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KAJIAN PENUKARAN KARAT BESI ARKEOLOGIKAL DARIPADA FORT 

CORNWALLIS MENGGUNAKAN LIGNIN PELEPAH KELAPA SAWIT 

TERMODIFIKASI 

ABSTRAK  

Penyelidikan ini mendedahkan struktur dan sifat antioksidan bagi sampel 

lignin organosolv yang telah diekstrak daripada pelepah kelapa sawit (OPF) dengan 

kaedah pra-rawatan autohidrolisis apabila digabungkan dengan 1,5-dihidroksi 

naffalena (AHD EOL) dan p-benzokuinon (AHPB EOL) dan pra-rawatan letupan wap 

yang diimpregnasikan dengan asid sulfurik cair (SEA EOL). Didapati bahawa AHPB 

EOL mempunyai hasil peratusan tertinggi berbanding lignin organosolv yang lain (% 

yield AHPB EOL: 13.79 ± 0.17% > % yield SEA EOL: 13.66 ± 0.35% > % yield AHD 

EOL: 13.09 ± 1.03% > % yield AH EOL: 12.40 ± 1.18%). Kemudian, pelbagai lignin 

organosolv telah dianalisa menggunakan analisis pelengkap seperti analisis unsur, 

Inframerah Transformasi Fourier (FTIR), spektroskopi resonans nuclear magnetik 

(NMR), kromatografi gel penyerapan (GPC), analisis termogravimetrik (TGA), 

kalorimetri pengimbas berbeza (DSC), ujian keterlarutan, dan aktiviti antioksidan. 

Sepanjang analisa dijalankan, lignin organosolv termodifikasi (AHD EOL dan AHPB 

EOL) dan lignin organosolv asid pra-rawatan letupan wap (SEA EOL) mempamerkan 

matriks lignin lebih kecil dengan kandungan fenolik yang lebih tinggi (fenolik-OH 

SEA EOL: 0.60/Ar > fenolik-OH AHPB EOL: 0.47/Ar > fenolik-OH AHD EOL: 

0.45/Ar > fenolik-OH AH EOL: 0.40/Ar), yang membawa kepada keterlarutan air 

(D% SEA EOL: 29.50 ± 0.11% > D% AHPB EOL: 24.25 ± 0.13% > D% AHD EOL: 

22.50 ± 0.16% > D% AH EOL: 20.50 ± 0.22%) dan aktiviti antioksidan lebih tinggi 

berbanding sampel lignin organosolv yang tidak termodifikasi (AH EOL). Sampel 

lignin organosolv yang diekstrak kemudiannya digunakan dalam kajian penukaran 
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karat besi arkeologikal (paku tempa tangan dan penyucuk rel kereta api) dan 

menunjukkan bahawa paku tempa tangan arkeologikal yang dirawat mempunyai RT% 

optimum pada 7 wt.% SEA EOL dengan 95.45 ± 0.13% manakala bagi sampel 

penyucuk rel kereta api arkeologikal yang dirawat menunjukkan bahawa AHPB EOL 

pada kepekatan 7 wt.% mempunyai RT% tertinggi dengan 88.81 ± 0.14%. Analisis 

XRD dan permukaan sampel karat arkeologikal yang dirawat juga menunjukkan 

bahawa ia telah berubah menjadi fasa amorfus.
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RUST CONVERSION STUDIES OF ARCHEOLOGICAL IRONS FROM 

FORT CORNWALLIS USING MODIFIED OIL PALM FRONDS LIGNIN 

ABSTRACT 

This research reveals the structural and antioxidant properties of extracted 

organosolv lignin samples derived from oil palm fronds (OPF) pretreated with 

autohydrolysis upon incorporation with 1,5-dihydroxy naphthalene (AHD EOL) and 

p-benzoquinone (AHPB EOL) and steam explosion pretreatment impregnated with 

diluted sulfuric acid (SEA EOL). It was revealed that AHPB EOL had the highest 

percentage of yield among other organosolv lignin samples (% yield AHPB EOL: 

13.79 ± 0.17% > % yield SEA EOL: 13.66 ± 0.35% > % yield AHD EOL: 13.09 ± 

1.03% > % yield AH EOL: 12.40 ± 1.18%). Various organosolv lignin samples were 

then evaluated with elemental analysis, Fourier transform infrared (FTIR), nuclear 

magnetic resonance (NMR), gel permeation chromatography (GPC), 

thermogravimetric (TGA), differential-scanning calorimeter (DSC), solubility test, 

and antioxidant activity. Throughout the analyses, modified organosolv lignin (AHD 

EOL and AHPB EOL) and steam explosion acid impregnation organosolv lignin (SEA 

EOL) exhibited smaller lignin matrix with higher phenolic content (phenolic-OH SEA 

EOL: 0.60/Ar > phenolic-OH AHPB EOL: 0.47/Ar > phenolic-OH AHD EOL: 

0.45/Ar > phenolic-OH AH EOL: 0.40/Ar), which leads to higher water solubility (D% 

SEA EOL: 29.50 ± 0.11% > D% AHPB EOL: 24.25 ± 0.13% > D% AHD EOL: 22.50 

± 0.16% > D% AH EOL: 20.50 ± 0.22%) and antioxidant activity compared to 

unmodified organosolv lignin (AH EOL). The extracted organosolv lignin samples 

were then utilized in rust conversion studies of archeological irons (hand-wrought nail 

and railroad spike) and indicated that the treated archeological hand-wrought nail 

possessed the optimum RT% at 7 wt.% SEA EOL with 95.45 ± 0.13% whereas for 
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treated archeological railroad spike indicated AHPB EOL at a concentration of 7 wt.% 

possessed the highest RT% with 88.81 ± 0.14%. The XRD and surface analysis of the 

treated archeological rust also showed that it had transformed into amorphous phases.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the study 

Metallic items can still corrode even after being relocated. This is due to the 

deteriorating process when exposed to a corrosive environment (Abdel-Karim & El-

Shamy, 2022). Chemical interactions between metals and their surrounding 

environment can lead to degradation (Abdrabo et al., 2020). Rust products are 

characterized as a complex process of continual transformation resulting from 

precipitation, evolution, and transformation of chemical species within the iron-

oxygen-water system (Dahon et al., 2018). Preserving archeological iron artifacts is a 

worthwhile investment because of their historical significance and importance to 

economic sectors, particularly in attracting tourists. Therefore, various treatments have 

been employed to inhibit further corrosion on the archeological irons (Salem et al., 

2019).  

One of the promising methods to inhibit further corrosion on the 

archeological irons is rust conversion study. The rust conversion study utilizes rust 

converter agents which are chemicals that can convert rust into a durable and attached 

black film of chemical compounds on corroded iron (Zhao et al., 2014). In this method, 

rust converter agents are applied to rusty surfaces to convert rust into a harmless 

protective layer that allows for overcoating (Saji, 2019). This barrier will slow down 

the metal’s redox reactions and decrease the breakdown of the defense system. The 

anticipated value of the worldwide anti-corrosion coatings market is expected to reach 

US$ 38.6 billion by 2027 (Grand View Research, 2020).  
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Over the past decades, the worldwide consumption of energy has expanded 

tremendously. According to recent studies by Trache et al. (2020) and Tsegaye et al. 

(2019), the significant increase in the scarcity of petroleum/fossil-based economy is 

accelerating the rate of climate change. Consequently, the research community has 

demonstrated substantial interest in exploiting biomass waste as an alternate strategy 

to transition from a petroleum/fossil-based economy to a bio-based economy. 

Lignocellulosic biomass, such as oil palm is widely planted in Malaysia for its 

substantial usage in their varied portions (Parveez et al., 2023). A significant amount 

of agro-industrial waste, such as oil palm fronds (OPF), is generated roughly 70% 

during replanting activities per year (Lee et al., 2021). Studies claimed that OPF is 

usually used to develop bio-based economic items due to its diverse usefulness and 

advantageous utilization in power generation, electricity production, biodiesel 

production, and value-added chemicals production (Junior et al., 2016; Sa’don et al., 

2017a).  

Nowadays, the isolation of three primary components of lignocellulosic 

structures such as lignin, cellulose, and hemicellulose are extensively researched 

(Leng et al., 2022; Margellou et al., 2021). Among these significant components, 

lignin has garnered significant interest owing to its unique attributes and advantageous 

applications. Lignin is a complex and non-toxic natural resource with a varied range 

of functional groups in its structure, making it very promising for many industrial uses 

(Kane et al., 2021; Leng et al., 2022). Other than that, lignin is a valuable source of 

antioxidants due to its phenolic components and potent free radical scavenging 

properties (Barapatre et al., 2016; de Melo et al., 2020).  
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1.2 Problem statement 

The National Association of Corrosion Engineers estimates that the 

worldwide cost of corrosion is US$ 2.5 trillion/year, corresponding to 3.4% of global 

GDP (Koch et al., 2016). Archeological iron artifacts are often discovered to be more 

corroded and deteriorated compared to other artifacts due to their exposure to metal 

activities. Archeological irons retrieved from underground, or water are prone to 

experiencing physical, chemical, or biological transformations due to interactions with 

their burial environment. Previous studies have shown that preserving archeological 

irons can be challenging, particularly in a high-humidity environment. The 

archeological irons exhibit increased brittleness and are prone to rapid rusting 

(Armetta et al., 2021; Bernabale et al., 2022; Jia et al., 2022).  

Recently, various treatments were used to inhibit further corrosion from 

occurring on the metal artifacts. One of the rapid methods for treating archeological 

irons is rust conversion study. However, the currently accessible rust converter agents 

utilized in rust conversion studies are primarily based on tannic acid and phosphoric 

acid, which exhibit significant toxicity, prompting researchers to explore alternatives 

that are safer and more environmentally sustainable (Merino et al., 2017). Prior studies 

mentioned that the metal surface will be further corroded if there is excessive acid 

presence post-treatment (Wei et al., 2020; P. Yu et al., 2022). Therefore, rust converter 

agents derived from natural plant-based products are being considered as they contain 

active substances to halt additional corrosion on the archeological irons (Jia et al., 

2022; Rozuli et al., 2019; Zouarhi, 2023).  

In 2023, oil palm plantations in Malaysia reached 5.6 million hectares and 

will increase throughout the years (MPOB, 2023a). Thus, expanding oil palm 

plantations will lead to a rise in oil palm waste production. Inexplicably, these oil palm 



4 
 

wastes, particularly OPF, were intentionally left to decompose for mulching and 

recycling. Even so, this process is time-consuming and could lead to a massive 

environmental catastrophe (Latif et al., 2019; Sa’don et al., 2017b). Lignin derived 

from OPF has been utilized as anti-corrosion coatings by multiple researchers 

(Dastpak et al., 2018; Shah et al., 2017). However, the intricate lignin structure’s 

resistance to water and low solubility have limited its promise for various industrial 

applications. Hence, it is essential to modify the lignin structure to achieve desired 

properties and overcome these constraints. Prior research showed that modified lignin 

structure resulted in smaller fragments with increased phenolic content, leading to 

improved solubility and enhanced antioxidant capabilities (Hussin et al., 2016; Latif 

et al., 2019). Improving the quality of the lignin structure will enhance its usefulness 

in various industrial applications, such as in rust conversion studies.  

 

1.3 Research objectives 

In this research study, the OPF biomass underwent different pretreatment 

processes which were autohydrolysis and steam explosion pretreatment. Organic 

scavengers such as 1,5-dihydroxy naphthalene and p-benzoquinone were utilized 

during autohydrolysis pretreatment, while diluted sulfuric acid was utilized for 

impregnation in the steam explosion pretreatment. This was followed by organosolv 

pulping to extract various organosolv lignin samples with smaller fragments and low 

molecular weight. The objectives of this research were as follows: 

1) To modify the lignin structure extracted from OPF biomass with the 

addition of organic scavengers (1,5-dihydroxy naphthalene and p-

benzoquinone) during autohydrolysis pretreatment and with the 

impregnation of diluted sulfuric acid during steam explosion pretreatment.  
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2) To characterize various extracted organosolv lignin samples using 

complementary analyses such as FTIR, NMR, GPC, TGA, DSC, solubility 

test, and antioxidant activity and archeological irons’ rust powder (hand-

wrought nail, H.W.N, and railroad spike, R.S) via FTIR, IC, XRD, XRF, 

and SEM-EDX.  

3) To study the rate of transformation of archeological irons’ rust with 

additional extracted organosolv lignin samples from OPF via varying 

concentrations, varying pH of the mixture, and varying reaction time.  

 

1.4 Scope of the study 

This research study involves employing lignin derived from OPF for rust 

conversion studies on archeological irons. The OPF biomass underwent pretreatment 

utilizing autohydrolysis with several organic scavengers such as 1,5-dihydroxy 

naphthalene and p-benzoquinone and steam explosion pretreatment impregnated with 

diluted sulfuric acid. Then, the pretreated OPF biomass was subjected to organosolv 

pulping. This study involves analyzing unmodified and modified organosolv lignin 

samples prior to their use in rust conversion studies on archeological irons. Other than 

that, this research also examines the effectiveness of unmodified and modified 

organosolv lignin samples on rust conversion studies of archeological irons at varying 

concentrations. Additionally, this research also aims to optimize rust conversion 

studies by altering the pH of the mixture and reaction times of the archeological irons 

treated with the most optimum concentrations of the rate of transformation (RT%) of 

different organosolv lignin samples. Subsequently, the surface properties of the treated 

rust were examined using a variety of complementary analyses.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Archeological irons rust   

Corrosion is the process of metals and alloys deterioration due to 

environmental oxidation. Zouarhi (2023) identified corrosion as a significant problem 

in the industrial sector resulting in the annual loss of 100 million tons of metals, 

equivalent to 15% of the world's production. It is crucial to address this issue as it may 

end up in severe destruction of archeological irons, leading to the loss of valuable 

information and details about the artifacts (Dwivedi & Mata, 2019). Archeological 

irons are susceptible to soil corrosion in different environments, which can lead to the 

deterioration of metal artifacts. Soil corrosion is an electrochemical process caused by 

dissolved salts in groundwater, which turn the soil into an electrolyte solution. The 

salinity levels can range from freshwater (> 0.1%) to brine solutions (5 – 40%). Soil 

pH levels fluctuate based on the overall mineral content of groundwater and the 

existence of acids, acidic compounds, and basic salts (Ribun et al., 2022).  

During the burial of the archeological irons, the dissolution of iron takes place on the 

anodic site of the electrochemical process on the artifacts surfaces (Zouarhi, 2023):  

Fe (s) → Fe2+ (aq) + 2e-               (2.1) 

At the cathodic site of the electrochemical process with a pH of more than 4, the 

oxygen gas reactions take place, following scheme 2.2 (Ribun et al., 2022): 

O2 (g) + 2H2O + 4e- → 4OH- (aq)                          (2.2) 



7 
 

whereas at a lower pH than 4, hydrogen gas is produced at the cathodic site of the 

electrochemical process (Buravlev & Balagurova, 2021): 

2H+ (aq) + 2e- → H2 (g)                (2.3) 

As the archeological irons corroded, the anodic and cathodic reactions become 

localized causing a decrease of potential differences in the anodic and cathodic 

polarization. Therefore, this will then reduce the corrosion current and its corrosion 

rate. The acidity in the anodic site increases due to the iron hydrolysis, impacting the 

formation of Fe(OH)+ and H+ ions in the solution (Buravlev & Balagurova, 2021):  

Fe2+ (aq) + H2O ↔ Fe(OH)+ (aq) + H+ (aq)              (2.4) 

According to a prior study by Ribun et al. (2022), a small amount of oxygen 

oxidized Fe2+ to Fe3+. Fe3+ ions are then hydrated forming aqua complex (Fe(H2O)6)
3+ 

which can also be hydrolyzed. The pH influenced the formation of different iron (II) 

and iron (III) species as shown in Table 2.1. 

Table 2.1: Hydrolysis products of iron cations at various pH values (Ribun et al., 

2022). 

(Fe(H2O)6)2+ hydrolysis products (Fe(H2O)6)3+ hydrolysis products 

Fe2+ pH values Fe3+ pH values 

(Fe(H2O)6)
2+ < 9 (Fe(H2O)6)

3+ < 2 

Fe(OH)+ 9 – 10  Fe(OH)2+ 2 – 3.5  

Fe(OH)3
- > 10 Fe(OH)2

+ 3.5 – 8.5  

Fe(OH)4
2- > 10 Fe(OH)4

- > 8.5 

  

Iron (III) hydroxide becomes insoluble when the pH is more than 6. Once 

emerged, it is oxidized to produce compounds such as magnetite (Fe3O4) and iron (III) 

compounds such as hydroxide and oxyhydroxide. Initially, Fe(OH)3 has an amorphous 

structure which gradually changes into crystalline oxyhydroxides like lepidocrocite 
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(γ-FeOOH), and eventually into a more stable compound such as goethite (α-FeOOH). 

Akaganéite (β-FeOOH) and chlorine derivatives like Fe2(OH)3Cl are formed due to 

the existence of Cl- ions.  

During the burial of the archeological irons, oxygen access is restricted, the 

temperature remains stable, the humidity is consistent, and there is no exposure to 

light. However, the excavation of the archeological irons speeds up their deterioration. 

The excavated metal artifacts are influenced by factors such as increased oxygen 

levels, excessive humidity, and fluctuating temperatures, which directly affect the 

quality of moisture films that develop on the metal artifact’s surfaces (Buravlev & 

Balagurova, 2021). The newly wet excavated metal artifacts are filled with soil 

solution that contains Fe2+, Fe(OH)+, H+, and Cl-. As the metal artifacts dried, the 

chlorides contained in the pores of the metal artifacts put pressure on the pore walls of 

the metal artifacts, which led to cracking and destruction. The excess amount of 

oxygen oxidizes Fe2+ ions and forms an iron oxyhydroxide (Ribun et al., 2022):  

4Fe2+ (aq) + O2 (g) + 6H2O → 4FeO(OH) (s) + 8H+ (aq)            (2.5) 

Corrosion damages the physical shape of metal artifacts and chemically 

affects any remaining iron. The formation of new solids inside surface layers leads to 

physical damage by inducing stress and cracks, illustrated in Figure 2.1 (Degrigny et 

al., 2007). Iron oxyhydroxides forming on the archeological irons exert stress, 

resulting in cracking and destruction. This enhances oxygen availability and 

accelerates the corrosion process.     
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Figure 2.1: Corrosion layer on archeological irons corroded in the atmosphere 

(Degrigny et al., 2007). 

 

Previous research indicated that iron (II) chloride exists as a yellow crystal 

(FeCl2.2H2O) at a relative humidity below 20% and a green crystal (FeCl2.4H2O) 

between 20 – 55% humidity. Under high humidity conditions, these salts absorb water, 

dissolve, and create orange liquid droplets where iron oxyhydroxides are formed, 

resulting in spherical shapes (Buravlev & Balagurova, 2021; Ribun et al., 2022). To 

summarize, the burial of the archeological irons involves corrosion such as Fe3O4 and 

FeOOH, which subsequently oxidize to α-FeOOH and γ-FeOOH. Following the 

excavation of the archeological irons, FeOOH, α-FeOOH, γ-FeOOH, β-FeOOH, and 

Fe3O4 are present on the surfaces of the artifacts. A realistic method is required to 

regulate iron corrosion by either decreasing the corrosion rate or enhancing corrosion 

resistance.    
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2.1.1 Fort Cornwallis  

Fort Cornwallis was established on Penang Island in 1786 by Captain Sir 

Francis Light. Their region, originally devoid of permanent structures, spanned 417.6 

ft2 and served as the first military and administrative outpost of the East India 

Company (EIC) in Southeast Asia. Fort Cornwallis was reconstructed in 1804 and 

filled with various buildings and features like military barracks and offices as well as 

a gunpowder magazine, a church, a harbor light, flagstaff, cannons, cell rooms, a store, 

and guard houses. Despite being constructed for military purposes, the fort’s historical 

role was mostly administrative rather than defensive. The fort has never engaged in 

any battles during its history (Ju, 2023). Fort Cornwallis now spans 332859 ft2, 

showcasing its ancient and rugged features. The fort has experienced structural 

deterioration, with just the gunpowder magazine, a church, cell rooms, flagstaff, 

harbor light, and several cannons still intact (Harun et al., 2002).  

In 2018, Fort Cornwallis was allocated RM 5.8 million for the first phase of 

restoring the fort’s storerooms from the state government and Think City Sdn Bhd (Lo, 

2022). The budgets allotted approximately RM 7.2 million for the excavation and 

restoration of the moat in the south and west parts of the fort during phases two and 

phase three. The task was anticipated to be completed by late 2024 or early 2025 (Ong, 

2022). During the excavations in 2018 and 2019, an estimated 30000 artifacts dating 

back to British rule and Japanese occupation were discovered. These relics included 

cannons, mortars, bottles, broken pieces of ceramics, and oil coins. Figure 2.2 depicted 

one of the cannons and mortars excavated from Fort Cornwallis in 2019. 



11 
 

 

Figure 2.2: Excavation of cannons and mortars at Fort Cornwallis in 2019 (Ali, 2020).   

 

2.2 Corrosion-controlling techniques  

Corrosion is a complex process that involves at least two phases, such as solid 

and liquid, solid and gas, or liquid and gas, and naturally happens in the aqueous phase 

(Komary et al., 2023). However, metal corrosion cannot be prevented but can be 

slowed down through monitoring or regulating the mechanism. Studies showed that 

corrosion on metal surfaces is more likely to happen in acidic solutions commonly 

utilized in industrial sectors involving acid cleaning, acid descaling, acid pickling, and 

oil well acidizing (Abdel-Karim & El-Shamy, 2022). Therefore, scientists are eager to 

create novel compounds that are non-toxic and more efficient to reduce corrosion. 

Several methods for controlling the rate of corrosion on metal surfaces include (i) 

material selection, (ii) material design, (iii) cathodic protection, (iv) coatings, (v) 

corrosion inhibitor, and (vi) rust conversion studies.  
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Corrosion on metal surfaces can manifest in several patterns and shapes, 

impacting the entire surface or specific sections. Thus, corrosion-resistant materials 

such as stainless steel and nickel alloy are frequently utilized in the oil and gas industry 

to inhibit further corrosion. Also, a well-designed tool can help prevent corrosion by 

eliminating heterogeneity. Varying metals, uneven tension, and temperature 

distribution are factors that can accelerate corrosion due to heterogeneity (Xie et al., 

2023).  

Other than that, corrosion can be prevented, controlled, or minimized using 

cathodic protection (Angst, 2019; Krishnan et al., 2021). This method pertains to metal 

submerged in an electrolytic solution, like seawater. Two primary strategies for 

cathodic protection systems commonly utilized in corrosion control are impressed 

current and sacrificial anode. Impressed current protection relies on an external 

electrical source to provide the protection current, while sacrificial anode utilizes 

active metal corrosion to supply the protection current owing to its higher negative 

potential (Cheng et al., 2022). Coatings, such as active metals, paints, oils, waxes, or 

powders applied to the metal surfaces and heated to create a thin protective layer that 

shields the metal from the atmosphere. A coated metal surface eliminates direct contact 

with a corrosive environment, therefore reducing the risk of corrosion (Ameh et al., 

2017).  

Corrosion inhibitors and rust conversion studies are acknowledged as cost-

effective and dependable methods for managing corrosion on metal surfaces (Obot et 

al., 2019). These controlling techniques require only a minimal amount to be applied 

on the metal surfaces (Zakeri et al., 2022). These benefits have scientists keen to 

choose corrosion inhibitor and rust conversion studies from other corrosion-

controlling techniques.   



13 
 

2.3 Overview of rust conversion studies 

Rust conversion studies involve the use of rust converter agents to minimize 

and inhibit further corrosion (Dahon et al., 2018). The rust converter agents may 

convert rust on iron surfaces into a protective transformation film. This film acts as a 

barrier to prevent corrosive substances from reaching the metal surfaces (Abdulmajid 

et al., 2019). These rust converter agents work by reacting with iron oxides on the 

metal surfaces via redox reactions to prevent the breakdown of the protective system 

(Pereyra et al., 2006). Factors influencing the rust conversion on metal surfaces are 

the concentrations of rust converters, their pH levels, the reaction time between the 

rust converters and the rust on the metal surfaces, the presence of other materials, and 

the contamination levels of the rusted metals (Ocampo et al., 2004). Other than that, 

Rahim et al. (2011) indicated the rust transformation was also influenced by the 

temperature and the presence of air pollutants.  

Formerly, rust converters composed of phosphoric acid and tannic acid were 

employed, however, their toxicity and lack of environmental friendliness caused harm 

to iron metal structures. This pertains to studies conducted by Collazo et al. (2008) and 

P. Yu et al. (2022), which found that if acid remains after treatment can infiltrate the 

inner substrate, leading to further corrosion on the internal metal surfaces. Therefore, 

naturally occurring polyphenols found in plants were selected as new green rust 

conversion agents. Plant-based rust converters are eco-friendly goods that contain 

multiple functional groups such as hydroxyl, carboxyl, amino groups, alkenes, and π-

electrons centers, which provide a protective layer from inhibiting further corrosion 

(Ghuzali et al., 2021; Zakaria et al., 2022).  
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Various plant-based natural products utilized such as mangrove tannins 

(Rahim et al., 2011), tara tannins (Merino et al., 2017), gambir (Dahon et al., 2018), 

tamarind shell (Abdulmajid et al., 2019), Camphor tree (Yakubu et al., 2019), catechin 

(Jia et al., 2022), and coconut husk (Nasrun et al., 2023) have shown positive effects 

on rust conversion studies conducted by different researchers. Recent studies 

regarding the conversion of archeological rust showed that the archeological rust 

reacted positively with plant-based natural products such as catechin and lignin 

isolated from coconut husk (Jia et al., 2022; Nasrun et al., 2023). Nasrun et al. (2023) 

utilized soda and organosolv lignin extracted from coconut husk to treat archeological 

irons and obtained more than 80% of its rate of transformation at 5 wt.% of soda lignin. 

According to Jia et al. (2022) and Nasrun et al. (2023), the treated archeological rust 

changed to amorphous forms after it was treated with catechin and lignin, respectively. 

Other than that, conversion studies tested on mild steel indicated that 

lepidocrocite occurred the fastest conversion compared to goethite and magnetite 

(Dahon et al., 2018; Rahim et al., 2011; Yakubu et al., 2019). Abdulmajid et al. (2019) 

extracted two distinct tamarind shell extracts and discovered that methanol extract 

(TME) yielded superior rust transformation outcomes compared to acetone extract 

(TAE). Table 2.2 indicates the list of previous rust conversion studies.  
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Table 2.2: List of previous studies on rust conversion studies and their rate of 

transformation. 

References Rust conversion 

ingredients 

Remarks 

Ocampo et al. 

(2004) 

Phosphoric and tannic 

acid 

No significant difference between 

treated and untreated rust 

Rahim et al. 

(2011) 

Mangrove tannins Lepidocrocite converted into ferric 

tannins 

Rate of transformation : 

Lepidocrocite > Magnetite > 

Maghemite > Goethite 

Merino et al. 

(2017) 

Tara tannins  Lepidocrocite converted into ferric 

tannins 

Dahon et al. 

(2018) 

Gambir  10 wt.% of gambir concentration 

provided the optimum rate of 

transformation, 80% 

Rate of transformation: 

Lepidocrocite > Magnetite > Goethite 

Abdulmajid et 

al. (2019) 

Tamarind shell tannins  7 wt.% of TME possessed the best rate 

of transformation, 95.8% 

Rate of transformation: 

Lepidocrocite > Magnetite > Goethite 

Yakubu et al. 

(2019) 

Camphor tree 6 wt.% of methanol extract with a pH 

4 solution had the most optimum rate 

of transformation, 96% 

Jia et al. (2022) Catechin  3.0 g/L catechin achieved a rust 

conversion efficiency of 73.26% 

Nasrun et al. 

(2023) 

Coconut husk 5 wt.% of soda lignin possessed the 

highest rate of transformation, 84.21% 
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2.4 Lignocellulosic biomass 

Global energy demand has experienced substantial growth and is projected to 

rise by 28% by 2040 (Kumar et al., 2020). This will cause a major deterioration of the 

scarcity of petroleum/fossil-based economy, accelerating the rate of climate change 

such as global warming, acid rains, and glacial melting (Mankar et al., 2021). 

Therefore, the scientific community has displayed much enthusiasm for employing 

biomass waste as an alternative approach to transition from a petroleum/fossil-based 

economy to a bio-based economy. The objective is to attain the long-term goals of a 

sustainable circular economy that prominently focuses on using bio-based raw 

materials instead of the conventional industrial approach (Hassan et al., 2018).   

Lignocellulosic biomass is recognized as a potential and promising resource 

of renewable energy due to its abundant raw material that reaches 200 billion tons/year 

(Ahmad et al., 2020). A study by Dahmen et al. (2019) stated that only 8.2 billion tons 

of lignocellulosic biomass were utilized. Approximately 7 billion tons were obtained 

from agricultural, grass, and forest land while the remaining 1.2 billion tons came from 

agricultural residues. However, only 3% of these biomass sources were utilized and 

integrated into the circular economy. Lignocellulosic biomass such as rice straw (Guan 

et al., 2018; Gundupalli et al., 2021), sugarcane (Bilatto et al., 2020; Gundupalli et al., 

2021), corn stover (Khan et al., 2021; Wang et al., 2022), banana leaves (Shankar et 

al., 2020; Singh et al., 2020), wheat straw (Jin et al., 2022), oil palm (Latif et al., 2019; 

Sa’don et al., 2017a), coconut palm (Aziz et al., 2019; Nasrun et al., 2023), kenaf core 

(Hussin et al., 2019; Saratale et al., 2019), Miscanthus Eucalyptus (Babicka et al., 

2022; Jung et al., 2015), bamboo (Chen et al., 2017; Ma et al., 2020), and pine wood 

(Darmawan et al., 2016; Magalhães et al., 2021) has been utilized for various future 

applications used such as biofuels, chemical, energy, and value-added products. This 
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is due to its abundant availability, cost-effectiveness, and environmentally sustainable 

nature (Kassaye et al., 2017).  

Lignocellulosic biomasses are composed of three primary constituents such 

as cellulose (35 – 55%), hemicellulose (20 – 40%), and lignin (10 – 25%) with small 

amounts of extractives, protein, lipids, and ash as shown in Figure 2.3 (Banu et al., 

2021). It can be found in hardwood, softwood, agricultural wastes, and grasses 

(Hassan et al., 2018). Different biomasses show different compositions of these major 

compounds as shown in Table 2.3. Nevertheless, the proportions of cellulose, 

hemicellulose, and lignin within a single plant are subject to variation due to factors 

such as age, harvesting season, and culture conditions (Hassan et al., 2018).  

 

Figure 2.3: Major components of lignocellulosic biomass (Banu et al., 2021). 
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Table 2.3: Different lignocellulosic biomass with its compositions.  

Lignocellulosic 

biomass 

Cellulose 

(%) 

Hemicellulose 

(%) 

Lignin 

(%) 

References 

Rice straw 47.06 ± 1.68 25.35 ± 1.91 6.00 ± 1.10 (Gundupalli et 

al., 2021) 

Sugarcane 29.70 35.60 28.40 (Bilatto et al., 

2020) 

Corn stover 35.16 ± 0.10 19.01 ± 0.05 18.82 ± 0.58 (Li et al., 

2019) 

Banana leaves 43.34 34.34 15.00 (Singh et al., 

2020) 

Wheat straw 34.72 ± 1.30 30.60 ± 2.27 10.39 ± 1.00 (Jin et al., 

2022) 

Oil palm fronds 21.83 ± 2.93 39.56 ± 2.77 20.08 ± 2.59 (Latif et al., 

2019) 

Oil palm 

mesocarp fiber 

23.50 20.80 35.90 (Marques et 

al., 2020) 

Coconut husks 27.19 ± 0.10 14.64 ± 0.70 37.93 ± 0.91 (Latif et al., 

2022) 

Kenaf core 28.85 ± 6.08 22.70 ± 3.37 22.22 ± 3.85 (Hussin et al., 

2019) 

Miscanthus 

Eucalyptus 

44.80 ± 0.20 25.20 20.00 ± 0.20 (Babicka et 

al., 2022) 

Bamboo 41.80 18.00 29.30 (Ma et al., 

2020) 

Pine wood 43.74 16.20 29.14 (Darmawan et 

al., 2016) 
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Cellulose is a polysaccharide composed of long chains of β-(1 – 4)-linked D-

anhydroglucopyranose repeating units and is the largest component of lignocellulosic 

biomass (Yu et al., 2017). Cellulose fibrils are aggregated while reinforcing the 

crystalline matrix structure through the existence of numerous intramolecular or 

intermolecular hydrogen bonds (Haldar & Purkait, 2020). The robust and intricate 

network of hydrogen bonds between hydroxyl groups of cellulose chains serves to 

stabilize and organize the cellulose molecules into a well-structured arrangement 

through crystalline packing, resulting in the formation of elongated and infinite 

crystalline rods along the microfibrils axis (Rajinipriya et al., 2018). Consequently, 

cellulose necessitates elevated pressure and temperature to dismantle its large 

crystalline structure for potential utilization (Haldar et al., 2018). Cellulose has been 

utilized in various applications over the past few decades and remains highly 

promising when appropriately treated or modified, owing to its physicochemical 

characteristics, biodegradability, biocompatibility, and renewability (Liao et al., 2020).  

Hemicellulose is another form of polysaccharide composed of multiple 

carbohydrate monomers, mainly xylose, arabinose, mannose, and glucose in varying 

ratios in different biomass samples (Negahdar et al., 2016; Yu et al., 2017). The 

hemicellulose structure may contain sugar acids such as methylgalacturonic, 

galacturonic, and glucuronic acids, and acetyl groups (Liao et al., 2020; Zheng et al., 

2014). Hemicellulose can be easily transformed due to its highly branched and 

amorphous structure (Luo et al., 2019). It also exhibits a significantly reduced degree 

of polymerization, ranging from 50 – 200 U, which is notably lower compared to 

cellulose (Luo et al., 2019; Yu et al., 2017). Other than that, hemicellulose has more 

instability compared to cellulose, thereby making it susceptible to degradation under 

heat treatment conditions. Hemicellulose possesses exceptional characteristics, 
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including biodegradability, biocompatibility, and bioactivity, making it suitable for a 

wide range of applications such as food, medicine, energy, chemical industry, and 

polymeric materials (Bian et al., 2013; Kapu & Trajano, 2014; Otieno & Ahring, 

2012).  

 

2.5 Oil palm (Elaeis guineensis) 

Malaysia is globally acknowledged as the second largest producer of oil palm 

after Indonesia (Goggin & Murphy, 2018). The production of crude palm oil in 

Malaysia reached 14.5 million tons in 2023 (MPOB, 2023b). Therefore, the increasing 

of crude oil production will consequently increase the amount of oil palm waste as 

time goes on. The yearly output of solid biomass wastes, including oil palm trunks 

(OPT), palm kernel shells (PKS), mesocarp fiber (MF), empty fruit bunches (EFB), 

and oil palm fronds (OPF), exceeds 80 million tons/year (dry weight basis) (Megashah 

et al., 2018; Yiin et al., 2018). It is projected that these figures would rise by 40% by 

the year 2030 (Rupani et al., 2019). These wastes were intentionally left to decompose 

for mulching and recycling. Nevertheless, this process takes a significant amount of 

time, which could potentially lead to a severe ecological catastrophe (Awalludin et al., 

2015).  

OPF is one of the most abundant lignocellulosic biomass wastes which 

reached 47% out of the total oil palm industry (Nordin et al., 2017; Ong et al., 2021). 

According to previous research, OPF has the largest amount of lignin, nearly 31% 

followed by cellulose content ranging from 31 – 45.20% and hemicellulose content 

ranging from 17.10 – 19.20% (Kabir et al., 2017; Shah et al., 2017; Solikhah et al., 

2018). Researchers are interested in using OPF to extract the main components of 
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lignocellulosic biomass for potential applications in producing activated carbon, 

corrosion inhibitors, biofuel production, and bioethanol production (Derman et al., 

2018; Rashidi & Yusup, 2017; Shah et al., 2017; Sukiran et al., 2017). These 

applications aim to mitigate the negative environmental effects of global warming by 

utilizing natural waste products (Mahlia et al., 2019).  

 

2.6 Lignin 

Lignin is a complex, amorphous aromatic polymer that comprises a 

significant proportion of the cellular walls of vascular plants. It is the second most 

prevalent biopolymer, surpassed only by cellulose (Kai et al., 2016). Lignin, a 

prominent constituent of lignocellulosic biomass, comprises three elemental 

components, carbon, hydrogen, and oxygen (Fodil Cherif et al., 2020; Liao et al., 

2020). The phenylpropanoid units of three aromatic alcohols, which are p-

hydroxyphenyl (H) units, syringyl (S) units, and guaicyl (G) units are connected by a 

variety of ether and carbon-carbon linkages as illustrated in Figure 2.4 (Katahira et al., 

2018; Mei et al., 2019; Nasrun et al., 2023). The composition and amount of lignin 

vary depending on the source of biomass. Softwood plants consist mainly of G units 

and typically contain a high amount of lignin, reaching up to 30%. In contrast, 

hardwood plants contain lignin from both G and S units and often have a moderate 

lignin content, of up to 25% (Suota et al., 2021; Takada et al., 2020; Vaidya et al., 

2022).  
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Figure 2.4: Main phenylpropanoid units of lignin (Katahira et al., 2018; Mei et al., 

2019; Nasrun et al., 2023). 

 

Each of these hydroxycinnamic alcohols is made up of an aromatic moiety 

and a side chain consisting of three carbons, which are identified as α, β, and γ 

(Laurichesse & Avérous, 2014; Liao et al., 2020; Tribot et al., 2019). Several linkages 

such as alkyl-aryl ether (β-O-4), phenylcoumaran (β-5), 1,2-diaryl-propane (β-1), 

diaryl (5-5), diaryl ether (4-O-5), and resinol (β-β) as represented in Figure 2.5, has 

been discovered in lignin units in varying quantities (Katahira et al., 2018; Mei et al., 

2019; Schutyser et al., 2018). The cleavable linkages, particularly α-O-4 and β-O-4 

are the primary bonds in lignin structures (Evstigneyev & Shevchenko, 2019). It is 

commonly recognized that when C-β is in its most reactive state, β-O-4, β-5, and β-β 

are produced in large quantities. Approximately 50% of lignin connections consist of 

the major inter-lignin bonds, β-O-4. In conjunction with the α-O-4 linkages, the ether 

bonds have been identified as the least resistant and most susceptible to cleavage in 

comparison to other bonds (Tribot et al., 2019). Previous research indicated that 

hardwood plants predominantly have β-O-4 lignin linkages, meanwhile, softwood 

plants had a higher proportion of β-5 and 5-5 lignin linkages (Mei et al., 2019). 
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Figure 2.5: Several linkages in the lignin structures (Katahira et al., 2018; Mei et al., 

2019; Schutyser et al., 2018). 

 

The several advantageous properties of lignin, including its high carbon 

content, thermal stability, biodegradability, antioxidant activity, and good stiffness, 

have generated significant interest in the development of value-added products for 

diverse applications utilizing this natural polyphenol (Hu et al., 2018; Kai et al., 2016). 

Previous studies have demonstrated the diverse applications of lignin, including its 

utilization as bioplastics (Brodin et al., 2017; Nair et al., 2018), dispersants (Huang et 

al., 2018; Qin et al., 2016), polyurethane foam (Luo et al., 2018), nanocomposites 

(Jiang et al., 2020; Zhang et al., 2020), biosurfactants (Fatriasari et al., 2020; Karimah 

et al., 2023), adsorbents (Alassod et al., 2020; Chen et al., 2020), fire-retardants (Liang 

et al., 2021), phenolic resins (Yang et al., 2021), wood adhesives (Gan et al., 2019), 

corrosion inhibitors (El-Deeb et al., 2018; Gao et al., 2021), and rust conversion 

studies (Nasrun et al., 2023).  
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2.7 Delignification process 

Delignification is a procedure that aims to separate the primary constituents, 

namely lignin, cellulose, and hemicelluloses, from the lignocellulosic biomass. Lignin 

can be derived from various delignification processes, including Kraft pulping, soda 

pulping, and organosolv pulping (Ekielski & Mishra, 2020; Latif et al., 2022; Tribot 

et al., 2019). Prior research has indicated that various delignification methods have a 

significant impact on the extraction yields, lignin functionality, molar mass, and 

physicochemical properties. This is because several important factors, such as pH, 

temperature, pressure, and chemical load, can influence the extraction process (Liao 

et al., 2020; Schieppati et al., 2023). During the delignification process, the breaking 

of the ether and ester bonds in the larger lignin structure will be interrupted, causing 

the resultant fragments to dissolve and generate black liquor. Following the pulping 

procedure, the lignin can be extracted by precipitating the black liquor (Alves-Ferreira 

et al., 2021; Schieppati et al., 2023).  

 

2.7.1 Organosolv pulping 

Organosolv pulping which is also known as organic solvent-based pulping 

involves the use of organic solvents, such as organic acids and alcohols, to dissolve a 

significant portion of the lignin and extract fibers from the composite material, 

resulting in the production of pulp. The most common organic solvents used to extract 

lignin and hemicellulose from wood materials are ethanol, methanol, formic acid, 

acetic acid, or a mixture of water/organic solvents usually applied at high temperatures 

ranging from 100 – 250 ℃ (Alves-Ferreira et al., 2021; Figueiredo et al., 2018; Takada 

et al., 2020; Vaidya et al., 2022). It is possible to carry out the pulping process with or 

without the use of catalysts such as H2SO4, HCl, H3PO4, acetic acid, formic acid, or 




