. While 

orchids are considered the most evolved vascular plants in comparison to other 

vascular plants, the once abundantly-available flowering plant is declining in numbers 

and is on the brink of extinction (Hinsley et al., 2018). Moreover, orchids are 

susceptible to biotic and abiotic fluctuations due to their life cycle, which is associated 

with specific mycorrhizal fungi during the preliminary growth stages (Krumov et al., 

2022), selective insect pollinators (such as the Pieris rapae butterfly and Bombus 

pseudobaicalensis bumblebee) (Zhang et al., 2010; Sugiura & Takahashi, 2015), and 

tiny seeds with limited food reserve (Arditti & Ghani, 2000; Arditti & Ghani, 2013; 

Popova et al., 2016).   
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2.2 Jewel orchid 

Jewel orchids are grouped under the subfamily Orchidoideae and are closely 

related to the tribe Cranichidea and subtribe Goodyerinae. The orchids are terrestrial 

and naturally rooted in soil with some being preferable to tropical climates while others 

favour temperate conditions (Hayden, 2016; Sudin & Isa, 2024). Jewel orchids are 

known for their impressive and splendid ornamental leaves and not for their small 

discreet white flowers (Gangaprasad et al., 2000).  

The tribe Cranichideae consists of approximately 1600 species encompassing 

90 different genera. The tribe possesses unique storage organs, including fleshy roots 

at the nodes on creeping or underground rhizomes that clump together in their natural 

habitat (Figueroa et al., 2008). The majority of the tribe members are terrestrial and 

commonly thrive on shaded forest floors.  

Jewel orchids make up only five genera, namely, Anoectochilus, Dosinia, 

Goodyera, Ludisia, and Macodes (IUCN/SSC Orchid Specialist Group, 1996), which 

all belong to the same subtribe Goodyerinae (Figure 2.1). Besides, members of the 

subtribe Goodyerinae are characterised by their horizontal stems with velvety leaves 

and creeping rhizomes (Figueroa et al., 2008). The subtribe is native to the tropical 

regions of Southeast Asia although certain species, such as Goodyera pubescens, are 

found in Eurasia and North America (Hayden, 2016). The morphological similarities 

among the subtribe species make it difficult to identify beyond the flowering period 

(Chen & Shiau, 2015). In addition, jewel orchids are able to cross-pollinate, such as 

those reported between A. formosanus and A. koshunensis (Cheng et al., 1998; Chen 

& Shiau, 2015) and between A. formosanus and L. discolor (Chou & Chang, 2004; 
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Chen & Shiau, 2015), which is an ongoing effort to restore the population in the 

ecosystem (Chen & Shiau, 2015). 
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Figure 2.1  A collection of jewel orchids such as Anoectochilus sp., Goodyera sp. 

and Ludisia sp. (Scale bar = 5 cm) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2  L. discolor orchid. (Scale bar = 5 cm) 
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2.2.1 Ludisia discolor (Ker Gawl.) A. Rich 

Previously known as Haemaria discolor, L. discolor orchids is a member of 

the subtribe Goodyerinae and widely renowned as Jewel orchids (Figure 2.2) due to 

its unique colouration and distinctive leaves pattern (Shiau et al., 2005). However, 

there are insufficient records on the availability of L. discolor in Malaysia as a result 

of their drastically shrinking population (Go et al., 2011) mainly due to land 

conversion and habitat fragmentation (Go et al., 2011; Masum et al., 2017). Ludisia 

orchids are harvested as a substitute component (adulterant) to the Anoectochilus that 

are well-known for their medicinal properties given the similar morphologies between 

both species (Hu et al., 2019). This was verified through a phylogenetic study via the 

nuclear Internal Transcribed Spacer (ITS) regions and a chloroplast matK sequence, 

which indicate the close association between the genus Anoectochilus and L. discolor 

(Chen & Shiau, 2015).  

The recently documented L. ravanii (Cootes & Tiong, 2013) and L. discolor, 

are the only two species that have been identified in the genus (Govaerts et al., 2021). 

The perennial herb, which grows up to 10 – 25 cm tall, is well-dispersed across South 

China and throughout Southeast Asia, including Laos, Myanmar, the Philippines, 

Sumatra, and Thailand, with only one species available in Peninsular Malaysia (Cheah, 

2020). The wild L. discolor prefers to thrive on shaded forest floors but can also grow 

on leaf litter and rocks (Botanic Gardens of South Australia, 2014; Poobathy et al., 

2019). Moreover, the seeds of the slow-growing plant mature after 2 – 3 years (Shiau 

et al., 2005) and begin to flower between late December and March (Chou & Chang, 

2004). 
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Zheng and colleagues (2013) reported that the Hmong ethnic community 

harvests the whole Ludisia plant to treat infections, while the Li community 

administers the Ludisia plant to heal external injuries (Zheng & Xing, 2009). The leaf 

extracts are rich in amino acids, such as glutamine, asparagine, and threonine (Shiau 

et al., 2005). Statistically, the trade data indicates that wild orchid plants were exported 

to China and Korea at US$ 1 – 9/kg and US$ 40/kg, respectively (The 

Agrobiodiversity Initiative in the Lao PDR, 2010). The export of L. discolor from the 

Amazonian regions between the years 2005 and 2014 is worth approximately US$ 0.9 

million/year at US$ 17.33/single living orchid plant (Sinovas, 2017).  

2.3 Orchid conservation strategies 

The population of certain orchid species are declining and is immensely 

difficult to retrieve. The greatest risk to most of the native angiosperms in Malaysia is 

the destruction and loss of habitat due to land conversion (Masum et al., 2017). 

Realising the potential harm of these species, they are included in the Red Data Book 

of the International Union of Conservation of Nature and Natural Resources (IUCN) 

and listed in Appendix I or II of the Convention on International Trade in Endangered 

Species of Wild Fauna and Flora (CITES) as part of the conservation initiatives to 

preserve the biodiversity of wild orchids (Popova et al., 2016). Govaerts et al. (2021) 

construed that almost all wild orchids are included in Appendix I of CITES and are 

highly emphasised for conservation efforts given the massive habitat disruption. In 

addition, it was predicted that two crucial factors could threaten the biodiversity of 

orchids in Latin America and Asia, which include severe climate change and global 

warming (Seaton et al., 2010; Popova et al., 2016). Therefore, preserving the species 

richness requires a comprehensive understanding of the orchid's life-history traits, 
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ecology, and evolution (Swarts & Dixon, 2009; Seaton et al., 2010; Popova et al., 

2016).  

Popova et al. (2016) reported that the conventional ex situ preservation 

approaches, for example, the establishment of the Royal Botanic Gardens, Kew, 

United Kingdom, conserve the delicate orchid species by maintaining a well-

documented living orchid collection with up to 2700 species. Seed banking is also 

another viable ex situ conservation option for plants, including orchids (Dolce & 

González-Arnao, 2020). However, the storage of certain orchid species under low-

temperature conditions was relatively ineffective (Pritchard & Seaton, 1993; Merritt 

et al., 2014). For instance, the germination rate of Phaius tankervilleae seeds was 

decreased following the storage of the seeds at 4 °C for 6 months (Hirano et al., 2009).  

In comparison to seed banking, field gene banks provide beneficial and easy 

access to plants, which are required to undergo germination and grow before ready for 

utilisation. Nevertheless, the larger space requirement and greater labour cost limit the 

full potential of field gene banks as a preferable conservation strategy (Rao, 2004). 

Apart from that, numerous environmental stresses and plant diseases could also 

jeopardise the integrity and purity of the collections in botanical gardens (Seaton et al., 

2010). Furthermore, seed-feeding flies, Japanagromyza tokunagai had severely 

reduced over 95 % seeds production of the five endangered Japanese orchids, 

including Cymbidium macrorhizon and Epipactis helleborine var. sayekiana 

(Suetsugu et al., 2016), which are the only plant documented to host these flies. 

Consequently, it is paramount to synchronise in situ and ex situ techniques into a 

coherent conservation approach in order to conserve the best plant genetic resources 

for future global breeding programs. 
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Several in vitro orchids conservation strategies have been applied via 

micropropagation and cryopreservation. The vegetative propagation of the medicinal 

orchid, Dendrobium nobile using tissue cultures and reintroducing them to nature is 

one of the examples of in vitro conservation approach (Bhattacharyya et al., 2016). 

Despite the in vitro methods are broadly applied for large-scale conservation purposes 

and commercialisation of endangered orchid species (Popova et al., 2016), the 

available techniques require high-cost maintenance and are labour-intensive, the 

possibility of phenotypic and genotypic variations increases with each repeated 

subcultures (Khoddamzadeh et al., 2011; Popova et al., 2016). These concerns induce 

the urge to develop safer, cheaper, and more reliable conservation techniques, such as 

cryopreservation, involving the use of LN to boost the storage life of orchid 

germplasm. 

2.4 Cryopreservation of plants 

Cryopreservation refers to the ultra-low temperature storage of biological 

materials, usually in LN at −196 °C (Sakai & Engelmann, 2007) in which all metabolic 

activities, including cellular division (seeds, stems apices, lateral or axillary buds, and 

cell suspensions) and respiration, cease to operate, thus, minimising the exposure to 

somaclonal variations or genetic alterations and ultimately, in theory, providing long-

term conservation (Benson, 2008). Although Walters and colleagues (2004) argued 

that the possible deterioration of biological materials at ultra-low temperatures remains 

high, another study by them (Walters et al., 2004) estimated that the storage of fresh 

lettuce seeds in vapour and liquid phase LN recorded half-lives of approximately 500 

and 3400 years, respectively, which were longer compared to the anticipated storage 

duration of any method available. 
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To date, the use of cryobanks is the only ex situ method for long-term 

conservation of vegetatively propagated (clonally reproducing) species as well as for 

desiccation-sensitive (recalcitrant) species or short-lived seeds (Engelmann, 2004; 

Pritchard, 2007; Ballesteros et al., 2023). Cryopreservation is currently employed as a 

large-scale alternative strategy to support the field collections of numerous crops, such 

as the accessions of 507 apples at Julius Kühn-Institute (JKI), Institute for Breeding 

Research on Fruit Crops, Dresden, Germany (Höfer, 2015; Wang et al., 2018a), 1100 

accessions of banana at Bioversity International, Leuven, Belgium (Panis et al., 2020), 

1158 accessions of garlic at the  National Agrobiodiversity Centre (NAAS), Suwon, 

South Korea (Kim et al., 2012), 1470 accessions of mulberry at National Institute of 

Agrobiological Sciences (NIAS), Tsukuba, Japan (Fukui et al., 2011) and 1533 

accessions of potato at the International Potato Centre (CIP) in Lima, Peru (Vollmer 

et al., 2017). 

The rapid advance in plant cryobiology throughout the 1990s has seen the 

development of shoot tip cryopreservation methods based on vitrification and 

dehydration processes, namely vitrification, encapsulation-vitrification, and 

encapsulation-dehydration (Sakai & Engelmann, 2007; Lambardi & Shaarawi, 2017). 

Vitrification is defined as the synthesis of metastable glasses under rapid LN cooling 

without the occurrence of ice crystallisation within the plant cells, which normally 

occurs when treated with viscous and highly concentrated cryoprotectant mixtures 

(Fahy & Wowk, 2015; Wang et al., 2020). The vitrified metastable characteristic 

enables the plant to easily convert and return to its original state. Additionally, the pre-

conditioning of the explants through a succession of specific growth conditions or 

solutions prior to storage in LN would inhibit the formation of ice crystals, stimulating 
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a greater tolerance and adaptation of the explants to freezing conditions and 

minimising the risk of cell damage due to ice crystallisation (Wang et al., 2020).  

2.4.1 Droplet-vitrification method 

The droplet-vitrification method was first introduced by Kartha et al. (1982) 

based on the cryopreservation of cassava shoot tips (Manihot esculenta) in DMSO 

droplets. The method takes advantage of the rapid cooling rates through the use of 

droplet freezing and the properties of the vitrification solution, which successfully 

cryopreserved the shoot tips (Panis, 2019). Additionally, the first effective 

cryopreservation application using the Plant Vitrification Solution 2 (PVS2) in the 

droplet-vitrification technique was reported by Pennycooke and Towill (2000) on 

sweet potato shoot tip, while Panis et al. (2005) further optimised the method for the 

cryopreservation of banana. Wang et al. (2021) illustrated an overview of the major 

steps proposed by Panis et al. (2005) for the droplet vitrification of shoot tip 

cryopreservation. As shown in Figure 2.3, the proposed method includes cryo-plate 

and cryo-mesh vitrification-based techniques. Moreover, several studies have revealed 

the successful application of the proposed method for various species and plant 

materials, such as grapevine axillary buds (Pathirana et al., 2016), bulbil primordia of 

garlic (Kim et al., 2006), adventitious roots from ginseng (Le et al., 2019), and shoot 

tips of blackcurrant (Rantala et al., 2020) and kiwifruit (Pathirana et al., 2020). 

One of the fundamental principles of plant cryopreservation is vitrification, 

which involves the formation of glass without crystallisation (Benson, 2008). A glassy 

condition minimises physicochemical alterations and completely prevents the 

formation of ice crystals, which pose lethal freeze injuries to the cells, hence, ensuring 
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the conservation and survival of living tissues (Zamecnik et al., 2021). Numerous 

compositions of the specialised cryoprotecting solution have been established to 

effectively treat the plant cells and protect them from the harsh cryogenic 

temperatures (Benson, 2008). A cryoprotectant should exhibit at least three main 

characteristics before it can be considered to be used for vitrification, which include 

an exceptional glass-forming ability, a strong dehydration strength on a colligative 

basis to dehydrate the plant cells and stimulate the vitrification state, and non-toxic to 

the plants. Although the toxicity of PVS2 is a contentious point, it remains a 

significantly effective vitrification solution for plant shoot tip systems (Volk & 

Walters, 2006). 

Comparatively, the droplet-vitrification protocols, including the preculture and 

dehydration stages, are more or less similar to the conventional vitrification method 

(Roque-Borda et al., 2021). The ultra-rapid freezing protocol was adopted from the 

droplet-freezing method and integrated with the vitrification method. Prior to the direct 

immersion in LN, the explants are placed on a piece of aluminium foil before a micro-

drop of approximately 3 – 6 µL of vitrification solution is applied to encircle the 

sample. The higher thermal conductivity of the aluminium foil than polypropylene 

plastic cryovials provides a rapid heat transfer during the process. The latest study by 

Roque-Borda and colleagues (2021) revealed that the application of the droplet-

vitrification method in several up-to-date established cryoprotocols for various plants 

signifies the status of the droplet-vitrification as the most popular approach for 

agronomic plants in the Solanum genus and is comprehensively researched in terms of 

long-term storage option. 
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Figure 2.3 Major steps of shoot tip cryopreservation. (A) Droplet-vitrification, 

(B) cryo-plate (vitrification), (C) cryo-mesh, and (D) cryo-plate 

(desiccation). (Wang et al., 2021)  
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2.5 Parameters involved in cryopreservation 

A complete cryopreservation approach includes a series of steps comprising 

the preculture, osmoprotectant, dehydration, ultra-cooling, rewarming, and recovery. 

Note that each plant species produces varying responses to a specific treatment. Hence, 

optimising the respective step is vital to achieving an optimum recovery rate. 

2.5.1 Selection of plant materials for cryopreservation 

One of the crucial parameters that affect cryopreservation is the selection of 

suitable plant material in terms of size, physiological condition, cell composition, and 

growth response. Typically, homogeneous samples are applied to enhance the 

possibility of achieving a uniform and positive outcome, while freshly-dissected 

tissues are frequently vulnerable to mechanical damage (frequently detected through 

browning or blackening) and more exposed to further damage via cryogenic treatments 

(Benson & Harding, 2012). 

 The physiological conditions of the plants are also inclined to influence the 

success rate of cryopreservation. In view of this, actively growing mother plant 

samples are normally selected to ensure the presence of actively dividing meristematic 

cells in the sample (Engelmann, 2004) and increase the possibility to avoid 

unfavourable genetic variations (Kulus & Zalewska, 2014). Previously, Gogoi et al. 

(2013) recorded up to 70 and 72 % regeneration of cryopreserved protocorms using 

two Cymbidium species (C. eburneum and C. hookerianum, respectively) with 

sufficient acclimatisation. Moreover, Kulus (2018) successfully achieved a 100 % 

survival rate using a developed cryopreservation protocol for shoot tips of Lady 

Orange chrysanthemum. Conversely, Carmona-Martín et al. (2018) recorded a 
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genetically stable range of 42 – 84 % recovery of Asparagus officinalis L. rhizome 

buds. In the current study, the axillary buds, which comprise small groups of 

meristematic cells accumulated at the leaf axils (Hopkins & Hüner, 2010), were 

selected as the primary material for the cryopreservation process.  

2.5.2 Successive cryopreservation steps 

Each cryopreservation step contributes to the survival rate of the cryopreserved 

explants. Additionally, the cryo-capability of the respective species in terms of their 

tolerance to dehydration and toxicity of the cryoprotectant influences the effectiveness 

of the method (Sakai et al., 1990; Tirado-Pérez & Sandoval-Cancino, 2022). 

2.5.2(a) Preculture 

The cold hardening treatment is applied to enhance the tolerance of temperate 

plants to cryopreservation. Generally, the mother plants are incubated at low-

temperature conditions for around 2 – 3 weeks to stimulate the accumulation of 

intracellular solute, leading to a robust growth recovery post-cryopreservation 

(Benson, 2008). Due to the limitations of cold hardening treatment, including time-

consuming and the use of highly sophisticated instruments, preculture of plant 

materials on media supplemented with high sugar concentration is the preferred 

method over the cold hardening treatment (Bachiri et al., 2000; Dumet & Benson, 

2000). The preculture is also beneficial to treat tropical plants that are difficult to 

survive (Normah et al., 2019).  

The addition of high sugar or sugar alcohol concentration in precultures 

substantially elevated the cell tolerance during the dehydration and cooling steps (Kim 
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et al., 2006; Feng et al., 2013). The cell membrane integrity is preserved as water 

molecules on the membrane surface are replaced with hydroxyl groups from the sugar 

accumulation, which also maintain the stability of proteins during dehydration (Crowe 

et al., 1987; Bachiri et al., 2000). Sucrose is a commonly used in the vitrification-based 

cryopreservation protocols (Popova et al., 2020; Wang et al., 2020; Ozkaya et al., 

2022) since sucrose pre-culture permits the adjustment of the sugars and the total 

soluble protein in the cells that are essential for the regeneration of cells following 

cryopreservation (Bachiri et al., 2000; Jitsuyama et al., 2002; Wang et al., 2003). 

Nevertheless, overexposure to sucrose at a high concentration could cause extreme 

dehydration, leading to cell plasmolysis and rapture of plasmalemma (Popov et al., 

2006; Popova et al., 2016). Therefore, it is essential to optimise the sucrose 

concentration and the preculture duration to achieve optimum survival of the 

cryopreserved plants. 

2.5.2(b) Dehydration prior to LN storage 

The duration of incubation and temperature setting are two vital parameters 

that contribute to the survival rate of the cryopreserved plant tissues after being 

subjected to the vitrification solutions (Mohanty et al., 2012a). It is crucial to determine 

the appropriate exposure duration during the vitrification procedures to ensure 

sufficiently balanced dehydration and chemical toxicity level (Sakai & Engelmann, 

2007). As mentioned earlier, PVS2 is a frequently used cryoprotectant in plant 

cryopreservation research (Sakai et al., 1990), which consists of 30 % weight over 

volume (w/v) glycerol, 15 % (w/v) ethylene glycol, and 15 % (w/v) DMSO in 0.4 M 

basal medium. 
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Most cryopreservation techniques require the use of chemical substances that 

serve as protective agents, which are referred to as cryoprotectants (Kulus & Zalewska, 

2014). Cryoprotectants that are utilised in vitrification cryopreservation techniques are 

also known as vitrification solutions (VS), which are composed of cryoprotective 

agents (CPAs), for example, DMSO, ethylene glycol, glycerol, and sucrose (Elliott et 

al., 2017). Considering that the intracellular formation of ice crystals is widely 

acknowledged as detrimental cellular stress that results in irreversible injury, it has 

been long presumed that CPAs are able to alter the transition of liquid water into ice 

(Elliott et al., 2017). However, the formation of ice crystals is harmless under normal 

conditions, such as during the growth of cells in standard growth media. 

The utilisation of additives in the vitrification solutions could lead to osmotic 

injuries (for non-penetrating components), cryoprotectant toxicity, and devitrification, 

while osmotic or evaporative dehydration could induce desiccation sensitivity in the 

explants. Thus, the use of a mixture of various additives (Kulus & Zalewska, 2014) 

would minimise the toxicity effects of any single additive during cryoprotection, 

reducing the potential damages during the evaporative drying, and facilitate the 

stabilisation of the formed glasses. According to Benson (2008), the applied 

vitrification solutions on plants are mostly a combination of penetrating and non-

penetrating cryoprotectants. In several plant vitrification protocols, cryoprotectants are 

added and excess water is removed via the evaporative desiccation and osmotic 

dehydration in order to optimise the survival rate of the explants post-cryopreservation 

(Popova et al., 2016).  

One of the profound challenges that cryobanks face is that cryopreservation 

protocols are species - and even genotype - specific (Popova et al., 2016; Vujović et 
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al., 2024). In practice, this means that a cryopreservation protocol developed and well-

adapted to one crop often cannot be used for cryopreserving another crop without 

preliminary optimization. As cryopreservation is a labour-intensive, multistep process 

for introducing plant material into the cryobank, there is no generic time for LN 

storage. Depending on the size and design of the storage vessels, the holding time of 

LN tanks ranges from a few hours to a few weeks (Acker et al., 2017). Additionally, 

published literatures (Rajasegar et al., 2015; Popova et al., 2016; Roostika et al., 2024; 

Vujović et al., 2024) recommended a storage duration of at least 1 hr in order to 

prioritized on optimizing the cryopreservation protocols. Once the protocols were 

established with regenerative abilities of cryopreserved explants, manipulating LN to 

observe the correlation between storage duration and genetic stability can then be 

conducted (Caswell & Kartha, 2009; Mikuła et al., 2011; Volkova et al., 2015; Beulé 

et al., 2018).  

2.5.2(c) Growth recovery 

Explants are susceptible to experiencing abnormal growth in the preliminary 

post-thaw recovery stage, causing an increased genetic instability and damage (Towill 

& Bajaj, 2002). As a result, it is imperative to use the growth recovery media to restore 

impaired tissues and shoot formation directly from the cryopreserved explants shoot 

apex (Popova et al., 2023). Therefore, selecting a proper growth recovery medium 

plays a crucial role in the growth recovery of the plant since the recovery media 

regulates the growth, totipotency, and development of tissues and cells, and at the same 

time, the use of a balanced recovery media ensures a continued post-thaw survival 

(Towill & Bajaj, 2002; Popova et al., 2016).  
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The effects of physical parameters, including exposure to light, should also be 

considered. Since most damage repair takes place under dark conditions, the exposure 

to light influences the post-thaw recovery of plant tissues. The quantity and quality of 

the light source (photoperiod, intensity, and spectral composition) influence the 

morphogenetic responses of the in vitro plants (Yoon et al., 2007; Edesi et al., 2017; 

Mølmann et al., 2019). Previously, short periods of dark incubation post-thawing 

recorded positive effects in terms of plantlet regeneration (Mohanty et al., 2012a; 

Mohanty et al., 2012b). In another study, altering the light spectra prior to LN storage 

and during the recovery post-cryopreservation enhanced the overall survival rate and 

recovery process (Yoon et al., 2007; Edesi et al., 2016; Mølmann et al., 2019).  

Furthermore, shoot tips of potato cultivars were subcultured under an intense 

light source (130 µmol/m2s above the culture vessel) before the cryopreservation was 

carried out and achieved a substantially greater recovery post-cryopreservation (Yoon 

et al., 2007). Oppositely, Edesi et al. (2017) showed that blue Light-Emitting Diodes 

(LEDs) promoted the growth potential, photomorphogenesis, and successive survival 

post-cryopreservation of potato clones. Meanwhile, Mølmann et al. (2019) proposed 

that the specific red and far-red LEDs were effective during green-sprouting for 

maximum inhibition of sprout growth in the same species. However, the impact of 

modification of light source on the efficiency of the cryopreservation method is less 

studied.  

It was observed that successful recovery depends on the extent of antioxidant 

protection from harmful ROS, which regularly occurs post-LN incubation (Chen et al., 

2015). The incorporation of vitamins as additive components in the culture media, for 

instance, tocopherol and ascorbic acid, was shown to minimise oxidative damage. 


