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MODEL DIALOG BERASASKAN PERHATIAN KONTEKS SEMANTIK

VISUAL

ABSTRAK

Dialog visual merangkumi konteks imej MSCOCO yang luas dan mengumpul so-

alan melalui platform AMT. Penggunaan sejarah soalan dan imej yang sedia ada tidak

lagi memberi sumbangan kepada pemahaman konteks imej secara keseluruhan. Oleh

itu, penyelidikan ini mencadangkan DsDial set data, satu konteks-sedar dialog visual

yang menggabungkan semua sejarah dialog yang relevan berdasarkan kategori imej

MSCOCO masing-masing. Penyelidikan ini juga mengeksploitasikan semantik visu-

al yang bertindih antara imej-imej melalui penyesuaian pilihan sejarah dialog relevan

berdasarkan semua sejarah dialog relevan. Ini adalah separuh daripada 2.6 juta pa-

sangan soalan-jawapan. Pada masa yang sama, penyelidikan ini juga mencadangkan

DS-Dialog menyelesaikan isu semantik visual yang hilang bagi setiap imej melalui

perhatian visual konteks-sedar. Perhatian visual konteks sedar ini merangkumi perha-

tian visual soalan terbimbing dan sejarah dialog relevan terbimbing yang membolehk-

an model untuk mendapatkan konteks visual yang relevan selepas mencapai konfiden

yang tinggi. Keputusan kualitatif dan kuantitatif terhadap set data VisDial v1.0 dan

DsDial menunjukkan bahawa DS-Dialog bukan sahaja dapat mengatasi prestasi bagi

kaedah yang sedia-ada, DS-Dialog juga dapat mencapai keputusan yang kompetitif de-

ngan menyumbangkan pengekstrakan semantik visual yang lebih baik. Set data DsDial

telah membuktikan kepentingan konteks relevan apabila dibandingkan dengan dataset

VisDial v1.0. Set data DsDial dapat menunjukkan signifikasi terhadap model LF ber-

banding dengan VisDial v1.0. Keputusan kuantitatif secara keseluruhan menunjukkan

bahawa DS-Dialog dengan set data DsDial dapat mencapai skor uji yang terbaik bagi
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recall@1, recall@5, recall@10, pangkat purata, MRR, dan NDCG.”
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VISUAL SEMANTIC CONTEXT-AWARE ATTENTION-BASED DIALOG

MODEL

ABSTRACT

Visual dialogue dataset, i.e. VisDial v1.0 includes a wide range of Microsoft Com-

mon Objects in Context (MSCOCO) image contents and collected questions via a

crowdsourcing marketplace platform (i.e. Amazon Mechanical Turk). The use of ex-

isting question history and images no longer contributes to a better understanding of

the image context as they do not cover the entire image semantic context. This research

proposes the DsDial dataset, which is a context-aware visual dialogue that groups all

relevant dialogue histories extracted based on their respective MSCOCO image cate-

gories. This research also exploits the overlapping visual context between images via

adaptive relevant dialogue history selection during new dataset generation based on the

groups of all relevant dialogue histories. It is half of 2.6 million question-answer pairs.

Meanwhile, this research proposes Diverse History-Dialog (DS-Dialog) to resolve the

missing visual semantic information for each image via context-aware visual attention.

The context-aware visual attention includes the question-guided and relevant-dialogue-

history-guided visual attention modules to get the relevant visual context when both

have achieved great confidence. The qualitative and quantitative experimental results

on the VisDial v1.0 and DsDial datasets demonstrate that the proposed DS-Dialog

not only outperforms the existing methods, but also achieves a competitive results by

contributing to a better visual semantic extraction. DsDial dataset has proven its sig-

nificance on LF model as compared to VisDal v1.0. Overall quantitative results show

that DS-Dialog with DsDial dataset has achieved the best test scores for recall@1,

recall@5, recall@10, mean rank, MRR, and NDCG respectively.
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CHAPTER 1

INTRODUCTION

In recent years, significant progress has been achieved in various AI tasks, en-

compassing image classification (Maurício, Domingues, & Bernardino, 2023), scene

recognition (Xie, Lee, Liu, Kotani, & Chen, 2020), image captioning (Deng et al.,

2021; Elbedwehy, Medhat, Hamza, & Alrahmawy, 2022), question answering, object

detection (Zou, Chen, Shi, Guo, & Ye, 2023), image retrieval (X. Wei, Qi, Liu, & Liu,

2017), and visual question answering (Antol et al., 2015; Salaberria, Azkune, de La-

calle, Soroa, & Agirre, 2023; Z. Shao, Yu, Wang, & Yu, 2023). These advancements

have been driven by deep learning models that excel in pattern recognition and data

processing, enabling machines to understand and interact with visual data more effec-

tively. For example, in image classification, models like Residual Network (ResNet)

have revolutionized the ability to categorize images into predefined classes with high

accuracy. Scene recognition has similarly benefited from these advancements, allow-

ing AI systems to comprehend complex environments and context within images, im-

proving applications like autonomous driving and robotics.

Simultaneously, the field of Natural Language Processing (NLP) has seen sub-

stantial growth, with tasks such as sentence generation, semantics, and sentence se-

mantic matching (X. Zhang, Lu, Li, Peng, & Zhang, 2019) receiving considerable

attention. NLP models have advanced in their ability to understand and generate hu-

man language, leading to more natural and context-aware interactions between humans

and machines. Techniques like Transformer-based architectures, including BERT and
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GPT, have been instrumental in this progress, providing powerful tools for tasks like

language translation, sentiment analysis, and conversational AI.

The intersection of these fields has led to more complex tasks like image caption

generation, Visual Question Answering (VQA) and Visual Dialog, where both visual

and textual information are integrated to enable AI systems to answer questions about

images or engage in a dialog about visual content. Much of the research in image

caption generation is directed toward improving methods for generating more accu-

rate captions, with limited emphasis on enhancing contextual understanding. Unlike

image captioning, VQA can generate answers based on both a given question and the

associated image. Visual Dialog, in particular, extends the capabilities of VQA by in-

corporating multiple rounds of questioning, requiring the system to maintain context

and understand the evolving nature of the conversation. In a Visual Dialog system,

the human user typically interacts by asking a series of questions about a given image.

The system must process the image, understand the question in the context of previous

dialog, and generate a coherent, contextually relevant response. For instance, given a

picture of a few people walking down the street as shown in Figure 1.1, a user might

start by asking, "Is it day time?" followed by, "Are they wearing coats?" and then, "Are

there any car?" The system not only needs to provide accurate answers but also keep

track of the ongoing conversation to maintain relevance and context across multiple

turns. This task not only requires sophisticated visual understanding, but also demands

a deep integration of NLP techniques to handle the linguistic aspects of the dialog,

making it one of the more challenging and promising areas of research in AI today.
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Figure 1.1: Visual Dialog’s Sample Question and Answer Pairs

1.1 Problem Statement

As depicted in Figure 1.1, the questions posed in conversational dialogues based

on VisDial v1.0 dataset often fail to encompass all latent information, including details

about surrounding objects such as “benches”, “handbags”, and “suitcases”. Instead,

these questions tend to be vague, asking about the presence of “animals”, “other peo-

ple”, or the location being “in the country”. Consequently, the learned models can only

partially grasp the image context. None of the mentioned architectural approaches ad-

equately addresses the global historical context. The existing VisDial v1.0 dataset did

not support global dialogue history such as relevant dialogue history. This research

endeavor aims to comprehensively understand the image’s semantic context by lever-

aging globally captured historical information that is semantically relevant based on

similar image contexts observed in other images. Moreover, some queries in the Vis-

Dial v1.0 dataset are vague and unrelated to the image’s content, such as "Are there

any animals?", "Are there any other people?" and "Is it in the countryside?". These

irrelevant questions can mislead trained models, causing them to rely solely on the

image’s spatial structure rather than incorporating visual-textual inputs. Additionally,

existing research primarily focuses on visual-textual representations and often over-
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looks the broader historical context. Unclear or imprecise inquiries and the absence

of concealed details in models lacking a comprehensive historical context can limit

the comprehension of events within the image. As a result, the output of the Visual

Dialog models are irrelevant to the corresponding visual context(L. Zhao, Lyu, Song,

& Gao, 2021). Therefore, the development of a well-designed mechanism for incor-

porating relevant semantic information is necessary to address the absence of crucial

latent information and promote a deeper understanding of both the question and image

context.

The majority of Visual Dialog frameworks primarily focus on establishing correla-

tions between the image context and the ongoing conversation, often overlooking the

crucial aspect of the image’s semantic context. This semantic context plays a vital role

in enabling models to generate more comprehensive responses within conversational

dialogues.

For instance, Recursive Visual Attention (RVA)(Y. Niu et al., 2019), excels at in-

ferring visual co-references within the question and dialogue history but does not sig-

nificantly contribute to enhancing the overall understanding of the image context. It re-

mains focused on the existing dialogue history context rather than embracing a broader

historical context that could lead to more generalized deductions based on common el-

ements observed in images, such as people or cars. Images often contain overlapping

objects, and multiple images may share similar contextual features. Unfortunately, Vi-

sual Dialog models typically do not explore keyphrase extraction techniques to deduce

relevant keywords based on the semantic features extracted from the image.
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In the realm of Visual Dialog, there are several challenges, one of which involves

effectively conveying comprehensive visual information from the image. Although

there have been efforts to address semantic feature representation (Kang, Park, Lee,

Zhang, & Kim, 2021; Schwartz, Yu, Hazan, & Schwing, 2019) and dialogue history

co-reference feature representation(Kang, Lim, & Zhang, 2019; Seo, Lehrmann, Han,

& Sigal, 2017), many existing approaches still rely on simply extracting visual features

from images using Convolutional Neural Network (CNN). However, this approach

falls short in capturing the global semantic context and historical information (L. Zhao

et al., 2021), which are crucial for a holistic understanding of the image context.

For example, approaches like Dual Encoding Visual Dialogue (DualVD) (Jiang et

al., 2020; Yu et al., 2020) primarily focus on global semantics based on image captions

but tend to overlook historical information. In contrast, Human Like Visual Cognitive

and Language Memory Network for Visual Dialog (HVLM) (K. Sun, Guo, Zhang, &

Li, 2022) aims to enrich the visual context by considering both global and local per-

spectives, establishing relationships between objects by incorporating external knowl-

edge. Visual Dialog questions often lack relational semantics (Yu et al., 2020), which

can impact the overall context of the dialogue history. Unfortunately, none of these ap-

proaches comprehensively address the global historical perspective concerning visual

content.

Some approaches concentrate on analyzing dialogue history by recovering the di-

alogue’s relational structure (Zheng, Wang, Qi, & Zhu, 2019), addressing issues re-

lated to imperfect dialogue history(T. Yang, Zha, & Zhang, 2019), ensuring dialogue

consistency(Q. Wu, Wang, Shen, Reid, & Van Den Hengel, 2018), enhancing visual-
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semantic information between the image and dialogue history(F. Chen et al., 2020),

and concentrate on enhancing the reference entity within the encoder(X. Chen, Lao, &

Duan, 2020), rather than exploring keyphrase extraction to deduce relevant keywords

based on the image’s semantic features.

Objects serve as integral components of the image by providing detailed visual

attributes and semantic category concepts. In images, there can be overlapping spa-

tial information, where attributes and objects contribute to the overall visual context.

Hence, these absent questions could offer valuable insights by addressing objects like

benches, handbags, or suitcase details.

1.2 Objective

The objective of this thesis are listed as follows:-

• To propose a context-aware DS-Dialog model with context-aware visual atten-

tion, designed to address the missing global visual semantic information in im-

ages.

• To enhance the VisDial v1.0 dataset(referred to as DsDial dataset) by providing

additional visual semantic information about an image by leveraging the charac-

teristics of other images with similar features.

• To evaluate the performance of the proposed dataset and model in comparison

to existing models and datasets.

1.3 Scope of Research and Limitation

The scope of this research is as follows:
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• This research employs an encoder-decoder approach with the following encoders:

DualVD, Late Fusion (LF), RVA, and the proposed DS-Dialog. The decoder is

a discriminative model.

• Due to hardware limitations, the framework will be tested with three existing

works, including DualVD, LF, and RVA.

• The new framework will be tested using only the VisDial v1.0 dataset and the

newly proposed DsDial dataset.

1.4 Contributions

The contributions of this research are as follows:

• DsDial dataset improves the visual comprehension(visual semantic context) with

relevant dialogue history.

• DS-Dialog

– Quantitative results indicate that DS-Dialog model shows higher retrieval

score as compared to other models.

– Qualitative results indicate that DS-Dialog model ranked answer candi-

dates with great relevance to the corresponding visual context.

1.5 Thesis Structure

Chapter 1 provides an introduction to visual dialogue and discusses the issues

found in existing works. Based on the problem statement, the objectives, scope of

the research, and contributions are outlined.
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Chapter 2 summarizes the multimodal tasks such as image captioning, and visual

question answering. It also details about visual dialogue and the gaps between visual

dialogue models.

Chapter 3 describes the methodology and provides detailed descriptions of the pro-

posed DsDial dataset, which offer more visual semantic context for the image through

a global historical perspective related to image content.

Chapter 4 covers the implementation of the proposed DS-Dialog model. Detail ex-

planation, including the neural network designs, defined modules, for the DS-Dialog’s

encoder and the decoder.

Chapter 5 outlines the dataset preprocessing, experimentation designs, and the test

cases. Detailed analysis between the proposed DS-Dialog model and the existing mod-

els using both VisDial v1.0 and DsDial dataset are also evaluated and analyzed.

Chapter 6 presents the conclusion and outlines future work for this thesis.
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CHAPTER 2

RELATED WORK

This chapter presents the existing literature related to multimodal approach such as

image captioning, VQA, and visual dialogue.

As computer vision techniques, like image recognition, mature, there is growing

interest in expanding research to encompass full scene understanding (Malinowski &

Fritz, 2014). Images contain high-level semantic concepts that are relatively unex-

plored by both NLP and computer vision. Vision-to-Language tasks, including image

captioning, VQA, and visual dialogue, aim to bridge the semantic gaps between visual

context and natural language information (X. Li, Yuan, & Lu, 2019; Q. Wu, Wang,

Shen, Dick, & Van Den Hengel, 2016). Table 2.1 summarizes the multimodal vision-

to-language tasks.

Table 2.1: Multimodal Focus.

Vision-to
Language Tasks Focus Models involved
Image captioning Provide descriptions on image Image, text

VQA Text conversation Text
Visual dialog Conversation with visual context Image, text

2.1 Image Captioning

Image captioning involves generating a description of an image. Recent works

like Visual Vocabulary Pre-Training for novel object captioning (VIVO) (X. Hu et

al., 2021) and Object-Semantics Aligned Pre-training (OSCAR) (X. Li et al., 2020)
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use state-of-the-art NLP to provide image descriptions. Unlike other image caption-

ing models, VIVO is trained using image-text pairs and multi-layer Transformers for

visual-text alignment. This process is followed by a linear layer and softmax function,

producing results in the joint embedding space of tags and image region features. There

are many research have been done prior to VIVO and OSCAR, such as novel image

captioning (Agrawal, Harsh and Desai, Karan and Wang, Yufei and Chen, Xinlei and

Jain, Rishabh and Johnson, Mark and Batra, Dhruv and Parikh, Devi and Lee, Stefan

and Anderson, Peter, 2019; Johnson, Karpathy, & Fei-Fei, 2016; Tan & Chan, 2019;

Xiao, Wang, Ding, Xiang, & Pan, 2019), semantic-concept-based and attention-based.

Novel image captioning (NoCaps) provides a benchmark with images from the Open

Images dataset to test models’ capability of describing novel objects that are not found

in the training corpus. The benchmark consists of 166,100 human-generated captions

describing 15,100 images from the Open Images validation and test sets. Densecap

by Johnson et al. (2016) is widely used as it can provide region localization and de-

scription of the image to identify and describe important areas in images with natural

language.

Semantic-concept-based methods selectively attend to a set of semantic concept

proposals extracted from the image (Hossain, Sohel, Shiratuddin, & Laga, 2019). It

also ensures detailed and coherent description of semantically vital objects (Sharma,

Dhiman, & Kumar, 2023). The extracted features are then fed into language generation

model while semantic features are fed into various hidden states of language model to

enhance image description with semantic information. Wanyan, Yang, Ma, and Xu

(2023) reduces the semantic gap between graphs obtained . Unlike previous work,

X. Liu and Xu (2020) proposes adaptive attention by fusing the image features and
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high-level semantics, with the assistance of a language generation model. Shi, Zhou,

Qiu, and Zhu (2020) presented a caption generation model that consists of caption-

guided visual relationship graphs and later words can be predicted based on the visual

relationship.

Attention-based image captioning was first proposed by K. Xu et al. (2015) to as-

sist the model to select the most relevant region for generating words during sentence

generation by paying attention to salient objects. It can be trained using standard back-

propagation techniques or stochastically by maximizing a variational lower bound.

You, Jin, Wang, Fang, and Luo (2016) developed a semantic attention model to attend

to semantic concept and incorporate them via the top-down and bottom-up combi-

nations. The algorithm learns to focus on semantic concept proposals and integrates

them into the hidden states and outputs of recurrent neural networks. This selection

and integration create feedback between top-down and bottom-up computations. Lu,

Xiong, Parikh, and Socher (2017) proposes an attention-based neural encoder-decoder

frameworks that is able to determine automatically on when to look and where to look

respectively. This model can decide whether to attend to the image or to the visual

sentinel at each time step, allowing it to extract meaningful information for sequential

word generation without relying on visual information for non-visual words or words

that can be predicted from the language model alone. To address the challenge of

extracting global features from images for image captioning and the limitations of at-

tention methods that force each word to correspond to an image region, Deng, Jiang,

Lan, Huang, and Luo (2020) also propose an adaptive attention that is implemented

using DenseNet (G. Huang, Liu, Van Der Maaten, & Weinberger, 2017) to extract

global image features and an adaptive attention mechanism with a sentinel gate to de-
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cide whether to use image feature information for word generation. L. Zhou, Zhang,

Jiang, Zhang, and Fan (2019) proposed two-phase learning learning image captioning

model which both phases would take place in decoder. By combining top-down and

bottom-up attention, it would help in identifying the salient image regions. Z. Zhang,

Wu, Wang, and Chen (2021) highlights the salient parts of the image and encrypts the

interactions between objects and the scene. Generative Adversarial Networks (GAN)s

has been adapted into image captioning tasks but there are limitations of GANs-based

methods that only capture local information. Therefore, Multi-Attention Generative

Adversarial Networks (MAGAN) (Y. Wei, Wang, Cao, Shao, & Wu, 2020) was intro-

duced to utilizing both local and non-local attention modules for more effective feature

representation. The generator generates more accurate sentences, while the discrimi-

nator determines if generated sentences are human-described or machine-generated.

Transformer-based image captioning (Deng et al., 2021; Elbedwehy et al., 2022)

is leveraging transformer models to generate image captioning. Deng et al. (2021) is

utilizing transfomer model to extracts multi-level image features before fusing those

image features with scaled-dot product. Later it need to get the relative position be-

tween the image features in order to generate image caption. (Elbedwehy et al., 2022)

uses attention-based transformer to perform image feature extraction before fed into

LSTM-based decoder for caption generations.

2.2 Visual Question Answering

Unlike image captioning, VQA is able to provide answer based on given ques-

tion and image. VQA has the capability of cross-modal understanding and reasoning
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of vision and language as compared to image captioning. Recent VQA works fo-

cuses on visual attention (C. Yang, Jiang, Jiang, Zhou, & Li, 2019; Zeng, Zhou, &

Wang, 2019), adversarial approach (Y. Liu, Zhang, Huang, Cheng, & Li, 2020) and

handling open-ended question answering task(J. Hu & Shu, 2019). Question-guided

visual attention uses the whole question feature which might mislead attention and im-

age features extracted by image-guided visual attention might not closely related to

keypoints of question. Therefore, C. Yang et al. (2019) proposed Co-Attention Net-

work with Question Type (CAQT) to further divide the VQA question datasets into

several categories and also fuse question types by concatenating with multimodal join

representation. Meanwhile, Zeng et al. (2019) introduces residual self-attention mod-

els to increase convergence and improve accuracy of the model. The attention module

consists of multiple stages, including bottom-up attention, residual self-attention and

top-down attention. Y. Liu et al. (2020) argued that existing VQA models are ineffec-

tive to reflect the answer information. Therefore, they proposed the adversarial mod-

els that include question-image and question-answer representations. J. Hu and Shu

(2019) propose Semantic Bi-embedded Gated Recurrent Unit (SBE-GRU) to handle

issue with open-ended visual question answering task. It feeds the question and image

into the stacked GRU and CNN respectively to generate a list of answers. The best

answer will be chosen from the answer list based on the top cosine similarity between

word2vec’s generated answer and each candidate answer.

To further enhance text representations, Q. Wu, Shen, Wang, Dick, and Van Den Hen-

gel (2017) add external Large-scale Knowledge Bases such as DBpedia(Auer et al.,

2007) on top of the combination for both image captioning and VQA. The external

knowledge base provides the text-based information for the model to improve the an-
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swer generation with the help of question-guided knowledge selection scheme. With

the advancement in pre-trained large language model such as Generative Pre-trained

Transformer (GPT)-3, recent knowledge-based VQA work such as Prophet (Z. Shao

et al., 2023) combined vanilla VQA model and GPT-3. Vanilla VQA is responsible

for answer heuristics generation while integrated GPT-3 is responsible for heuristics-

enhanced prompting. However, Ravi, Chinchure, Sigal, Liao, and Shwartz (2023)

highlights that current VQA models are either factual(Marino, Rastegari, Farhadi, &

Mottaghi, 2019; P. Wang, Wu, Shen, Dick, & Van Den Hengel, 2017) or common-

sense knowledge(Schwenk, Khandelwal, Clark, Marino, & Mottaghi, 2022; Zellers,

Bisk, Farhadi, & Choi, 2019), which leads to facts retrieval only appropriate in a cer-

tain contexts.

Anderson et al. (2018) and Z. Yang, He, Gao, Deng, and Smola (2016) use attention

model to retrieve region context intelligently. Z. Yang et al. (2016) highlighted the im-

portance of repetitive reasoning in order to get the accurate answer. It can be achieved

with the implementation of multiple-layer stacked attention network in which query

can be made to the image multiple times to infer the answer progressively. Ander-

son et al. (2018) combines both bottom-up and top-bottom attention to improve the

relationship between salient objects detection and the image region generation.

2.3 Visual Dialog

However, none of the previous works include conversational context. Unlike VQA,

Visual Dialog learns from multiple contexts such as multi-round dialogues, image and

questions. The Visual Dialog dataset, i.e. VisDial v1.0 dataset (X. Chen et al., 2020)
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consists of 133000 images, whereby about 123387 and 10064 images are MSCOCO

and Flickr respectively. Each image has a caption and ten rounds of question-answer

pairs. Each question also paired with 100 candidate answers with one ground-truth

human response, 50 answers to similar questions, 30 commonly used answers, and

some randomly selected answers from the data set. VisDial v1.0 dataset was formed by

collecting conversational data through Amazon Mechanical Turk (AMT). This data is

gathered by having two workers engage in a conversation based on the MSCOCO-2014

(T.-Y. Lin et al., 2014) dataset with provided captions. In Figure 1.1 a sample image

from MSCOCO-2014 and a snapshot of a VisDial conversational dialogue between

two AMT workers based on the image are depicted.

Visual Dialog was initially introduced by Das, Kottur, Gupta, et al. (2017), with

LF. It is later extends the Visual Dialog with deep reinforcement learning (Das, Kot-

tur, Moura, Lee, & Batra, 2017) as RL enhances the capability of models to handle

tasks based on action-rewards-policy concept (J. Li et al., 2016; Mousavi, Schukat,

& Howley, 2018). However, previous work leads to repetitive dialogues. Murahari,

Chattopadhyay, Batra, Parikh, and Das (2019) enabled question-bot to ask diverse

question by introducing smooth-L1 penalty over questions with high similarity score.

The model will penalise the bot that have generated duplicated questions. Meanwhile,

Fan, Zhu, Yang, and Wu (2020) introduced Dialog Network to enhance visual dialog

encoder for understanding the question accurately by focusing on the intended region

of interest. GuessWhat(de Vries et al., 2017) focused on object discovery with yes or

no questions. Lu, Kannan, Yang, Parikh, and Batra (2017) transfer knowledge from

discriminative learning to generative learning. It uses the current question to attend to

the exchanges in the dialogue history, and then use the question and attended dialogue
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history to attend to the image to get final encoding. The attention model in it can help

the discriminator on paraphrasing answers. Visual Dialog also ignored the semantic

feature of the images. Q. Wang and Han (2019) involves object feature extraction and

selection in order to extract relevant visual information from the image and filter irrel-

evant visual information with assistance of semantic guidance from both question and

dialogue history.

Several works such as CLEVR-Dialog (Kottur, Moura, Parikh, Batra, & Rohrbach,

2019) and MNIST-Dialog (Seo et al., 2017), proposing new visual dialogues for new

test cases. CLEVR-Dialog focuses on visual reasoning using images from diagnostic

dataset such as Compositional Language and Elementary Visual Reasoning (CLEVR)

(Johnson et al., 2017), focusing on grounding objects based on a natural language ex-

pression, and deals with additional visual and linguistic challenges that require multi-

round reasoning in visual dialog. Meanwhile, MNIST-Dialog consists of images of

Modified National Institute of Standards and Technology (MNIST) digits, used at-

tention memory to resolve visual co-reference. Attention memory helps the neural

network to learn by storing image attention map at each round. CLEVR-Ref+ (R. Liu,

Liu, Bai, & Yuille, 2019) is a diagnostic dataset based on CLEVR images for visual

reasoning in referring expressions.

2.3.1 Attention-based Visual Dialog

The idea of attention is inspired by the human understanding of an object or text

by focusing only on certain parts. For example, instead of paying attention to all parts

when looking at an image, a person will concentrate only on specific details to better
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understand that image. Similarly, it is possible to allow a model to focus only on

specific kinds of information that are considered most important in achieving a better

understanding.

In sequence-to-sequence modelling, encoding the entire source text into a fixed-

length vector requires large memories and leads to the problem of long-term depen-

dencies that negatively affects the performance of the model. Alternatively, the model

can utilize the attention mechanism which dynamically searches for the most relevant

parts by using a dynamically changing context in the decoding process (Gu, Lu, Li,

& Li, 2016). Therefore, before generating a word, the attention mechanism is used

to compute word weights to determine how much attention should be paid to each

input word. This idea began with Bahdanau, Cho, and Bengio (2014) for English to

French statement translations by means of automatic alignment, followed by image

caption generation (K. Xu et al., 2015), short text conversation by (Shang, Lu, & Li,

2015), and many more. To improve results by better handling name-entities and long

sentences, Luong, Pham, and Manning (2015) suggested global and local attentions

for the machine training task. The global attention pays attention to all the words of

the source input, regardless of its length, while the local attention focuses only on a

selective subset of input positions at each time step.

Besides that, attention modules also gave huge impact on improving Visual Dialog.

Seo et al. (2017) proposed Attention Memory (AMEM) and created new synthetic vi-

sual dialogue dataset called MNIST-Dialog, which is the combination of MNIST and

VisDial datasets to resolve Visual Dialog’s sequential dependencies through an atten-

tion memory and a dynamic attention combination process. Visual Dialog also has
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issue in determining the latent semantic co-reference between question and history.

Thus, Guo, Wang, Wang, and Wang (2020) has proposed Reference-Aware Attention

Network (RAA-Net) to overcome latent semantic and semantic correlation issues re-

spectively. RAA-Net contains two stage, i.e. multi-head textual attention and visual-

two-step visual reasoning. In multi-head textual attention, semantic concentration is

determined via attention concentration of words between input and dialogue history,

one hot encoding, and word embedding. Guided attention is used to extract relevant

textual semantic from dialogue history while both question features and new dialogue

history features are concatenated to generate textual reference aware vector. The first

stage of visual-two-step visual reasoning is to use Faster R-CNN to focus on self vi-

sual, especially the man’s face ; visual grounding of related objects and salient relevant

regions given textual query, visual key and value. Second stage of visual reasoning is

using VGG19 to focus on the cross-visual that covers whole body of man. RAA-net’s

attention modules contains guided attention and co-attention. Guided attention use do-

product attention to learn new embedding of sequence. Co-attention combines other

learnable parameters into same feature dimension RVA is trying to overcome the exist-

ing soft attention that is unable to predicts discrete attention over topic-related dialogue

history by introducing recursive visual attention. It can make discrete decision on re-

plying input content by recursively browses the dialogue history and computes visual

attention until it meets unambiguous description. Synergistic model (Guo, Xu, & Tao,

2019) was introduced to generate more comprehensive answer rather than just “yes”

and “no”. Recently, there are researches attempted to resolve the visual co-reference

using neural network at word level (Kottur, Moura, Parikh, Batra, & Rohrbach, 2018).

Further, Visual Dialog does not emphasize on the conversation history and only exploit
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ground-truth history. History-Aware Co-Attention Network (HACAN)(T. Yang et al.,

2019) imposes the wrong answers in conversational context and collect measurement

on adverse critic. J. Zhang, Wang, and Han (2020) was aimed to cover low-level infor-

mation in both image and text via three low-level attention modules such as History-

to-History attention that focuses on connections between words, History-to-Question

attention, and Relevant History-to-Relevant History attention that focuses on relation-

ship between spatial feature and object feature. Meanwhile, Yu et al. (2020) proposed

DualVD which is able to extract the objects and their relationships from visual module

and then feed into the semantic module. With the help of multi-level image captions

that combines both image captions and dense captions. Dense captions localize and de-

scribe image regions in natural language by providing more comprehensive description

on the image itself.

2.3.2 Visual Dialog’s Dialogue History

There are approaches focusing on analyzing dialogue history by recovering the

dialogue relational structure(Zheng et al., 2019), imperfect dialogue history (T. Yang

et al., 2019), dialogue consistency(Q. Wu et al., 2018), and leveraging the learned

dialogue state(Pang, 2023). (F. Chen et al., 2020) is only focusing on enriching visual-

semantic information between image and dialogue history. Park, Whang, Yoon, and

Lim (2021) is trying to overcome the missing image features highlighted the missing

question intent.
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2.3.3 Transformer-based Visual Dialog

Prior to training visual dialogue solely on deep neural network, there are works

extending visual dialog to integrate Transformer-based model such as BERT. They

are Visual Dialogue BERT (VD-BERT) (Y. Wang et al., 2020), VU-BERT (Ye et al.,

2022), and VisDial-BERT (Murahari, Batra, Parikh, & Das, 2020),

VisDial-BERT adapted ViLBERT and pretrained on conceptual captions and VQA

dataset, before fine-tuning the VisDial dataset. VisDial-BERT discovered that dense

annotations from VisDial v1.0 dataset does not correlates well with original ground-

truth dialogue answers. VisDial-BERT is mainly focused on discriminative decoder,

rather than both generative and discriminative decoder. Similarly to ViLBERT, there

will be two streams in VisDial-BERT, i.e. visual stream and language stream. Visual

stream has a total of six layers, with a hidden size of 1024 and eight attention heads,

whereas language stream has a total of 12 layers, with a hidden size of 768 and 12

attention heads.

Figure 2.1: Visdial-BERT.

VD-BERT is the BERT-based Visual Dialog model. VD-BERT is a unified vision-
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dialog Transformer that leverages on the pre-trained BERT language models for Visual

Dialog tasks. It captures all interactions between the image and multi-turn dialog using

a single-stream Transformer encoder and supports both answer ranking and generation

through the same architecture. VD-BERT adapts BERT for effective fusion of vision

and dialog contents via visually grounded training.

Figure 2.2: VD-BERT.

VU-BERT, another Visual Dialog that attempts on training by using BERT model.

It is a unified framework for image-text joint embedding that simplifies the model by

using patch projection to obtain vision embedding in visual dialog tasks. The visual

dialog task trains an agent with VisDial v1.0 dataset to answer multi-turn questions

given an image, requiring a deep understanding of interactions between the image and

dialogue history. VU-BERT is trained over two tasks: masked language modeling and

next utterance retrieval, which help in learning visual concepts, utterances dependence,

and the relationships between these two modalities. Based on Figure 2.3, the image

is divided into smaller segments called patches, which are then linearly projected to

create patch embeddings. The input is made up of both image and text embeddings,

which are calculated by adding the position and segment embeddings together.

21



Figure 2.3: VU-BERT.

Unlike VU-BERT, VD-BERT requires high computing resources and cannot scale

to a large number of candidates because it must concatenate every answer candidate

with the input and go through a forward pass of the entire model.

Table 2.2: A Summary of Transformer-based Visual Dialog.

Model Layers Hidden Attention Total Transformer
Size heads parameters type

VDBert 12 768 12 110M Encoder
VisDial-Bert 12 768 12 110M Encoder

VU-Bert 12 768 12 110M Encoder

2.3.4 Discussion on Visual Dialog

However, most of the Visual Dialog frameworks are focusing on the co-relation

between image context and the conversation context. They did not emphasize on the

image semantic context, where it helps the model to generate more comprehensive

answers, alongside with conversational dialog. Although RVA is able to infer visual

co-reference between question and dialogue history, it does not help to contribute to a

better image context. RVA only focus on existing dialogue history context rather than a
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global historical context. For example, this thesis can have general deduction based on

what has been observed from the image such as people, car, and so on. Images can be

overlapping objects and there is a possibility that more than one image contain similar

context.

Visual Dialog has plenty of challenges especially expressing more comprehensive

visual information of the image. There is some pre-work trying to address semantic

feature representation (Kang et al., 2021; Schwartz et al., 2019), dialogue history co-

referential relationship feature representation (Kang et al., 2019; Seo et al., 2017), and

local historical contextPang (2023). Most of the existing approaches simply extract

visual features from an image with CNN (F. Chen et al., 2020; Shukla et al., 2019;

L. Zhao et al., 2021).

Merely enriching visual-semantic information between image and dialogue history

is not sufficient to understand the whole image context as the global semantic context

is not captured (K. Sun et al., 2022) and lack of historical information (L. Zhao et

al., 2021). Existing works such as DualVD (Jiang et al., 2020; Yu et al., 2020) only

focuses on global semantics based on image captions rather than historical information.

HVLM (K. Sun et al., 2022) focuses on enriching visual context from global and local

perspectives. Further, questions in visual dialogue have limited relational semantics as

it covers wider contents (Yu et al., 2020), which in turns affects the overall context of

the dialogue history.

Although there are approaches trying to resolve the missing question semantic in-

tent such as Park et al. (2021), it is only focusing on the model implementation but the
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data that provides the missing question semantic intent were not supplied, and thus is

lacking of global historical context.

Most of the Visual Dialog models do not explore keyphrase extraction (Giarelis,

Kanakaris, & Karacapilidis, 2021) to deduce the relevant keywords based on the image

semantic features extracted. None of those covers the global historical perspective with

respect to visual content.

Existing Visual Dialog works that enhances the VisDial v1.0 datasets or proposing

new datasets are lacking of relevant dialogue histories. Both CLEVR-Dialog (Kot-

tur et al., 2019) and CLEVR-Ref+ (R. Liu et al., 2019) are using CLEVR dataset

which only focuses on visual reasoning; MNIST-Dialog by Seo et al. (2017) is us-

ing MNIST’s hand-written digits to resolve visual co-reference. Even the recent pro-

posed knowledge-based models(A.-A. Liu et al., 2023; S. Zhang, Jiang, Yang, Wan, &

Qin, 2022; Z. Zhang, Ji, & Liu, 2023) are merely focusing on common-sense knowl-

edge instead of global historical context that is relevant to the image. Although VQA

models such as VLC-BERTRavi et al. (2023) discusses the importance of sentence

similarity over its proposed model, there is no existing works in visual dialog that

covers the similar approach. Any question-answering model would require a more

comprehensive visual-textual context support to understand the enquired context. Ad-

ditionally, existing visual dialogue models do not utilize semantic textual similarity and

keyword extraction models to enhance context understanding by exploring potentially

relevant historical contexts, thereby obtaining relevant visual-textual representations in

the same embedding space.
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