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KAJIAN FUNGSIAN DAN PENYEBAB JARINGAN TOPOLOGI OTAK

MANUSIA MENGGUNAKAN KERANGKA PENYATUAN NOVEL

ABSTRAK

Kajian berkaitan neurosains yang menggunakan analisa perhubungan telah ber-

kembang secara pesat. Antaranya, kajian berkenaan mekanisma saraf penyakit-penyakit

otak dan rawatannya. Menariknya, kesan terapeutik pelbagai rangsangan auditori te-

lah dikenal pasti dalam beberapa kajian. Tetapi, mekanisma sarafnya belum difahami.

Selari dengan itu, semakin banyak ukuran-ukuran perhubungan telah dibangunkan.

Percubaan telah dibuat untuk mengklasifikasikannya mengikut taksonomi yang berbe-

za. Sehingga kini, tiada rangka kerja yang menyatukan semua ukuran-ukuran perhu-

bungan ini. Matlamat kajian ini adalah untuk membina rangka kerja bagi menyatukan

ukuran-ukuran perhubungan. Rangka kerja ini digunakan sebagai acuan untuk membi-

na ukuran perhubungan baru yang kemudiannya dibandingkan dengan ukuran-ukuran

perhubungan lain menggunakan dataset sumber terbuka. Di samping itu, kajian ini

juga memperkenalkan pendekatan statistik yang boleh menguji ketiadaan dan kehadir-

an kesan eksperimen yang seterusnya digunakan untuk mengkaji kesan rangsangan-

rangsangan pendengaran pada topologi rangkaian otak pemprosesan emosi. Rangka

kerja menyatukan ukuran-ukuran perhubungan telah dibina menggunakan Teori Ka-

tegori dengan mengenal pasti struktur asas yang sama diantara ukuran-ukuran perhu-

bungan dan menghimpukannya ke dalam satu kategori yang dipanggil teori perhubung-

an. Ukuran perhubungan baru, iaitu, complexity of the amplitude envelope correlation

(CAEC) telah dibangunkan. CAEC digunakan untuk menganggarkan perhubungan an-

tara kawasan otak yang terlibat dalam pemprosesan wajah dan dua ukuran rangkaian

xxviii



telah diperolehi: transitivity dan global efficiency. Ukuran-ukuran rangkaian tersebut

dibandingkan dengan ukuran-ukuran rangkaian yang diperoleh menggunakan ukuran-

ukuran perhubungan yang lain: amplitude envelope correlation (AEC) dan imaginary

part of coherency (ICOH). Selain itu, satu kajian bersilang telah dijalankan untuk me-

nilai kesan 8 rangsangan auditori terhadap topologi rangkaian pemprosesan emosi otak

dalam 30 subjek yang sihat. Tiga ukuran rangkaian: mean weighted degree, transiti-

vity, dan global efficiency telah digunakan. Untuk menguji ketiadaan atau kehadiran

kesan eksperimen, distribusi posterior bagi perbezaan antara masa rehat dan setiap

stimulus dianggarkan. Kawasan ekuivalen ditakrifkan sebagai perbezaan ukuran rang-

kaian antara dua masa rehat sebelum dan selepas rangsangan. Dalam rangka kerja ini,

sembilan ukuran-ukuran perhubungan telah dikenal pasti sebagai model teori perhu-

bungan. Dalam eksperimen pertama, CAEC menghasilkan topologi rangkaian yang

berbeza berbanding AEC dan ICOH untuk rangsangan yang sama. Kesan manipulasi

eksperimen pada topologi rangkaian didapati bergantung kepada ukuran-ukuran per-

hubungan yang digunakan dalam analisa. Dalam eksperimen kedua, ukuran rangkaian

merentas semua rangsangan auditori didapati sama dengan ukuran rangkaian masa re-

hat dalam semua jalur frekuensi. Rangka kerja yang dicadangkan mampu menyatukan

ukuran-ukuran perhubungan dan menyediakan acuan untuk membangunkan ukuran

perhubungan baru dan akan membantu usaha selanjutnya dalam membina ukuran-

ukuran perhubungan baru. Dapatan eksperimen pertama menunjukkan bahawa hasil

analisa perhubungan harus ditafsirkan berdasarkan ukuran-ukuran perhubungan yang

digunakan. Eksperimen kedua menunjukkan bahawa pendekatan statistik yang diper-

kenalkan dapat menguji ketiadaan kesan eksperimen. Pendekatan ini amat berharga

dalam mengembangkan hala tuju kajian pengimejan otak pada masa akan datang.
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FUNCTIONAL AND EFFECTIVE CONNECTIVITY STUDY OF THE

HUMAN BRAIN TOPOLOGY USING A NOVEL UNIFYING FRAMEWORK

ABSTRACT

There has been a rapid expansion of neuroscientific research employing brain con-

nectivity analysis. Among these are studies unravelling the neural mechanisms of brain

diseases and treatments. Of interest, the therapeutic effects of various auditory stimu-

lus have been demonstrated in several studies. However, neural mechanisms of these

therapy remain elusive. In parallel, many new connectivity measures have been de-

veloped, adding to the ever-growing connectivity tools. Attempts have been made to

classify them according to different taxonomies. To date, however, no general frame-

work has been developed to unify these measures. Thus, this study aimed to build a

unifying framework of various connectivity measures. The study also aimed to build

a novel connectivity measure using the framework as a template and then compared it

with other established measures on an open-source dataset. The study also sought to

introduce a statistical approach for testing both the absence and the presence of experi-

mental effects, which was then used to investigate the effects of listening to several au-

ditory stimuli on emotion-processing brain network topology. A unifying framework

was devised in the language of category theory by identifying common underlying

structures shared among connectivity measures and assembling them into a single cat-

egory called connectivity theory. A novel connectivity measure called the complexity

of the amplitude envelope correlation (CAEC) was developed. Functional connec-

tivity among brain regions involved in face processing was estimated using CAEC,

and two network measures were derived: transitivity and global efficiency. Both net-
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work measures were compared with the network measures derived using established

connectivity measures: amplitude envelope correlation (AEC) and imaginary part of

coherency (ICOH). Additionally, a cross-over study investigating the effects of 8 dif-

ferent auditory stimuli on emotion-processing network topology in 30 healthy subjects

was conducted. Three network measures were used: mean weighted degree, tran-

sitivity and global efficiency. The posterior distribution of differences between the

resting state and each stimulus was estimated to test for the absence and presence of

effects. Equivalence region was defined as differences in network measures between

pre- and post-stimuli resting MEG. Within the proposed framework, connectivity mea-

sures were shown to be models of connectivity theory. The first experiment showed

that CAEC produced a different network topology compared to AEC and ICOH for the

same stimulus. Overall, the effects of experimental manipulations on network topol-

ogy were shown to be dependent on the connectivity measure used. In the second

experiment, the network measures across all auditory stimuli were equivalent to that

of the resting state in all frequency bands. The categorical framework unifies connec-

tivity measures and provides a template for developing a novel connectivity measure,

thus illuminating further work on constructing new connectivity measures. The first

experiment indicated that connectivity analysis results should be interpreted based on

the utilised connectivity measure. As shown in the second experiment, the novel statis-

tical approach was able to test for the absence of experimental effects. This approach

would be valuable in expanding the direction of future neuroimaging studies.
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CHAPTER 1

INTRODUCTION

Human brain is arguably the most complex information processing system ever

designed that is known to mankind. The fact that it is still poorly understood despite

the rapid expansion of research and the technological advancements over the last few

decades, is a testament to its complexity. The level of complexity is not surprising

considering that there are about 80 billion of neurons with 1014 of neuronal synapses in

the human brain (Azevedo et al., 2009). Albeit seemingly near impossible, unravelling

this complexity represents one of the most important challenges for neuroscientists.

As neuroscientists, our general goal is to understand how the dynamics of a col-

lection of neurons give rise to cognitive process, which in and of itself is still poorly

understood. So far, our progress has been, on one hand, quite promising such as iden-

tifying and linking specific brain regions to specific cognitive, perceptual, and motor

functions. On the other hand, however, we still have a long way to go when even a

simple process like categorizing audio-visual stimuli remains poorly understood.

With the availability of multiple non-invasive neuroimaging modalities and the

ever-expanding resultant data, we have been trying to understand brain functions us-

ing several paradigms including but not limited to localizing specific brain areas that

are associated with certain tasks, identifying brain areas that are active in resting state,

measuring event related potentials or fields of particular brain areas in relation to spec-

ified task or stimulus and measuring blood flow responses. All of these paradigms

boil down to reducing the complexity of brain functions to two dimensions: brain lo-

cations and their activities. The main assumption is that brain functions are uniquely

identifiable to specific activities of specific brain regions.
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Using only these two dimensions, however, was found to be insufficient to charac-

terize all the space of highly complex neurocognitive functions. There is no bijective

mapping between cognitive processes and brain regions (Price & Friston, 2005). A sin-

gle cognitive process can activate multiple brain regions and activation of a particular

region correlates with different cognitive processes. A new paradigm was thus required

to resolve the issue and move forward. This came, among many other, in the form of

viewing brain structures and functions in terms of network organizations. Cognitive

functions are, therefore, perceived as the result of orchestrated symphony among net-

works of neuronal ensembles in cortical and subcortical structures (Von Der Malsburg,

1994).

This insight has brought about a paradigm shift in neuroscience from the restrictive

reductionist approach of identifying an isolated unit responsible for a specific cognitive

function to a more wholistic approach of exploring and characterizing networks of

brain functional units working together on performing cognitive tasks. Functionally

cohesive networks which emerged through the recruitment of coordinated in spite of

spatially separated brain regions are central to the way in which brain processes and

integrates information (Schnitzler & Gross, 2005).

Prior to identifying and characterizing brain networks, it is necessary to perform

brain connectivity analysis. Brain connectivity analysis is a multivariate time series

analysis of interdependence between simultaneously recorded signals from multiple

brain regions. Commonly, these time series are acquired using Electroencephalogram

(EEG) and Magnetoencephalography (MEG) due to their non-invasive nature and high

temporal resolution. These recording methods are often complemented by functional

magnetic resonance imaging (fMRI) which has higher spatial resolution but lower tem-
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poral resolution. However, in contrast to EEG and MEG which directly measure elec-

trical activities of ensembles of neurons, fMRI is an indirect measurement of the un-

derlying neuronal activity since it captures the haemodynamic of blood oxygen level

dependent (BOLD) signals.

There are many connectivity measures that are available as tools to quantify con-

nectivity between brain regions. Within the context of EEG and MEG, these include

cross-correlation, amplitude envelope correlation (AEC), coherence (COH), ICOH,

partial directed coherence (PDC), phase lag index (PLI), phase locking value (PLV),

mutual information (MI), Granger’s causality (GC), dynamic causal modelling (DCM)

and more. However, there is no consensus among experts in the field regarding which

measures should be considered as the best or the gold standard method to capture con-

nectivity (Gross et al., 2021). It is more apt to view them as a collection of tools to

detect different flavours of brain connectivity, as such, researchers have many tools in

their arsenal to suit their research objectives and methodologies (Pereda, Quiroga, &

Bhattacharya, 2005). Different connectivity measures might be able to reveal differ-

ent mechanisms of brain connectivity therefore providing complementary and deeper

insights on brain functions and dysfunctions (Guggisberg et al., 2015).

Adopting connectivity paradigm, various studies have been conducted to under-

stand cognitive functions more deeply including among others, attention (Fox, Cor-

betta, Snyder, Vincent, & Raichle, 2006; Fox et al., 2005), memory (Ranganath, Heller,

Cohen, Brozinsky, & Rissman, 2005) and emotional processing (M. J. Kim et al.,

2011). In contrast to previously belief, even simple somatosensory and motor func-

tions have been demonstrated to hinge on the precise coordination of multiple brain

areas (Jiang, He, Zang, & Weng, 2004).
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Increasingly, the approach has also been incorporated in many studies to further

elucidate diseases and pathologies in the brain functions. Brain connectivity research

enables researchers to gain deeper understanding and more insights on depression

(Connolly et al., 2013), anxiety (M. J. Kim et al., 2011), schizophrenia (Lynall et

al., 2010), epilepsies (Van Mierlo et al., 2014) and many more. Connectivity studies

have demonstrated that these pathologies are the result of abnormalities of large-scale

brain networks rather than dysfunction of a specific brain region. Furthermore, this

has also opened ways of exploring new approaches to treatment and ways to evaluate

effectiveness of treatments.

Treatment modalities that have been explored and used to treat such diseases in-

clude surgical, pharmacological, and non-pharmacological. In depression and anxiety

specifically, music and other rhythmic auditory stimuli are among the non-pharmacological

approach that have been used either alone or in combination with pharmacological in-

tervention and psychotherapy. Of particualr interest, the therapeutic effects of Qur’anic

recitation have been shown in several studies (see 2.11). However, the underlying neu-

ral mechanisms for these therapy remain elusive (Koelsch, 2009; Maratos, Crawford,

& Procter, 2011).

1.1 Problem statement and rationale of the study

Parallel to the growth in research adopting brain connectivity and network paradigm,

there has been an increase in the development of new connectivity measures to address

several issues that emerge in connectivity analysis. Thus far, connectivity measures

were developed by adopting the theory and concepts from diverse fields, such as, infor-

mation theory, dynamics and chaos theory, econometrics, and statistics. Being derived
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from different fields and having different theoretical background, these measures are

arguably different in one way or the other. To date, there are various ways of classify-

ing these measures. However, there is no general framework that would serve as the

unifying foundation which would tie together all of these measures and possibly future

novel measures as well.

The present work builds upon the branch of mathematics called category theory.

Category theory is an emerging field in mathematics that was developed to serve as

the foundation of mathematics. The language of category theory was developed to

formalize different mathematical structures and concepts in term of objects and arrows

which are morphism between them. It is a way to organize math efficiently. It has

been used as the framework not only to unify diverse concepts in mathematics such as

topology, probability, and logic but also in other fields such as physics and computer

sciences (Baez & Stay, 2010).

Why category theory? To put it succinctly, it can help us organize ideas about a

category of related things and identify emerging and converging patterns that keep on

reappearing over and over again in multiple places. It may even suggest interesting

ways of looking at them. As a useful organizing tool, it provides a powerful universal

insight in many problems. By identifying many similar ideas in different areas of

mathematics, it offers a common unifying language.

The main goal here is to show that irrespective of the mathematical technique em-

ployed, all forms of connectivity measures boil down to a similar underlying structure

which can be efficiently described using the language of category theory. One can say

that this underlying structure is the blueprint of most if not all connectivity measures.

Using the tools and concepts from category theory, one can build a general framework
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to formalize and unify connectivity measures. This framework should be broad enough

to capture all known methods for measuring connectivity.

Since it captures the core underlying structures or the blueprint of connectivity

measures, the framework would not only unify connectivity measures but also could

serve as the template from which a new connectivity measure could be built. To

demonstrate this, a novel connectivity measure was developed on the basis of sig-

nal complexity. A concept initially explored in non-linear dynamics and chaos theory,

complexity of a system, which comprises of a number of components, describes how

these components organise and interact with each other leading to emergence phenom-

ena that cannot be explained by analysing the components in isolation. It has been

applied in neuroscientific research to further our understanding of the brain functions

and dysfunctions. Several measures of complexity have been developed and applied

in neuroscientific researches on normal brain physiology (Born & Pietrowsky, 1995;

Mölle, Marshall, Wolf, Fehm, & Born, 1999; Schupp, Lutzenberger, Birbaumer, Milt-

ner, & Braun, 1994; Sheehan, Sreekumar, Inati, & Zaghloul, 2018) and pathologies

(Akar, Kara, Latifoğlu, & Bilgiç, 2016; Bodart et al., 2017; Catarino, Churches, Baron-

Cohen, Andrade, & Ring, 2011; Lehnertz & Elger, 1995). It is argued, based on the

cumulative evidence, that the complexity of the electrical activities of each functional

units (Hebb, 2005) in the brain vary continuously in response to the processing load

caused by the alterations in the internal and external environments. The changes that

occur in the functional units are in terms of the number of recruited neurons or brain

regions and their interaction patterns. Altogether, these lead to changes in the com-

plexity of the recorded signals. On this basis, a composable method of computing a

connectivity measure between sensors or brain regions was proposed based on their
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respective signals’ complexity. The premise here is that 2 channels or brain regions are

connected if their temporal dynamics share similar complexity.

Neuroscientific research and scientific research in general have been relying heav-

ily on arbitrarily set p-value and null hypothesis testing as the statistical approach for

making decision about experimental results which ultimately play significant role in

guiding study design. p-values would only allow one to reject a null hypothesis when

an arbitrarily set threshold has been surpassed. The approach cannot be used as evi-

dence to support or accept the null. Besides, it is susceptible to multiple comparisons

problem which is not uncommon in neuroscientific experiments. Thus, relying on the

approach arguably put unnecessary restrictions: (i) to the kind of neuroscientific ques-

tions that one can address, (ii) to the way one might be able to design and conduct

experiments, and (iii) to the interpretation of experimental results. To address these

issues, a study design and statistical approach that is free from the shackle of p-value

need to be developed.

As the practical part of this work, the theories and the methodologies that were

developed in this work, i.e., the novel connectivity measure and the novel statisti-

cal approach, were employed in the experimental works to address the neuroscientific

questions of interest. These would include queries regarding the differences in the re-

sulting brain network when using the novel connectivity measure compared to other

established measures. The 2-way interactions effects between connectivity measures

being employed and the probed experimental manipulations or conditions were also

explored. Specifically, what are the effects of using different connectivity measure on

the brain network topologies for each experimental condition. Also, for every connec-

tivity measure, how brain network topology would change under different experimen-
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tal conditions. For these queries, a widely known open-source MEG dataset on face

processing were used (Wakeman & Henson, 2015). The dataset has also been used by

others to demonstrate the applicability of a novel connectivity measure.

Another neuroscientific query investigated in this work was on the neural-correlates

of Quranic and music therapy. While most research on music therapy used west-

ern music and explored its effects on neurological and psychiatric illnesses, other

forms of rhythmic auditory stimuli have not been extensively investigated in terms

of their potential therapeutic effects on these diseases. In this study, 8 different au-

ditory stimuli were examined together the underlying functional brain network as the

neuro-correlates using MEG recordings. To our knowledge, no such study had been

done before in those with neuropsychiatric pathologies or even in healthy individuals.

1.2 Research questions

Thus, the research questions addressed within this work are as follows:

1. How can one unify all of the diverse connectivity measures within a single frame-

work using the technologies available in category theory and what are the mini-

mum components that should be present in the framework?

2. How can a new connectivity measure be developed that capture the notion of

complexity using the unifying framework as a blueprint?

3. Are there differences between the newly developed connectivity measure com-

pared to other established measures such as AEC and ICOH in terms of the

resultant brain network topology as measured by weighted transitivity T and

global efficiency E?
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4. For each experimental condition, what are the effects of using different con-

nectivity measures on the brain network topologies as measured by weighted

transitivity T and global efficiency E and for each connectivity measure, how

these two topological measures would change under different experimental con-

ditions?

5. What is the statistical approach that enables us to test both the absence or the

presence of experimental effects?

6. Is there any effect of passive listening to naturalistic auditory stimuli on the

topology of brain networks involved in emotional processing as measured by

weighted degree K, weighted transitivity T and global efficiency E?

1.3 Research hypotheses

The following are the corresponding research hypotheses. These research hypothe-

ses pertain only to the experimental works carried out in this study:

1. There are no differences in the resultant brain network topology as measured by

weighted transitivity T and global efficiency E between the novel connectivity

measure and other established connectivity measures such as AEC and ICOH.

2. Within each experimental condition, there are no differences in terms of brain

network topological measures weighted transitivity T and global efficiency E

when using different connectivity measures.

3. Within each connectivity measure, there are no differences in terms of brain

network topological measures weighted transitivity T and global efficiency E

for each experimental condition.
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4. There are no changes in the topological measures mean weighted degree K,

weighted transitivity T and global efficiency E of the brain network involved

in emotion processing under all 8 different auditory stimuli for all frequency

bands: delta, theta, alpha, beta, and gamma.

1.4 Research objectives

1.4.1 General objectives

The key aims in this thesis comprised of 2 main parts. The first part was to extend

the theoretical and methodological aspects of brain connectivity research, in particular,

to devise a unifying framework of connectivity measures, to develop a novel connec-

tivity measure and to develop a statistical approach for testing of both the absence

and presence of experimental effects in neuroimaging study. The second part was to

apply these newly introduced theories to connectivity analysis to gain new insight and

deeper understanding on 2 cognitive functions that are important in human interactions

namely face and emotion processing. Specifically, the study objectives are as follows:

1.4.2 Specific objectives

1. To develop a novel framework that unifies all connectivity measures using ma-

chineries developed within the field of mathematics called category theory.

2. To use the newly developed framework as the blueprint in order to derive a novel

connectivity measure.

3. To demonstrate the applicability of the novel connectivity measure and compare

the resultant brain network topologies with 2 other established connectivity mea-

sures, namely ICOH and AEC, as part of connectivity analysis of an open source
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dataset on face processing.

4. To examine, for each experimental condition, the effect of using different con-

nectivity measures and for each connectivity measures, the effect of experimen-

tal conditions on the resultant brain network topological measures: weighted

transitivity T and global efficiency E.

5. To formulate a statistical approach in neuroimaging that allows for testing both

the absence or presence of true experimental effects.

6. To apply the newly introduced statistical approach in combination with connec-

tivity analysis and network analysis in order to examine the effect of listening

to naturalistic auditory stimuli on emotion processing brain network in terms of

its topological measures: mean weighted degree K, weighted transitivity T , and

global efficiency E for all frequency bands.

1.5 Summary

Figure 1.1 summarized the conceptual framework of whole study. The figure de-

picted the different concepts, theories and experimental works that were brought to-

gether in this work and how they are connected to each other. The arrows represent

the flow of ideas or the dependence of one concept on the others, as indicated by the

arrowheads and the tails of the arrows respectively. Essentially, a unifying frame-

work of connectivity measure were devised in the language of category theory. In this

framework, connectivity theory distils and assembles the core components shared by

all connectivity measure. A connectivity measure then becomes a model of connectiv-

ity theory. The framework also serves as the template for building a novel connectivity

measure which was compared with established connectivity measure using an open-
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source MEG dataset. The novel connectivity measure was developed on the basis of

capturing the similarity of the complexity between two brain signals. A statistical

approach were also established that allows for testing both absence and presence of

experimental effect by defining equivalence regions and using Bayesian posterior dis-

tribution estimation of the parameters involved. This was then used to test the potential

effects of auditory stimuli on emotional processing network of the brain.

Overall, the scope of this study comprises of 2 parts. The first one is to extend the

theoretical and methodological aspects of brain connectivity research by constructing a

unifying framework for connectivity measures, developing a novel connectivity mea-

sure and developing a statistical approach which capable of accepting and rejecting

both null and alternate hypothesis. These theoretical advancements would respectively

aids in further development of novel connectivity measures, unravels new insights in

terms of brain connectivity research and expands the direction and domain of neu-

roimaging research. The second part is to apply brain connectivity and network analy-

sis together with these theoretical development to examine brain connectivity patterns

in the emotion processing network using MEG in a sample of healthy adult population

in response to diverse auditory stimuli. These findings may have implications for our

understanding of brain function in particular the emotion processing and could inform

the development of interventions for emotional dysregulation.
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Figure 1.1: The conceptual framework summarizing the whole study.
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CHAPTER 2

LITERATURE REVIEW

This chapter deals with the basics and essential principles that are foundational

to the understanding of brain connectivity and network analysis using neuroimaging

data and set the stage for the theoretical and experimental works by reviewing liter-

ature on music therapy and how it induces emotion, Quranic therapy, and by laying

the foundation of category theory. In Section 2.1 and Section 2.2, a few aspects of the

human brain neurophysiology are covered since it is important to and being exploited

by non-invasive neuroimaging techniques such as EEG and MEG for capturing brain

activity along with the strengths and limitations of each recording methods. In Sec-

tion 2.3, the fundamentals and issues on estimating and reconstructing source activity

from EEG and MEG data sets are discussed. Of relevance to this work, connectivity

measures and additionally several network measures are also reviewed in terms of their

mathematical definitions and their research applications in Section 2.4 and section 2.7

respectively. In Section 2.9, the literature on resting state studies are reviewed. In Sec-

tion 2.10, literature on musical therapy are also reviewed alongside the neurocorrelates

of music induced emotion. Therapeutic effects of listening to Qur’anic recitation and

variations of Qur’anic recitation are reviewed in Section 2.11. Lastly, in Section 2.5,

several concepts and constructs in the field of category theory are introduced as they

are heavily relied upon in developing a unified framework for connectivity measures.

2.1 Neurophysiology

The human brain is an extremely complex system containing many types of cells.

Of pertinence to the understanding of EEG and MEG signals are neurons. Neurons are
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excitable cells that collectively play a major role in processing and transmitting infor-

mation by the means of electrical and chemical signals. A typical neuron has a cell

body which contains the nucleus, dendrites which are extensions involved in receiving

stimuli from other neurons, and axon which sends information to other neurons. Neu-

rons create fluctuating electrical currents when stimulated. There are two main types

of neuronal activation: the action potential and post-synaptic potential.

An action potential is a short lived (lasts ∼ 1 ms) rapid changes in membrane po-

tential consisting of depolarization and repolarization. It travels down the axon and

triggers the release of neurotransmitters which bind to receptors of the post-synaptic

neurons. The binding activates post-synaptic potentials which could be either: excita-

tory post-synaptic potential (EPSP) or inhibitory post-synaptic potential (IPSP). EPSP

arises when the neurotransmitter is of excitatory type such as glutamate while IPSP

arises when the neurotransmitter is of inhibitory in nature such as gamma aminobu-

tyric acid (GABA).

These post-synaptic potentials are believed to be the main source of the signals cap-

tured by EEG and MEG. Action potentials are less likely to play a role since they are

short lived and biphasic. Consequently, the positive and negative deflection will can-

cel out each other since they are less likely to synchronize. In contrast, post-synaptic

potentials are long-lived and monophasic. These properties make them more likely to

synchronize leading to temporal summation of the total potentials. Together with the

spatial summation made possible by the geometrical configuration of the pyramidal

cells which are parallel to each other and perpendicular to the cortical surface, it be-

comes possible for the electrical activities to be detected outside of the skull by EEG

and MEG. Therefore, distributed networks of synchronous cortical patches activations
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are the generators of EEG and MEG signals (Nunez, Srinivasan, et al., 2006).

2.2 Neuroimaging

Functional neuroimaging is one of the many approaches used by neuroscientist to

investigate brain functions. This approach deals with the non-invasive brain imaging

tools including MEG, EEG, and fMRI. These tools are indispensable in gaining better

picture of haemodynamic, electrophysiological, metabolic process of alive and func-

tioning brain. The types of information that they provide are approximate location of

brain areas that involve in particular task, time series of activity of those areas, the

effect of task or stimulus in modulating the strength of activation. Of note, the tools

provide different temporal and spatial resolution that needs to be considered while

designing and conducting neuroscientific experiments.

EEG and MEG either alone or in combination have been used to study the dynamics

of brain activity due to their high temporal resolution. Compared to fMRI however,

they have low spatial resolution and suffer the mixing and field spreading of the local

field potentials. fMRI on the other hand, have the best spatial resolution of up to 1mm3

per voxel, but provides relatively low temporal resolution of about 1s.

Information processing in the brain and cognition occurs in the milisecond time

scale (Koenig et al., 2002; Papo, 2013) which is similar to the temporal resolution that

can be attained by EEG and MEG. Compared to fMRI, EEG and MEG does not depend

on surrogate marker of neuronal activity such as glucose or oxygen consumption, but

directly measure electrical activity in real time.
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2.2.1 EEG

EEG was invented and developed by Hans Berger in 1924 (İnce, Adanır, & Sevmez,

2021). EEG works by measuring the differences in electrical potential recorded be-

tween pair of electrodes that are placed on the scalp. It can directly measure the elec-

trical activity of a population of neurons in real time and thus has been used to monitor

spontaneous and evoked brain activity. EEG records on the surface of the scalp, both

the tangentially and radially oriented cortical dipole activity. With multi-channels ele-

crodes placed evenly on the scalp, one can estimate the spatiotemporal location of

neuronal activity. Due to its low cost and non-invasive nature, EEG has been widely

used in clinical and research settings to observe and monitor brain electrical activity.

This non-invasive procedure of recording brain activity from the surface of the

scalp hinge on electrical conductivity of different layers of head compartments which

unavoidably leads to volume conductions problem. Volume conduction problem is not

inconsequential as it can cause spurious connectivity estimation between sensors when

in actuality there is no synchronization. This is due to electrical activity in single brain

region is being simultaneously recorded by multiple EEG sensors.

Facing with the problem, many researchers sought to estimate the electrical activity

at the level of sources or brain regions. This necessitates solving the inverse problems

which will be discussed in the next few sections. This, however, only solve the vol-

ume conduction issues to a certain degree as signal leakage is still present within the

computed signals. Moreover, since the electrical current passes through different lay-

ers of tissues having different conductivity, the forward model or the head model must

be realistic enough to account for these differences. This, in turns, results in higher

computational complexity and load within the overall analysis.
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2.2.2 MEG

MEG is another non-invasive neuroimaging technique that is widely used to record

brain activity based upon measuring the magnetic flux induced by synchronized neural

firing. MEG uses an array of sensors that are extremely sensitive to the changes in

the magnetic fields. These high-density sensors (100 to 300 in numbers) are arranged

within the helmet-shaped MEG dewar surrounding subject’s head. MEG is closely

related to EEG since both electrical field and magnetic field are parts of a single entity

called electromagnetic field. Thus, both MEG and EEG measure the same underlying

neuronal activity. While EEG measures both tangential and radial components of a

current dipole, MEG is only sensitive to the tangential components. Thus, EEG is able

to capture activity in both sulci and gyri while MEG captures activity mainly originated

from the sulci.

Since neural activity generates extremely weak magnetic fields, MEG measure-

ment faces both opposing challenges in terms of requiring extremely high sensors’

sensitivity while simultaneously needs to suppress external interferences that are of

several orders of magnitude stronger than the brain signals. The weakness of the brain

magnetic field necessitates the use of extremely sensitive magnetic sensors, that is, su-

perconducting Quantum interference device (SQUID) sensors. To reduce the effects

of background magnetic noise, the recording session are conducted in a magnetically

shielded room. Nevertheless, external noises can still creep into the recording thus

requiring pre-processing steps before any analysis and inferences on the recordings

could be done.

There are a few types of MEG sensors including: magnetometers, axial gradiome-

ters, and planar gradiometers. A magnetometer consists of a single pick-up coil and no
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compensatory coil. This configuration allows it to measure magnetic field component

that is along the direction perpendicular to the surface of the pick-up coil. The problem

is it is sensitive to both brain signals and external sources. In contrast, a gradiometer

consists of pick-up coil as well as compensatory coil. This configuration allows it to

measure the spatial gradient of the magnetic field component. This makes it sensitive

to the near-by brain signals but blind to far-away sources. The two coils of gradiome-

ter can be arranged in axial and planar configurations. An axial gradiometer is most

sensitive to sources around the rim of the sensor while a planar gradiometer is most

sensitive to sources that are exactly beneath them.

There are several advantages of using MEG in researching neural processes, espe-

cially when demonstrating how activity of one cortical field can affect and interact with

the activity of other parts in the brain. First, similar to EEG, MEG can record neural

activity at the temporal resolution of milliseconds. Second, recording from MEG sen-

sors enables researchers to investigate oscillatory neural activity in higher frequency

ranges (alpha, beta, gamma) compared to those achievable in both fMRI/PET. In addi-

tion, the sampling rate in MEG (commonly greater than 1 kHz) is not constrained by

electrode impedance which is an issue in EEG recording. Hence, it enables researchers

to study the ultra-high frequency (>100 Hz) brain activity. Third, compared to EEG,

volume conduction artifacts are significantly reduced in MEG since head structures for

example skull and CSF do not affect the transmission of the magnetic fields (Leahy,

Mosher, Spencer, Huang, & Lewine, 1998).
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2.3 Source reconstruction

As mentioned before, due to volume conduction in EEG and field spread in MEG,

brain activity at any single location is being picked up by multiple sensors simultane-

ously. This poses a serious challenge for the connectivity analysis (Bastos & Schoffe-

len, 2016; Nolte et al., 2004). One of the possible solutions is to reconstruct the signals

at the level of the source using established methods prior to connectivity estimation

(Gross et al., 2013). Source reconstruction also has other benefits. It makes result inde-

pendent of any particular sensor configuration, the result can be interpreted in terms of

brain regions involved and it enables comparison with other neuroimaging modalities

such as fMRI, PET and more (Gross et al., 2013; Schoffelen & Gross, 2009). Many so-

phisticated techniques have been developed to reconstruct and estimate the distribution

of electrical activity within the human brain from EEG and MEG recordings. These

include: beamformer, minimum norm estimation (MNE) (Hamalainen, 1984), low

resolution brain electromagnetic tomography (LORETA) (Pascual-Marqui, Michel,

& Lehmann, 1994), focal under-determined system solution (FOCUSS)(Gorodnitsky,

George, & Rao, 1995) and many more.

In addition to being widely used in research investigating higher brain function,

source imaging has also become essential tools in clinical application such as localiz-

ing the epileptogenic zone prior to surgery (Van Mierlo, Vorderwülbecke, Staljanssens,

Seeck, & Vulliémoz, 2020). This has been driven not only by the availability of in-

creasingly higher computational power which enables the analysis to be completed

quickly, but also has been fuelled by the increase in research developing better and

more robust source imaging techniques.

As an alternative, if a researcher wants to infer connectivity at the sensors level cir-
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cumventing the need for more complex source based analysis, they can apply connec-

tivity measures that are insensitive to volume conductions such as ICOH, PLI, envelope

of the imaginary coherence (EIC) (Bornot, Wong-Lin, Ahmad, & Prasad, 2018). How-

ever, the interpretation of the results is limited as there is no conclusive information

about the location and distribution of the source activity. This is due to the fact that

maximal activity at any particular sensor is not indicative of the maximal activity of

the brain area underneath it. Besides, a single topographical distribution of electrical

potentials or magnetic fields at the sensors level could be generated by more than one

underlying neuronal activity configuration (Fender, 1987).

2.3.1 Forward modelling and inverse problem

Source localization or source estimation involves both forward modelling and in-

verse problem. Forward modelling is the process by which scalp potentials is pre-

dicted from the source current in the brain using a volume conductor model of the

head. Forward modelling is a straightforward practice which require fewer computa-

tions provided the complete description of the model and all the model parameters are

available. Since the frequency of interest is below 1000 Hz, quasi-static approxima-

tion of Maxwell’s equations is used (Baillet, Mosher, & Leahy, 2001; Sarvas, 1987).

To be precise, let N and M denote the number of sensor and the number of brain voxels

respectively. The voxels can be derived by dividing the source space uniformly such

that each voxel has a point source. The equation which connects scalp potential x(t)

and source current j(t) at time t is defined as follows:

x(t) = Lj(t)+n(t) (2.1)
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where x(t) ∈RN×1 is a vector of recorded potential taken from N sensors, L ∈RN×3M

is the lead field matrix (also known as gain matrix) for N sensors and M source current

dipoles, j(t) ∈R3M×1 is the source current dipoles and n(t) ∈RN×1 is the noise. L has

all geometric and conductive information of the head volume conductor tissues such

as skin, skull, cerebrospinal fluid and etc. This can be modelled as a single homo-

geneous compartment (Frank, 1952), four concentric spheres (Hosek, Sances, Jodat,

& Larson, 1978), and subject specific anatomy MRI using boundary element method

(BEM) method (Akalin-Acar & Gençer, 2004) or finite element method (Wolters et al.,

2006).

On the contrary, the inverse problem works in the opposite direction of forward

modelling, i.e., it estimates the location and magnitude of the source currents from the

measured scalp potentials. In general, inverse problem or source estimation can be

stated as the solution to a minimization problem of the following form:

ĵ(t) = argmin
j(t)

(
∥x(t)−Lj(t)∥+ r(j(t))

)
(2.2)

where the first term is the norm of the error term between observed signals x(t) and

the estimated signals Lj(t) and r(.) denotes regularization function. Regularization is

important to optimize and stabilize the solution by finding the balance between mini-

mizing the residual and minimizing the contribution of noise.

In practice, only a finite amount of data is available to estimate models and their

parameters which usually involves higher degree of freedom. Thus, inverse problem

is not unique which means there are many models together with their respective pa-

rameters (can be up to infinity) that are able to explain the data equally well. It is also

not stable as the solution is highly sensitive to small changes in the data. These make
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inverse problem an ill-posed problem. In general, there are two approaches for solv-

ing the problem: the approach of discrete source reconstruction also known as dipole

fitting and the approach of distributed source reconstruction. Dipole fitting method is

mainly used to localize only one or a few focal sources in the brain at each time point

(Michel & He, 2019). This method is appropriate when the neuronal activity is local-

ized at a small regions of the brain (Komssi, Huttunen, Aronen, & Ilmoniemi, 2004).

Such as in the case of localizing epileptic spikes and localizing sensorimotor cortex

(Lantz, Holub, Ryding, & Rosen, 1996; Willemse, Hillebrand, Ronner, Vandertop, &

Stam, 2016). When expecting the involvement of more than one region of the brain

as in the case of connectivity analysis, distributed source modelling is recommended

since it is better at simultaneously representing multiple sources (Tadel et al., 2019).

2.3.2 Minimum norm estimation (MNE)

There exists a variety of methods for distributed source space reconstruction, of

which, MNE and beamformers are among the commonly used methods. These meth-

ods are reviewed extensively elsewhere (Asadzadeh, Rezaii, Beheshti, Delpak, & Meshgini,

2020; Grech et al., 2008; Michel et al., 2004). Among these source reconstruction

methods, MNE is a popular technique to estimate brain electrical activity if the detailed

information about the generator profile was not available. MNE was introduced and

developed by Hämäläinen and Ilmoniemi (1994) to address the limitation and issues of

previous method (equivalence current dipole model) with minimal assumptions. The

method’s only assumption is that the source currents are spatially restricted to a certain

area.

In distributed source space reconstruction, dipoles are distributed over the whole

brain to simultaneously model the activity over all locations. The number of active
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sources is defined by the density of the grid. Based on the forward model equation, the

estimated source current ĵ(t) can be calculated as follows:

ĵ(t) = L†x(t) (2.3)

where L† is the linear inverse operator which is obtained by solving the minimization

problem. To solve the problem, MNE applies l2-norm for the error term and r(j(t)) =

ϑ 2j(t)T S−1j(t) for the regularization term. ϑ denotes the Tikhonov regularization

parameter. Entering these into equation 2.2 yields the following equation:

ĵ(t) = argmin
j(t)

(
(x(t)−Lj(t))T (x(t)−Lj(t))+ϑ

2j(t)T S−1j(t)
)

(2.4)

which when solved would result in:

L† = SLT (LSLT +ϑ
2D)−1 (2.5)

where S ∈ R3M×3M is the source covariance matrix, LT is the matrix transpose of L,

and D ∈ RN×N is data noise covariance matrix.

However, MNE is bias towards superficial sources since the sensitivity of the sen-

sors decreases as the distance from the source increases. The weighted MNE (wMNE)

method has been introduced to mitigate this problem by minimizing the weighted norm

of the solution. This is achieved by modifying the source covariance matrix S to aug-

ment deeper source location. Specifically, the element of S that corresponds to the p-th

source location are scaled by the following factor δp:

δp =
(
lT1pl1p + lT2pl2p + lT3pl3p

)−ϕ (2.6)
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