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KAEDAH REGRESI KUANTIL PENALTI DAN PENGHURAIAN MOD 

EMPIRIK UNTUK MENINGKATKAN KETEPATAN PEMILIHAN MODEL 

ABSTRAK 

Dalam kajian ini dan beberapa kajian saintifik, pemboleh ubah yang diminati 

sering diwakili oleh proses siri masa, dan data siri masa tersebut selalunya tidak pegun 

dan tidak linear, mengakibatkan ketepatan model regresi yang terhasil dan kesimpulan 

yang kurang boleh dipercayai. Di samping itu, kaedah kuasa dua terkecil biasa adalah 

sensitif kepada data terpencil dan ralat berat hujung dalam data, dan beberapa peramal 

mungkin mengalami masalah multikolineariti. Lebih-lebih lagi, memilih pemboleh 

ubah yang berkaitan apabila menyuai model regresi adalah kritikal. Oleh itu, tiga 

kaedah berdasarkan gabungan algoritma penguraian mod empirikal (EMD) dan regresi 

kuantil penalti telah dicadangkan dalam kajian ini. Algoritma EMD menguraikan data 

siri masa tidak pegun dan tidak linear ke dalam koleksi terhingga komponen ortogonal 

yang dipanggil fungsi mod intrinsik dan komponen reja. Dalam beberapa kajian, 

komponen ini telah digunakan sebagai pembolehubah peramal baru untuk mengkaji 

tingkah laku pemboleh ubah sambutan. Kajian ini bertujuan untuk mengaplikasi 

kaedah EMD-QRR, EMD-QR, dan EMD-QREnet yang dicadangkan untuk mengenal 

pasti pengaruh komponen penguraian pemboleh ubah peramal asal ke atas pemboleh 

ubah peramal untuk membina model yang paling sesuai dan meningkatkan ketepatan 

ramalan. Tambahan pula, kajian ini membincangkan isu multikolineariti antara 

komponen penguraian. Untuk mengesahkan prestasi ramalan kaedah yang 

dicadangkan, kaedah yang dicadangkan dibandingkan dengan tiga kaedah regresi 

sedia ada yang digunakan dalam kajian lepas. Kajian simulasi dan analisis empirikal 

data sebenar telah dijalankan dalam kajian ini. Untuk kajian simulasi, dua eksperimen 



xviii 

telah dipertimbangkan menggunakan fungsi gelombang sinus. Set data sebenar 

digunakan dalam contoh ilustrasi: pasaran saham harian dan kadar pertukaran. 

Keputusan daripada eksperimen berangka dan aplikasi data sebenar menggambarkan 

bahawa kaedah yang dicadangkan berprestasi lebih baik daripada kaedah lain pada 

kuantil yang berbeza. Penemuan juga menunjukkan bahawa kaedah yang dicadangkan 

mempunyai prestasi unggul dalam anggaran, pemilihan pembolehubah apabila 

masalah multikolineariti hadir, dan membina model akhir yang bebas daripada 

multikolineariti dan tahan terhadap penyimpangan atau taburan berekor berat. Oleh 

itu, secara keseluruhan, regresi kuantil penalti berdasarkan EMD mempunyai 

ketepatan yang lebih tinggi dan lebih baik daripada kaedah lain. 
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PENALIZED QUANTILE REGRESSION METHODS AND 

EMPIRICAL MODE DECOMPOSITION FOR IMPROVING THE 

ACCURACY OF THE MODEL SELECTION 

ABSTRACT 

In this study, in several scientific studies, the variables of interest are often 

represented by time series processes, and such time series data are frequently non-

stationary and non-linear, resulting in low accuracy of the resulting regression models 

and less reliable conclusions. In addition, the ordinary least squares method is sensitive 

to outliers and heavy-tailed errors in data, and several predictors may suffer from 

multicollinearity problems. Moreover, selecting the relevant variables when fitting the 

regression model is critical. Therefore, three methods based on a combination of the 

empirical mode decomposition (EMD) algorithm and penalized quantile regression 

have been proposed in this study. The EMD algorithm decomposes the non-stationary 

and non-linear time series data into a finite collection of approximately orthogonal 

components called intrinsic mode functions and residual components. In several 

studies, these components have been employed as novel predictor variables to study 

the behaviour of the response variable. This study aims to apply the proposed EMD-

QRR, EMD-QR, and EMD-QREnet methods to identify the influence of the 

decomposition components of the original predictor variables on the response variable 

to build a model that has the best fit and improve prediction accuracy. Furthermore, 

this study deals with the multicollinearity issue between the decomposition 

components. To verify the prediction performance of the proposed methods, the 

proposed methods are compared with three existing regression methods used in 

previous studies. Simulation studies and empirical analysis of the real data were 



xx 

carried out in this study. For simulation studies, two experiments were considered 

using the sine wave function. The real datasets are applied in illustrative examples: the 

daily stock markets and exchange rates. Both numerical experiments and empirical 

results show that the proposed methods perform better than other methods at different 

quantiles. Additionally, the proposed methods can achieve low prediction errors and 

produce a model free from multicollinearity and resistant to outliers or heavy-tailed 

distributions compared to the existing methods. The proposed EMD-QRL and EMD-

QREnet methods can select the decomposition components that have a significant 

impact on the response variable. Thus, overall, penalized quantile regression based on 

EMD has higher accuracy and is superior to other methods. 
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CHAPTER 1  

INTRODUCTION 

1.1 Background and Motivation 

In real-world scenarios, whether natural or artificial, time series processes are 

often used to represent variables of interest, such time series are frequently non-

stationary and non-linear (Masselot et al., 2018). These data are most likely both non-

linear and non-stationary, The decomposition of non-stationary and non-linear time 

series is an important issue to consider when analysing. The decomposition of non-

stationary and non-linear time series is an important issue to consider when analysing. 

Meanwhile, there is a dearth of analytical methods for dealing with time series data 

(Huang, 2005). However, several algorithms, such as the Fourier transform method 

(Titchmarsh, 1948), the Wigner distribution (Classen & Mecklenbrauker, 1980), and 

wavelet analysis (Chan, 1995), have been applied in the literature to analyse time series 

data (Al-Jawarneh & Ismail, 2022; Huang, 2005). 

Regression analysis is a robust statistical method widely used in empirical 

applications in various fields such as finance, economics, environmental, social, and 

life sciences. Regression models are commonly estimated using the ordinary least 

squares (OLS) method, which estimates the conditional mean of the response variable. 

In other words, the relationship between the predictor variables and the response 

variable in the coordinate plane is assessed with a mean regression line, despite the 

OLS method having excellent properties such as linearity, efficiency, and 

unbiasedness. However, it does not provide information on other aspects of the 

response variable's distribution, such as ignoring distribution shape, normality of 

errors and robustness to violations. Moreover, it is well known for being very sensitive 



2 

to the existence of outliers or heavy-tailed distributions, which means the estimation 

efficiency might be reduced naturally and can lead to misleading inferences (Mendez-

Civieta et al., 2021; Tian & Song, 2020; Yousif & Housain, 2021; Yuzbasi et al., 

2018). In addition, when dealing with heterogeneous data in regression analysis, 

targeting only a mean function is often insufficient to comprehensively understand the 

relationship between the response and predictor variables (Hu et al., 2021). 

Heterogeneous data in regression refers to data that exhibit variability in their 

characteristics, such as different distributions, variances, or patterns across subsets of 

the data (Bernardi et al., 2016). 

To overcome these inadequacies of classical regression, quantile regression 

(QR) was suggested by Koenker and Bassett (1978) as an alternative to the ordinary 

least squares (OLS) method. QR provides much more information about the whole 

conditional distribution of a response variable instead of just the average value and 

gives an overall evaluation of the influence of the predictor variables at various 

quantiles τ of the response variable (Koenker, 2005; Tian & Song, 2020; Y. Wu & Liu, 

2009). Quite recently, quantile regression (QR) has grown into a fundamental and 

commonly used technique to examine the relationship between the response variable 

and the predictor variables at various quantiles of the conditional distribution function, 

providing more comprehensive visibility of the phenomena under study. Moreover, 

quantile regression provides a more comprehensive understanding of the relationship 

between predictor variables and the response variable by characterizing the conditional 

mean and the entire conditional distribution, including its location, scale, and shape. 

This makes it a valuable tool for analyzing data where the assumptions of OLS 

regression may not hold, or when you want a more nuanced understanding of the data's 

distributional properties.  
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The most notable feature of QR is that this approach is robust against outliers 

and insensitive to heterogeneity. Thus, it can handle non-normal errors common in 

several real-world applications. In addition, quantile regression provides a 

considerably more complete understanding of the impact of predictor variables on the 

various quantiles of the response variable distribution than OLS regression captures. 

Therefore, this method provides accurate insight into the relationship between 

response and predictor variables at the upper and lower tails. Also, this method 

provides information on the conditional distribution of the response variable's location, 

scale, and shape. Overall, the quantile regression can quantify the entire conditional 

distribution of the response variable conditional on predictors and assess the predictor 

variables' influences at various quantiles of the response variable (Koenker, 2005). 

These unique advantages attracted a great deal of interest in the literature, and quantile 

regression is applied in several scientific fields, such as finance, economics, social 

science, medicine, and growth charts (Alkenani & Msallam, 2019; Benoit et al., 2013; 

Mendez-Civieta et al., 2021). 

Recently, the empirical mode decomposition (EMD) approach was presented 

by Huang et al. (1998), which is an intuitive, straight, and adaptable method for 

decomposing non-linear and non-stationary time series data. This approach is the first 

part of the Hilbert-Huang transform (HHT). In contrast to traditional techniques such 

as wavelet decomposition (Chan, 1995) and Fourier decomposition (Titchmarsh, 

1948), EMD imposes no a priori limitations on the data and allows it to speak for itself. 

Despite this approach being completely derived from empirical evidence and lacking 

a formal mathematical foundation, it may efficiently divide a data series into distinct 

components, each corresponding to a particular oscillation frequency.  
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Since its inception, this technique has been used in a wide variety of fields, 

including economics (Huang et al., 2003), engineering (Yang et al., 2003), medicine 

(Yang et al., 2011), physics (Varadarajan & Nagarajaiah, 2004a), and environmental 

science (Huang et al., 1999). This technique supplies more accurate findings in many 

situations than traditional methods, uncovering novel patterns within the analyzed data 

sets (Qin et al., 2016). The EMD method decomposes the non-stationary and non-

linear signal into several components called intrinsic mode functions (IMFs) and one 

residual.  These decomposition components are of different wavelengths, amplitudes, 

and frequencies, which are functionally significant (Huang, 2014). These 

decomposition components may be utilized as novel predictor variables to study their 

influence on the response variable (Al-Jawarneh & Ismail, 2021; Masselot et al., 2018; 

Qin et al., 2016).  

Parameter estimation, model selection, and variable selection are important 

considerations in regression analysis. Therefore, many robust regression methods for 

fitting multiple regression models have been proposed. Among these, the most 

common regularization approach is penalized least squares regression. For example, 

the Ridge (Hoerl & Kennard, 1970), LASSO (Tibshirani, 1996), the Elastic Net (Zou 

& Hastie, 2005) and so on. However, since the least squares criteria are used, none of 

these methods resist outliers or heavy-tailed error. Alternative robust procedures have 

been developed in the literature. One such appealing, robust procedure is penalized 

quantile regression methods that provide promising approaches for parameter 

estimation, model selection, and variable selection in the event of the existence of 

outliers or heavy-tailed errors (Ajeel & Hashem, 2020; Su & Wang, 2021). 

In regression analysis, there are some problems that may have an impact on 

model selection prediction accuracy. Such problems are that the time series data used 
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in regression are often non-stationary and non-linear, the presence of outliers or heavy-

tailed errors, and several predictors may suffer from multicollinearity problems. hese 

issues in regression may increase parameter estimations' variability, rendering the final 

result less dependable. Regularization techniques, such as LASSO, Ridge, and Elastic 

Net, are used to add a penalty term to the regression equation. This penalty helps to 

estimate the quantile regression coefficients, prevent overfitting and improve the 

model's prediction performance. The empirical mode decomposition (EMD) technique 

is also implemented for analysing nonlinear and non-stationary signals, providing 

insights into their underlying oscillatory components and patterns. The EMD method 

and the penalized quantile regression methods, namely, Ridge (QRR), LASSO (QRL), 

and elastic-net (QREnet) regression, are proposed to address these issues to enhance 

the predictive accuracy and improve model selection. 

1.2 Problem Statement 

In the case of time series data, the regression analysis assumes limitations on 

all variables before estimating to enhance predictive accuracy and model selection. 

However, five significant challenges currently exist which include the following: 

a) In the regression analysis, the variables of the time series data are supposed to be 

linear.  In other words, the relationship between the time series observations is 

linear.  However, the assumption of linearity in time series data stemming from the 

real world is not always realistic. 

b) In the regression analysis, time series data variables are supposed to be stationary 

in the sense that the data has the property that the mean, variance and 

autocorrelation structure do not change over time (Adarsh & Janga Reddy, 2019; 

Moore et al., 2018a). Numerous datasets stemming from the real world are often 
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non-stationary time series datasets. Some traditional methods were used to 

overcome this problem. However, these methods lead to some lost data features 

and valuable information from the original data.  Existing methods are not adaptive 

and highly efficient, which affects the accuracy of the findings (Al-Jawarneh & 

Ismail, 2021, 2022; Huang, 2014). 

c) Even though the OLS method has excellent properties, e.g., linearity, efficiency, 

and unbiasedness, it does not provide information on other aspects of the 

distribution of the response variable. Because its procedures typically focus on the 

mean of the response, it is known to be particularly sensitive to the existence of 

outliers or heavy-tailed distributions, and heterogeneity implying that estimate 

efficiency may be naturally lowered in this case. Sometimes researchers may be 

interested in modelling other values than the mean of the response variable, for 

instance, the median or other quantiles (Amin et al., 2015; Mendez-Civieta et al., 

2021). 

d) It is assumed that there is no dependence among the predictor variables, that is, 

there is no correlation between two or more predictor variables. However, if this 

assumption is violated, the issue of multicollinearity arises. It is impossible to 

quantify the unrivalled impact of a specific indicator in the case of 

multicollinearity. Furthermore, the regression coefficients have a huge sample 

variance as well as incorrect signals, which influences both inference and 

estimation. Thus, multicollinearity is a major issue in linear regression analysis 

(Ali et al., 2021). 

e) Variable selection is also very important in quantile regression, similar to the linear 

regression model when the number of predictors is large. However, keeping 

irrelevant variables in the model, is undesirable because it makes the model 
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difficult to interpret and may impair its predictive ability. As a result, when fitting 

the quantile regression model, it is critical to select the relevant variables (Alkenani 

& Msallam, 2019; Amin et al., 2015). 

To address these challenges this study introduces three novel hybrid penalized 

quantile regression methods based on empirical mode decomposition (EMD). These 

new methods aim to overcome the shortcomings of existing quantile regression 

models, ultimately enhancing the predictive accuracy of the model selection. 

1.3 Research Objectives 

The main aim of this study is to enhance the accuracy of model selection for 

non-linear and non-stationary time series datasets through the use of the EMD 

technique and penalized quantile regression techniques, with the following objectives: 

a) To apply EMD multi-scale data decomposition on the non-stationary and non-

linear predictors by decomposing each non-stationary and non-linear predictor into 

a finite set of decomposition components, which will represent the new predictor 

variables in this study. 

b) To investigate the relationship between the decomposition components via the 

EMD approach and the response variable by selecting the necessary decomposition 

components that greatly influence the response variable in the existence of 

multicollinearity. 

c) To improve the prediction accuracy of the model selection by selecting the 

necessary decomposition components. 

d) To develop three hybrid methods by combining EMD and penalized quantile 

regression (QRR, QRL, and QREnet) to improve the prediction accuracy of the 

model selection and deal with multicollinearity among decomposed components. 
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1.4 Scope of the Study  

a) The proposed methods are based on the use of decomposition components by the 

EMD approach as new predictor variables in a penalized quantile regression 

analysis to improve the performance of existing methods in the prediction 

accuracy of model selection. 

b) Three traditional methods were used to test and validate the performance of the 

proposed methods. 

c) This study uses two datasets (simulation and real data) to achieve these 

objectives. For simulation datasets, the simulation data were generated by two 

simulation experiments using the sine wave function. The other datasets (real 

data), two empirical applications will be used to evaluate the performance of the 

proposed methods relative to existing methods: the first application uses the daily 

close stock market data of three countries, namely, Japan (Nikkei Index), China 

(Shenzhen Component Index) as predictor variables, and Singapore (Singapore 

Exchange Limited) as the response variable between 5 January 2015 and 29 

December 2022, and the second application is the daily exchange rates of four 

countries which are Taiwan (TAW), Malaysia (MYR), Japan (JAP), and China 

(CHN) between March 27, 2015, and December 30, 2022.  

1.5 Significance of the Study  

This study presents new techniques to improve the predictive accuracy of 

model selection. The new techniques are based on a combination of EMD, an efficient 

method for dealing with nonlinear nonstationary time series data, and some penalized 

quantile regression methods. Three new techniques are proposed, namely the EMD-

QRR, EMD-QRL, and EMD-QREnet methods. The proposed techniques are accurate 
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and reliable in determining the principal components of the original predictor that have 

the greatest influence on the response variable using the EMD method. The EMD 

method assures the reliability of the variables' relationships in the time and frequency 

domains. In this way, examining the connection between the variables becomes 

conceivable.  

This study has provided a significant contribution towards developing 

penalized quantile regression models to determine the decomposition components of 

the original time series predictors that display the most substantial effects on the 

response variable and deal with multicollinearity and heterogeneity among the 

decomposition components at different quantiles with high prediction accuracy in 

model selection compared with the existing methods.  

1.6 Limitations of the Study 

In this study, the proposed methods focus on improving the prediction accuracy 

of the model selection, which seeks to comprehend the relationship between the 

decomposition components via EMD algorithm and the response variable from a 

different perspective, i.e., multicollinearity and heterogeneity problems. However, 

time series data frequently have autocorrelation issues, such as the degree of 

resemblance between the present value and its preceding values. If such a problem 

arises, it is a new area of research. As a result, these issues will be addressed in future 

studies. 

1.7 Organization of thesis  

Chapter 1 introduces an overview of the problems that motivate this study, its 

objectives, scope, significance, and limitations. Chapter 2 deals with the literature 

review of the present study. The chapter aims to review previous studies that are 
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interrelated to the current study, which consists of the following: an introduction, 

decomposition of time series based on the Hilbert-Huang transform; the EMD 

algorithm, penalized quantile regression; the multicollinearity issue and the choice of 

the optimal tuning parameter. Chapter 3 is the research methodology for the current 

study. This chapter displays the proposed methods: the hybrid of EMD-QRR, EMD-

QRL, and EMD-QREnet. The multicollinearity test and statistics measures of 

performance evaluation of the proposed methods are also described in Chapter 3. It 

ends with a summary. Chapter 4 deals with the simulation study of the current study, 

which incorporates the introduction, simulation details, simulation results of the three 

case studies, discussion, and conclusion. Chapter 5 deals with the empirical analysis 

by applying the original time series data in two applications, discussion, and 

conclusion. Chapter 6 deals with the conclusion of the main findings in the thesis and 

recommendations for future work. 

 



11 

CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

This chapter contains eight sections. The second section provides an overview 

of the signal decomposition methods using the Hilbert-Huang transform. The third 

section describes the development and application of the empirical mode 

decomposition (EMD) algorithm in different areas. In addition, the list of recent 

studies that use EMD in regression techniques is also displayed at the end of this 

section. The fourth section presents the Ordinary Least Square method (OLS). The 

fifth section displays the quantile regression method (QR) in the literature. This section 

also presents several recent studies that apply the QR technique with penalized 

regression, and a list of the several penalized quantile regression techniques used in 

this study is also displayed at the end of this section. The sixth section presents the 

multicollinearity issue. The seventh section presents the tuning parameter selection 

and highlights the D-fold cross-validation techniques. The last section is the summary. 

2.2 Decomposition of Time Series based on Hilbert-Huang Transform 

In many real-world systems, whether natural or human-made, the variables of 

interest are typically represented using time-series processes. These datasets are almost 

certainly both non-linear and non-stationary. Analyzing such complex systems is a 

critical challenge in various fields of study. Many algorithms have been applied in the 

literature for analyzing non-stationary and non-linear time-series data. For example, 

the Fourier transform method by Titchmarsh (1948) assumes that the data is stationary 

and linear, and wavelet analysis by Chan (1995) was designed for linear and stationary 

or non-stationary signals. Recently, Ghaderpour and Pagiatakis (2017) proposed least 
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squares wavelet analysis (LSWA), a technique for analyzing non-stationary and 

unequally spaced time series with low or high components. An essential condition for 

representing non-linear and non-stationary data is an adaptive basis. Here, adaptive 

means that the basic definition must be based on and derived from the data. The a 

posteriori adaptive basis provides a completely different approach from the established 

mathematical model for data analysis.  

Therefore, a new method named the Hilbert-Huang transform (HHT) was 

introduced by Huang et al. (1998). It was able to satisfy the requirements of the 

posterior basis function necessary for adaptive data analysis. The HHT is explicitly 

designed for analyzing non-linear and non-stationary data. The HHT mainly comprises 

empirical mode decomposition (EMD) and Hilbert spectral analysis (HSA). The main 

principle of HHT is EMD, which decomposes non-stationary and non-linear signals 

into a finite and often small number of orthogonal non-overlapping time-scale signals 

or components. The EMD analyzes signals while keeping the time domain of the 

signal. Then the HHT technique will be applied to all the extracted components to 

obtain instantaneous frequency data (Huang, 2014). 

2.3 Empirical Mode Decomposition 

Empirical Mode Decomposition (EMD) was introduced by Huang et al. (1998) 

as a new and effective approach to decomposing a non-linear and non-stationary 

signal. This approach effectively decomposes complex and multiscale signals into 

finite collections of approximately orthogonal components, named are Intrinsic Mode 

Functions (IMF), and residual components through an iterative process called the 

sifting process (Maheshwari & Kumar, 2014; Moore et al., 2018b). The key feature of 

EMD is its ability to adaptively decompose signals, making it particularly suitable for 
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capturing the essence of a signal's dynamics. The intrinsic mode functions (IMFs) hold 

a special role in this process, as they represent localized instantaneous frequencies, 

thereby allowing for a comprehensive characterization of the signal's behaviour. This 

characterization is realized through the computation of the IMF's instantaneous 

frequency using the analytic signal method (a process known as the Hilbert-Huang 

transform). Specifically, the low-level IMFs encapsulate high local frequencies, while 

the high-level IMFs encompass low local frequencies, making EMD a versatile tool 

for signal analysis (Huang, 2014). 

2.3.1 Intrinsic Mode Function (IMF) 

IMFs represent a generally simple oscillatory mode as an alternative to the 

straightforward harmonic function. An IMF is defined as any function with the same 

number of extrema and zero crossings and whose envelopes are symmetric concerning 

zero. This definition ensures that a Hilbert transform behaves correctly within the IMF 

(Huang et al., 1998). 

Each IMF component function must fulfill the following two conditions: 

i. The number of local extreme values (maxima and minima) and the number of 

zero-crossings must be equal or differ at most by one. 

ii. The local mean must be zero, defined as the mean of the upper and lower 

envelopes. 

                                                 𝑚(𝑡) =
𝑈(𝑡)+𝐿(𝑡)

2
= 0                                                         

(2.1) 

where 𝑚(𝑡) is the mean envelope, 𝑈(𝑡) is the upper envelope, and 𝐿(𝑡) is the 

lower envelope. 



14 

The first condition seems required for oscillation data; the second condition 

requires the symmetric upper and lower envelopes of IMF, as the IMF component is 

decomposed from the original data; finding the real envelopes is quite difficult due to 

the data's non-linear and non-stationary nature. Only a few functions have known 

envelopes, such as the constant amplitude sinusoidal function (Al-Jawarneh et al., 

2021; Lu, 2007). 

2.3.2 Sifting Process 

Huang et al. (1998) invented the EMD method to break up the original data 

into a series of IMF via a process named the Sifting process of EMD. The idea is to 

separate the data into slow-varying local mean and fast-varying symmetric oscillation 

parts. The resulting oscillations are designated as IMFs, while the local mean 

constitutes the residue. This residue is then utilized as the input data for further 

decomposition, and this iterative process continues until no additional oscillatory 

components can be extracted from the remaining residue. Through this method, the 

original data, 𝑥(𝑡) can be constructed back as in Equation (2.2) (Huang et al., 1998; 

Huang, 2014; Lu, 2007). 

                                                        𝑥(𝑡) = ∑ 𝐶𝑘(𝑡) + 𝑟(𝑡).
𝐾
𝑘=1                                                 

(2.2) 

Here 𝑥(𝑡) indicates the original signal, 𝑟(𝑡) represents the residue of the 

original signal decomposition, and 𝐶𝑘(𝑡) represents the 𝑘-th intrinsic mode function 

(IMF). 

Initially, due to the upper and lower envelopes being unknown, on each step of 

the decomposition, to approximate the envelopes and obtain the IMF and residue, a 
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repetitive sifting process is applied as follows:(Awajan et al., 2019; Huang et al., 1998; 

Huang, 2014) 

Step 1:  The original signal 𝑥(𝑡) is entered for the sifting process on the assumption 

that the value of the two repetition indicators is (𝑞 = 1, 𝑘 = 1). 

Step 2: Identify all local extrema, including minima and maxima of a time series signal 

𝑥(𝑡). For more illustration, see Figure 2.1. 

Figure 2.1 displays an example of step 2. The black line is the original signal 

𝑥(𝑡), while the red circle point on the upper line is the local maximum. On the other 

hand, the blue circle point on the lower line symbolizes the local minimum. 

 

Figure 2.1 Local extreme of the original signal 𝑥(𝑡). 
 

Step 3: Produce Envelope. Connect all local extrema with a cubic spline line to 

generate the upper envelope 𝑈𝑞(𝑡) and lower envelope 𝐿𝑞(𝑡), respectively. 

Step 4: The mean envelope, 𝑚𝑞(𝑡), is determined by the mean of the upper and lower 

envelopes by using Equation (2.3). 

                                                   𝑚𝑞(𝑡) =
𝑈𝑞(𝑡)+𝐿𝑞(𝑡)

2
                                                 

(2.3) 
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Figure 2.2 Upper, lower, and mean envelopes of the original signal 𝑥(𝑡). 
 

Figure 2.2 displays an example of steps 3 and 4. The green line represents the 

original signal 𝑥(𝑡), the red line represents the upper envelope 𝑈𝑞(𝑡), and the blue line 

lower envelope 𝐿𝑞(𝑡), as indicated in step 3. The black line represents the mean 

envelope of the upper and lower envelopes, as explained in Step 4. 

Step 5: Subtract the mean envelope 𝑚𝑞(𝑡) from the original time series 𝑥(𝑡) to obtain 

the component ℎ𝑞(𝑡) as shown in Equation (2.4). 

                                                     ℎ𝑞(𝑡) = 𝑥(𝑡) − 𝑚𝑞(𝑡)                                          

(2.4) 

Step 6: Check whether series ℎ𝑞(𝑡) is an IMF or not, according to IMF conditions 

(presented in Section 2.3.1). 

i. If not an IMF, substitute the function ℎ𝑞(𝑡) with 𝑥(𝑡), update the iteration 

indicator such that it equals 𝑞 = 𝑞 + 1, and repeat the sifting process, 

which consists of step 2 to step 5 until ℎ𝑞(𝑡) meets the conditions of IMF. 

ii. If the function ℎ𝑞(𝑡) is an IMF according to the definition of IMF, then 

ℎ𝑞(𝑡) = 𝐶𝑘(𝑡), saves the 𝐶𝑘(𝑡)  result obtained and go to step 7. 

Step 7:  Calculate the residual using the IMF and the signal 𝑥(𝑡) as on the formula:   

                                                     𝑟𝑘(𝑡) = 𝑥(𝑡) − ℎ𝑞(𝑡)                                            

(2.5) 

Check whether the residue function 𝑟𝑘(𝑡) is a monotonic or constant function 

or satisfies the stopping criterion of the standard deviation (𝑆𝐷𝑞), which needs a small 
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normalized squared difference between two successive sifting operations. The 

difference is defined in equation (2.6).  

Save the residue and all the IMFs obtained, and the sifting process stops. 

If the residue is not a monotonic or constant function, substitute the 𝑟𝑘(𝑡) with 

𝑥(𝑡) and repeat the sifting process which consists of step 2 to step 7 with 𝑘=𝑘 + 1 until 

𝑟𝑘(𝑡) is a monotonic or constant function or satisfie///.s stopping criterion 𝑆𝐷𝑞.   

                                                       𝑆𝐷𝑞 = ∑
(ℎ𝑞−1(𝑡)−ℎ𝑞(𝑡))

2

ℎ𝑞−1
2 (𝑡)

𝑇
𝑡=0                                                          (2.1) 

The refinement process (steps 2 to 7) needed to extract the IMF and residual 

components, requires a certain number of iterations and is named a sifting process. All 

the steps are summarized in Figure 2.3, the EMD method tree graph, and Figure 2.4 is 

taken from (Al-Jawarneh & Ismail, 2022) and is a flowchart for the sifting process.  

 

Figure 2.3 The EMD Decomposition tree 

𝑥(𝑡) 

𝑟𝑘−1(𝑡) = 𝑥(𝑡) −෍ℎ𝑘(𝑡)

𝑘−1

𝑘=1

 

ℎ3(𝑡) 

𝑟2(𝑡) = 𝑥(𝑡) − (ℎ1(𝑡) + ℎ2(𝑡) 
 

𝑟1(𝑡) = 𝑥(𝑡) − ℎ1(𝑡) ℎ1(𝑡) 

ℎ2(𝑡) 

ℎ𝑘(𝑡) 𝑟𝑘(𝑡) 
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Figure 2.4 Flowchart for the sifting process 
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2.3.3 Previous Applications, Extensions and Limitations of the EMD 

The EMD has been widely used in several scientific fields, such as economics 

(Hossain & Ismail, 2020), financial time series (Jaber et al., 2014), medicine (Masselot 

et al., 2018), physics (Varadarajan & Nagarajaiah, 2004), mechanical engineering 

(Zhang et al., 2010), electronic engineering (Suvasini et al., 2015), civil and 

construction engineering (OBrien et al., 2017), short-term traffic speed (Wang et al., 

2016; Zheng et al., 2017), and environmental science (Wei et al., 2018). This technique 

supplies more accurate findings in many situations than traditional methods, 

uncovering novel patterns within the analyzed data. 

However, although the EMD approach has proven highly effective and 

specialized in analysing non-linear and non-stationary signals, its application has some 

limitations. For instance, most phases during the sifting process are not mathematically 

determined and lack a reliable mathematical theory, which has become a major 

problem restricting the application of EMD (Awajan et al., 2018; Liu & Chen, 2019, 

Flandrin et al., 2004; Moore et al., 2018b). Several research works have proposed 

theoretical assumptions about the EMD procedure, predominately defined as 

algorithmic steps (Wu et al., 2001). The number of IMF components extracted from a 

signal equals log2N. Furthermore, Peel et al. (2005) argued that the average period 

might be computed for each IMF by 2×N. Kizhner et al. (2006) presented several 

theoretical basics for the EMD algorithm by presenting three assumptions on the EMD 

sifting process. However, the theoretical component of EMD remains poorly, as 

Rilling and Flandrin (2006) described. Li et al. (2017) used the differential operation 

to solve the mode mixing of the IMF components. The proposed methodologies in this 

study can overcome these limitations with basic EMD.  
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Many studies have provided an extension of the EMD method. Among the 

studies are He et al. (2017), which suggested that 3D EMD decomposes a volume into 

three-dimensional IMFs. Then Vatchev and Sharpley (2008) demonstrated that any 

function with simple zeros and extrema could be decomposed into two or fewer weak 

IMFs. Wu and Huang (2009) presented the ensemble EMD (EEMD) as an extension 

of EMD. Yeh (2012) proposed a method for computing complicated bi-dimensional 

EMD that may be applied to analyze two-dimensional signals. Rehman and Mandic 

(2010) have also successfully developed and applied the extensions to multivariate 

works. (Torres et al. (2011) proposed the EEMD algorithm, which enables an exact 

reconstruction of the original signal and better spectral separation of the modes. 

Many researchers have compared the EMD method with other technical 

decomposition methods. The results of the studies showed that the EMD algorithm 

exhibited high accuracy in dealing with non-stationary and non-linear signals 

compared with other technical decomposition methods in various fields. Wang et al. 

(2011) compared the EMD method and wavelet decomposition (WD) in non-

stationary and non-linear time series data analysis. Lu et al. (2013) compared the EMD 

method and the method with chirplet signal decomposition (CSD) method used for 

ultrasonic signal feature extraction. Ghosh et al. (2014) compared the EMD with 

Fourier transform (FT), wavelet short-term Fourier transform (WSFT), and wavelet 

transform (WT) to denoise an electrocardiogram signal. 

2.3.4 Statistical Regression Methods combined with EMD 

Many studies have combined the EMD algorithm with other established 

statistical regression or forecasting methods. The decomposition components obtained 

via EMD are used as new predictor variables to predict their behaviors and impacts on 
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other response variables by utilizing appropriate models or in various statistical 

situations, such as, Yang et al. (2011) studied the ordinary least squares (OLS) 

regression analysis and forward stepwise regression (SR) methods based on the EMD 

approach by using decomposition components via EMD of the weather variables 

(predictor variables), which are the pressure, temperature, humidity, sunshine duration 

and maximal wind speed, and (response) variables which is headache incidence.  They 

used the same methodology to examine the associations between air pollution, 

weather, and unemployment variables (predictor variables) and the decomposition 

components via EMD of the suicide variable (response variable). The residual (trend) 

component was removed to avoid spurious regression and multicollinearity. 

Shen et al. (2012) used a combination of ridge regression with the ensemble 

EMD method to reduce decomposition error and address the mode mixing problem. 

Then Shen and Lee (2012) applied LASSO regression based on Ensemble EMD 

(EEMD) to reduce the errors caused by the outliers on the ultrasound imaging for the 

blood flow velocity dataset. After that, Chu et al. (2018) proposed a new method for 

combining Lasso regression and deep belief networks (DBN) with ensemble empirical 

mode decomposition (EEMD) to investigate the relationship between multiscale 

climate predictors and the decomposition components of nonstationary and nonlinear 

monthly streamflow on the Tennessee River in the USA. They found that their 

proposed model can significantly improve the accuracy of monthly streamflow 

forecasting. 

Adarsh (2016) applied multivariate EMD and stepwise linear regression (SLR) 

to predict the monthly rainfall (response variable) with decomposition components of 

the four predictor variables, namely, mean sea level pressure, relative humidity, 

surface temperature, and wind velocity in the Kerala meteorological subdivision in 
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India. At the same time, Adarsh et al. (2018) used the same methodology to estimate 

the relationship between the reference evapotranspiration (response variable) and the 

four predictor variables, such as solar radiation, air temperature, relative humidity, and 

wind velocity (predictor variables). Later Adarsh and Janga Reddy (2019) applied the 

same methodology with various variables. 

Qin et al. (2016) presented a LASSO regression based on the EMD method for 

choosing decomposed components that exhibit the most substantial effects on the 

response variable. This method is compared with the OLS and Ridge methods based 

on the EMD. Both numerical experiments and applications on the two Chinese stock 

markets are applied in this study. In comparison, Masselot et al. (2018) applied LASSO 

regression and multivariate EMD to choose the decomposition components that have 

a substantial influence on the response variable/variables in the two models proposed, 

one of which decomposes the predictor variables only and the other decomposes the 

predictor and response variables via EMD. The proposed methodology is applied to 

study the relationship between weather (a response variable) and cardiovascular 

mortality (predictors variables) in Montreal, Canada. These decomposition 

components obtained via the EMD algorithm are used as new predictor variables to 

predict their effects and behaviours about the response variable. 

Recently, Al-Jawarneh et al. (2020) presented elastic net regression based on 

the EMD for selecting decomposed components that exhibit the most potent effects on 

the response variable, and multicollinearity between the decomposition components 

was dealt with. A numerical experiment and actual time series data were applied to the 

two Chinese stock markets (the Shanghai Composite Index and the Shenzhen 

Component Index). Al-Jawarneh et al. (2021) and Al-Jawarneh and Ismail (2021) used 

the same methodology but with multivariate predictors with different numerical 
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experiments and real data. A more recent study by Alsayed (2022) employed the elastic 

net regression method based on empirical mode decomposition to address precisely 

the non-stationary and non-linearity characteristics of the variables, and it can also 

tackle the multicollinearity between the predictors to check the behavior and trend of 

the Turkish stock market (XU100). The predictors include COVID-19 infected cases 

and financial country-level variables named credit default swap, foreign exchange rate 

USD/TL, and TL reference interest rate. 

2.4 Classical Linear Regression 

Consider the following multiple linear regression model: 

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 +⋯+ 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 

                                                   𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 + 𝜀𝑖                                                 

(2.7) 

 

where 𝑖 = 1,2,3, …… , 𝑛 , 𝑗 = 1,2, ……𝑝, 𝑦𝑖 is response variable, 𝑥𝑖𝑗 represents a set of 

predictor variables that could be associated with the response variable,  𝛽0 is the 

intercept, 𝛽𝑗 indicate the regression coefficient of the 𝑥𝑖𝑗 and 𝜀𝑖 are random errors 

where 𝐸(𝜀) = 0 , 𝑉𝑎𝑟(𝜀) = 𝜎2, and the errors are uncorrelated (Montgomery et al., 

2012). Equation (2.7) can be expressed in the matrix form as follows:  

                                                     𝐲 = 𝐗𝛃 + 𝜺                                                         (2.8) 

where 

𝐲 = [

y1
y2
⋮
yn

],  𝐗 = [

1 x11 … x1p
1
⋮

x21
⋮

…
⋮

x2p
⋮

1 xn1 … xnp

],  𝛃 = [

β0
β1
⋮
βp

], 𝜺 = [

ε1
ε2
⋮
εn

]. 

 

𝐲 is a (𝑛 × 1) vector of observations on the response variable, 𝐗 is a (𝑛 × 𝑝) 

matrix of observations on the predictor variables (a p-dimensional vector of predictor 

variables), 𝛃 is a (𝑝 × 1) vector of unknown regression coefficients, 𝜺 is a (𝑛 × 1) 
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vector of random errors, that supposed to be normally distributed with 𝐸(ε) = 0 and 

, 𝐸(𝛆𝛆𝑻) = 𝜎2𝚰𝒏. 

The Ordinary Least Squares (OLS) method is a widely employed technique for 

estimating regression coefficients. The OLS estimates the coefficients by minimizing 

the residual sum of squares (RSS). Consequently, the estimated model 𝐲̂ for the true 

model 𝐲 in Equation (2.8) is obtained as follows: (Melkumova & Shatskikh, 2017; 

Wetherill & Seber, 1977). 

                                                  𝐲̂ = 𝐗𝛃̂                                                                   (2.9) 

Thus, the sum of the squared (RSS) differences between the actual 𝐲 and 

estimated 𝐲̂  values in the matrix form given as follows: 

                                         𝐿 = ∑ 𝛆𝐢
𝟐𝑛

𝑖=1 = 𝛆𝑻𝛆 = (𝐲 − 𝐗𝛃̂)
𝑇
(𝐲 − 𝐗𝛃̂)                              

(2.10) 

 Differentiate 𝐿 Equation (2.10) in terms of the unknown parameters and equal 

the derivatives to zero, which is: 

𝜕𝐿

𝜕𝛃
|
𝛃̂

= 𝟐𝐗𝐓𝐗𝛃̂ − 𝟐𝐗𝐓𝐲 = 0 

                                                           𝐗𝐓𝐗𝛃̂ = 𝐗𝐓𝐲                                                            

(2.11) 

By using Equations (2.11), the least squares estimator of 𝛽 can be calculated using the 

following formula 

                                                         𝛃̂ = (𝐗𝐓𝐗)−𝟏𝐗𝐓𝐲                                                       

(2.12) 

Assuming that the inverse matrix (𝐗𝐓𝐗) is a full rank matrix. The (𝐗𝐓𝐗)−1 

matrix will always exist if the regressors are linearly independent, that is, if no column 

of the 𝑋 matrix is a linear combination of the other columns. A unique solution for the 

regression coefficients is obtained from equation (2.12) (Douglas et al., 2012). 




