TRANSCRIPTOME ANALYSIS OF ISCHEMIC STROKE RECOVERY INDUCED BY NEURAL STEM CELL PRECONDITIONED WITH BAICALEIN-ENRICHED FRACTION OF OROXYLUM INDICUM

ASMAA' BINTI MOHD SATAR

UNIVERSITI SAINS MALAYSIA

2024

TRANSCRIPTOME ANALYSIS OF ISCHEMIC STROKE RECOVERY INDUCED BY NEURAL STEM CELL PRECONDITIONED WITH BAICALEIN-ENRICHED FRACTION OF OROXYLUM INDICUM

by

ASMAA' BINTI MOHD SATAR

Thesis submitted in fulfilment of the requirements for the degree of Master of Science

July 2024

ACKNOWLEDGEMENT

In the name of ALLAH, The Most Gracious and The Most Merciful. I extend my heartfelt gratitude to Allah for granting me the strength, patience, and determination to successfully complete this study. I would like to express my sincere appreciation to my supervisor, Dr. Tan Suat Cheng, for being a kind, knowledgeable, and talented guide throughout my study. My immense thanks also go to my cosupervisors, Associate Professor Dr. Badrul Hisyam bin Yahaya and Dr. Mohd Zulkifli bin Mustafa, for their valuable guidance and encouragement. I am deeply grateful to the Fundamental Research Grant Scheme (FRGS), USM Graduate Student Financial Assistant (GRA-Assist), MARA Graduate Excellence Programme (GREP), and all USM staff and laboratory assistants who provided assistance for my research. I want to convey a special gratitude to my late father, Mohd Satar bin Su, whose spirit and advice while he was alive continue to inspire me on this path. My heartfelt appreciation also goes to my spiritual advisor, my beloved mother, Mariah binti Mat, who consistently loves and encourages me unconditionally to pursue my dreams. I am thankful for the unwavering support of my siblings, Sumaiyah, Anas, Ammar, Salman, Zaid, Imraan, and Sofwan, who have patiently stood by me through ups and downs. To my teammates, Sis Farah Amna and Sis Hakimah as well as Positivitea-mate (Sis Epa, Sis 'Adani, Sis Assyuhada, Sis Farihin, Sis Bushra, and Sis Azhani), I express my gratitude for their opinions, support, problem-solving, and guidance, thanks guys. This journey would have been impossible without their spiritual and physical support. Lastly, I extend my sincere thanks to all examiners for their devoted time and tireless efforts, and to all individuals who contributed to the completion of this study. Thank you from the bottom of my heart.

TABLE OF CONTENTS

ACK	NOWLED	GEMENT	ii
TABI	LE OF CO	NTENTSi	ii
LIST	OF TABI	LES	ii
LIST	OF FIGU	RES xi	V
LIST	OF EQUA	ATIONSxx	ii
LIST	OF SYMI	BOLSxxi	ii
LIST	OF ABBB	REVIATIONS xx	V
LIST	OF APPE	NDICES xxx	ki
ABST	'RAK		ii
ABST	RACT	xxxi	V
CHAI	PTER 1 IN	NTRODUCTION	1
1.1	Backgrou	Ind of study	1
1.2	Problem	statement	3
1.3	Significa	nce of the study	4
1.4	Objective	e of the study	5
	1.4.1	General objective	5
	1.4.2	Specific objectives	5
1.5	Hypothes	sis of the study	6
CHAI	PTER 2 L	ITERATURE REVIEW	7
2.1	Stroke		7
	2.1.1	Ischemic stroke	7
	2.1.2	Pathophysiological events of ischemic stroke1	0
	2.1.3	Risk factors of ischemic stroke 1	2
2.2	Current t	reatment for ischemic stroke 1	4
	2.2.1	Thrombolysis1	4

	2.2.2	Mechanical thrombectomy	15
2.3	Regener	ative treatment for ischemic stroke	15
	2.3.1	Neural stem cells (NSCs)	16
2.4	Precond	itioning strategies to enhance NSC-based therapy	17
2.5	Oroxylu	<i>m indicum</i> plant	19
	2.5.1	Phytochemical of <i>O. indicum</i>	22
2.6	Baicalei	n	23
2.7	Endothe	lin-1 ischemic stroke rat model	24
2.8	Animal	behavior test	25
	2.8.1	Modified neurological severity score (mNSS) test	25
	2.8.2	Cylinder test	26
	2.8.3	Grid-walking test	27
2.9	Transcri	ptomic analysis using microarray assay	27
	2.9.1	Microarray definition	28
	2.9.2	Application of microarray	28
CHA	PTER 3 N	MATERIALS AND METHODS	. 30
3.1	Material	ls	30
	3.1.1	General chemicals and reagents	30
	3.1.2	General consumables	32
	3.1.3	General instruments	33
	3.1.4	Cell line	34
	3.1.5	Kits	35
	3.1.6	Software	35
	3.1.7	Primers	36
	3.1.8	Neural stem cell (NSC) line	39
	3.1.9	Animals	39
3.2	Preparat	ion of media, solutions and buffers	. 39

3.2.1	Preparatio	on of solution for HPLC	39
3.2.2	Preparatio	on of complete medium and solutions for cell culture	40
	3.2.2(a)	Epidermal growth factor (EGF)	40
	3.2.2(b)	Basic fibroblast growth factors (bFGF)	40
	3.2.2(c)	Coating matrix for adherent NSCs culture	40
	3.2.2(d)	Preparation of complete StemPro® NSC serum free medium (SFM)	40
	3.2.2(e)	MTT solution	41
3.2.3	Preparatio	on of solutions for ischemic stroke induction	41
	3.2.3(a)	1X Phosphate-buffered saline (PBS)	41
	3.2.3(b)	80 μM Endothelin-1 (ET-1)	41
3.2.4	-	on of solutions to synthesis complementary DNA for quantitative real-time PCR (qPCR)	42
	3.2.4(a)	RevertAid TM H Minus Strand cDNA master mix	42
225			40
3.2.5	Preparation	on of solutions for gel electrophoresis	42
3.2.5	Preparation 3.2.5(a)		
3.2.5	3.2.5(a) Preparatio		42
	3.2.5(a) Preparation of RNA	Tris-Borate-EDTA (TBE) buffer	42 42
	3.2.5(a) Preparation of RNA 3.2.6(a)	Tris-Borate-EDTA (TBE) buffer	42 42 42
	 3.2.5(a) Preparation of RNA 3.2.6(a) 3.2.6(b) 	Tris-Borate-EDTA (TBE) buffer on of solutions for double-cycle reverse transcription 1 st cycle ss-cDNA master mix	42 42 42 43
	 3.2.5(a) Preparation of RNA 3.2.6(a) 3.2.6(b) 3.2.6(c) 	Tris-Borate-EDTA (TBE) buffer on of solutions for double-cycle reverse transcription 1 st cycle ss-cDNA master mix 1 st cycle ds-cDNA master mix	42 42 42 43 43
	 3.2.5(a) Preparation of RNA 3.2.6(a) 3.2.6(b) 3.2.6(c) 3.2.6(d) Preparation 	Tris-Borate-EDTA (TBE) buffer on of solutions for double-cycle reverse transcription 1 st cycle ss-cDNA master mix 1 st cycle ds-cDNA master mix <i>In vitro</i> transcription (IVT) master mix	42 42 43 43 44
3.2.6	 3.2.5(a) Preparation of RNA 3.2.6(a) 3.2.6(b) 3.2.6(c) 3.2.6(d) Preparation 	Tris-Borate-EDTA (TBE) buffer on of solutions for double-cycle reverse transcription 1 st cycle ss-cDNA master mix 1 st cycle ds-cDNA master mix <i>In vitro</i> transcription (IVT) master mix 2 nd cycle ss-cDNA master mix	42 42 43 43 44
3.2.6	 3.2.5(a) Preparation of RNA 3.2.6(a) 3.2.6(b) 3.2.6(c) 3.2.6(d) Preparation hybridization 3.2.7(a) 	Tris-Borate-EDTA (TBE) buffer on of solutions for double-cycle reverse transcription 1 st cycle ss-cDNA master mix 1 st cycle ds-cDNA master mix <i>In vitro</i> transcription (IVT) master mix 2 nd cycle ss-cDNA master mix on of solutions for fragmentation, labeling and tion	42 42 43 43 44 44
3.2.6	 3.2.5(a) Preparation of RNA 3.2.6(a) 3.2.6(b) 3.2.6(c) 3.2.6(d) Preparation hybridization 3.2.7(a) 3.2.7(b) 	Tris-Borate-EDTA (TBE) buffer on of solutions for double-cycle reverse transcription 1 st cycle ss-cDNA master mix 1 st cycle ds-cDNA master mix <i>In vitro</i> transcription (IVT) master mix 2 nd cycle ss-cDNA master mix on of solutions for fragmentation, labeling and tion Fragmentation master mix	42 42 43 43 44 44 44 45

	3.2.8			s for washing, staining and scanning of	.46
		3.2.8(a)	Wash A buf	fer	.46
		3.2.8(b)	Wash B buf	fer	.47
		3.2.8(c)	Streptavidin	phycoerythrin (SAPE) solution mix	.47
		3.2.8(d)	Antibody so	lution mix	.47
3.3	Methodo	logies			. 49
	3.3.1			<i>cum</i> plant material and confirmation of f <i>O. indicum</i>	. 51
		3.3.1(a)	Plant materi	al collection	.51
		3.3.1(b)	Macroscopic	e and microscopic evaluation	.51
		3.3.1(c)	Physicocher	nical	.52
			3.3.1(c)(i)	Moisture content	. 52
			3.3.1(c)(ii)	Total-ash value	
				Water soluble ash	
				Acid insoluble ash	
		3.3.1(d)	Extraction, f baicalein-en	Tractionation and characterization of riched fraction (BEF) from <i>O. indicum</i>	
			3.3.1(d)(i)	Extraction to obtain crude extract from <i>C indicum</i> leaves	
		3.3.1(e)		n to obtain baicalein-enriched fraction <i>O. indicum</i> leaves	.57
		3.3.1(f)		tion of baicalein-enriched fraction ed from <i>O. indicum</i>	. 59
			3.3.1(f)(i)	High-performance liquid chromatograph (HPLC) analysis	-
	3.3.2			e cytotoxicity effects and optimum for NSCs preconditioning <i>in vitro</i>	. 60
		3.3.2(a)	0	ure vessels with CELLStart TM as	.60
		3.3.2(b)	Thawing and	d cell establishment	.60
		3.3.2(c)	Passaging of	f rat fetal NSCs	.61

	3.3.2(d)	MTT cell via	ability assay	62
	3.3.2(e)	Precondition	ing of rat fetal NSCs with BEF	63
	3.3.2(f)	RNA extract	ion of BEF-preconditioned NSCs	64
	3.3.2(g)		t of RNA sample concentration and	64
	3.3.2(h)	Synthesis of	complementary DNA (cDNA)	65
	3.3.2(i)	Primer desig	n and optimization	65
		3.3.2(i)(i)	Primer efficiency test	66
	3.3.2(j)	Quantitative	real-time PCR (qPCR)	67
	3.3.2(k)	Data analysi	s of target gene expression	67
3.3.3	stroke ra	at model and	F-preconditioned NSCs into ischemic assessment of the ischemic stroke plantation	68
	3.3.3(a)	Animal ethic		68
	3.3.3(b)	Animal sam	ple size calculation	68
	3.3.3(c)		ischemic stroke on experimental rats	69
	3.3.3(d)		ion of BEF-preconditioned rat fetal	73
	3.3.3(e)		of neurological deficit after on of BEF-preconditioned NSCs	74
		3.3.3(e)(i)	Modified neurological severity score (mNSS) test	74
		3.3.3(e)(ii)	Cylinder test	79
		3.3.3(e)(iii)	Grid-walking test	80
3.3.4	regulation	n of neurologi	ey genes and pathways involved in the cal functions and behaviors recovery in using RNA microarray	81
	3.3.4(a)	Extraction of	f total RNA	84
	3.3.4(b)		on of RNA concentration, purity and	85
		3.3.4(b)(i)	Nanodrop measurement	85
		3.3.4(b)(ii)	Agarose gel electrophoresis	

		3.3.4(b)(iii)	RNA integrity number measurement 86
	3.3.4(c)	Double-cycle	e reverse transcription of RNA
		3.3.4(c)(i)	Preparation of total RNA/Poly-A RNA control mixture
		3.3.4(c)(ii)	Synthesis of single-strand cDNA (ss- cDNA)
		3.3.4(c)(iii)	Synthesis of double-strand cDNA (ds- cDNA)
		3.3.4(c)(iv)	Synthesis of cRNA91
		3.3.4(c)(v)	Purification and quantitation of cRNA 92
		3.3.4(c)(vi)	Synthesis of second cycle single stranded cDNA (2 nd cycle ss-cDNA)93
		3.3.4(c)(vii)	Purification and quantitation of 2 nd cycle ss- cDNA
	3.3.4(d)		on, labeling and hybridization of the DNA94
	3.3.4(e)		ining and scanning of the hybridized DNA96
	3.3.4(f)	Data analysis	5
		3.3.4(f)(i)	Microarray data profiling using TAC software
		3.3.4(f)(ii)	Identification of differential expression genes using TAC software101
		3.3.4(f)(iii)	Gene Ontology analysis and biological pathway analysis using Database for Annotation, Visualization and integrated discovery (DAVID) software
3.3.5	BEF-prec	onditioned N	enes in regulation stroke recovery after SCs transplantation using quantitative 102
	3.3.5(a)	Synthesis con	mplementary DNA (cDNA)102
	3.3.5(b)	Primer desig	n and optimization103
		3.3.5(b)(i)	Primer efficiency test 103
	3.3.5(c)	Quantitative	real-time PCR (qPCR)103
	3.3.5(d)	Data analysis	s of target gene expression103
3.3.6	Statistical	l analysis	

CHA	PTER 4 F	RESULTS 105
4.1		ent of quality of plant materials and confirmation of the baicalein- fraction (BEF) from <i>O. indicum</i> leaves
	4.1.1	Macroscopic characteristics of O. indicum leaves 105
	4.1.2	Microscopic evaluation of <i>O. indicum</i> leaves
	4.1.3	Physicochemical parameters of O. indicum leaves 108
	4.1.4	Extraction, fractionation and characterization of baicalein- enriched fraction (BEF) from <i>O. indicum</i> leaves
	4.1.5	Yield of crude and fractionated extract
	4.1.6	Quantification of baicalein in crude and fractionated extracts110
4.2		nation of the cytotoxicity effects and optimum concentration of BEF s preconditioning <i>in vitro</i>
	4.2.1	Effects of BEF preconditioning on the proliferation and viability of NSCs
		4.2.1(a) MTT assay114
		4.2.1(b) IC ₅₀ determination
	4.2.2	Effects of BEF preconditioning on the stemness of NSC gene expression
		4.2.2(a) Relative quantification of genes of interest116
4.3	-	ntation of BEF-preconditioned NSCs into ischemic stroke rats model ssment of the ischemic stroke recovery after the transplantation 116
	4.3.1	Evaluation of the stroke severity after ischemic stroke induction
	4.3.2	Assessment of rat body weight changes after treatment
	4.3.3	Assessment of neurological deficit scoring after treatment 119
		4.3.3(a) mNSS test
		4.3.3(b) Cylinder test
		4.3.3(c) Grid-walking test
4.4		ation of the key genes and pathways involved in the regulation of gical functions and behaviors recovery in the ischemic stroke rat model 123
		120

	4.4.1	RNA qua	lity control check
		4.4.1(a)	RNA concentration and purity123
		4.4.1(b)	RNA integrity
	4.4.2	Analysis	of microarray profiling127
		4.4.2(a)	Principal component analysis (PCA)127
		4.4.2(b)	Quality control (QC) assessment
		4.4.2(c)	Heatmap clustering 129
		4.4.2(d)	Differential expression gene
		4.4.2(e)	Volcano plot131
		4.4.2(f)	Venn diagram133
		4.4.2(g)	Top 10 upregulated and downregulated genes
	4.4.3	component of Genes	tology (GO) analysis of biological process, cellular nt and molecular functions, and Kyoto Encyclopedia s and Genomes (KEGG) analysis for biological
		4.4.3(a)	Gene Ontology (GO) analysis141
		4.4.3(b)	Biological pathways146
	4.4.4		ng the effects of BEF-preconditioned NSCs treatment hemic stroke rat using qPCR149
		4.4.4(a)	qPCR primer amplification specificity and efficiency
		4.4.4(b)	Relative quantification of genes of interest
CHAI	PTER 5 D	ISCUSSI	DN 155
5.1		1	ality of <i>O. indicum</i> plant material and confirmation of fraction (BEF) from the leaves of <i>O. indicum</i>
	5.1.1	Physicocl	nemical study of <i>O. indicum</i> plant materials 155
	5.1.2		n, enrichment and characterization of baicalein- fraction (BEF) from <i>O. indicum</i>
5.2			e effects of BEF preconditioning on NSC proliferation and

5.3	-	ntation of BEF-preconditioned NSCs into ischemic stroke rats mode sment of the ischemic stroke recovery after the transplantation 161
5.4	neurolog	tion of the key genes and pathways involved in the regulation of the cal functions and behaviors recovery in the ischemic stroke rat mode 165
	5.4.1	Key genes involved in regulating neurological functions and facilitating behavioral recovery
	5.4.2	Gene Ontology (GO) involved in regulating neurological functions and facilitating behavioral recovery
	5.4.3	Key pathways involved in regulating neurological functions and facilitating behavioral recovery
CHAI	PTER 6 C	ONCLUSION AND RECOMMENDATION 176
6.1	Findings	summary 176
6.2	Limitatio	ns and recommendations 177
REFE	RENCES	
APPE	NDICES	

LIST OF TABLES

Table 2.1	The classification of botanical for <i>O. indicum</i>
Table 2.2	Different parts of O. indicum and the compounds23
Table 3.1	List of chemicals and reagents used in this study
Table 3.2	List of consumables used in this study
Table 3.3	List of instruments used in this study
Table 3.4	List of cell line used in this study
Table 3.5	List of kits used in this study
Table 3.6	List of software used in this study
Table 3.7	List of gene name, symbol, functions and nucleotide sequences of primers used in this study
Table 3.8	Volume of reagents used for the 1 st cycle ss-cDNA master mix43
Table 3.9	Volume of reagents used for the 1 st cycle ds-cDNA master mix43
Table 3.10	Volume of reagents used for the <i>in vitro</i> transcription (IVT) master mix
Table 3.11	Volume of reagents used for the 2 nd cycle single-stranded cDNA (ss-cDNA) master mix
Table 3.12	Volume of reagents used for the fragmentation master mix45
Table 3.13	Volume of reagents used for the labeling master mix45
Table 3.14	Volume of reagents used for the hybridization master mix46
Table 3.15	Volume of reagents used for the SAPE solution mix47
Table 3.16	Volume of reagents used for the antibody solution mix48
Table 3.17	The assessment to determine rat stroke severity score (Abeysinghe & Roulston, 2018). Only rats that scored 2-4 were included in the study

Table 3.18	Behavior scoring for modified neurological severity score (mNSS)75
Table 3.19	Details of thermal cycler program for microarray assay
Table 4.1	Microscopical evaluation of <i>O. indicum</i> leaves105
Table 4.2	Physicochemical evaluation of <i>O. indicum</i> leaves109
Table 4.3	Baicalein content in <i>O. indicum</i> extracts before and after fractionation
Table 4.4	List of RNA concentration values
Table 4.5	List of RNA integrity number (RIN) values
Table 4.6	List of pair numbers between two different groups130
Table 4.7	List of top 10 upregulated and downregulated DEGs for Pair 1: Group 3 vs Group 1, in which Group 1 = non-treated rats and Group 3 = rats treated with BEF-preconditioned NSCs
Table 4.8	List of top 10 upregulated and downregulated DEGs for Pair 2: Group 3 vs Group 2, in which Group 2 = treated with non- preconditioned NSCs and Group 3 = rats treated with BEF- preconditioned NSCs
Table 4.9	List of top 10 upregulated and downregulated DEGs for Pair 3: Group 2 vs Group 1, in which Group $1 =$ non-treated rats and Group $2 =$ treated with non-preconditioned NSCs
Table 4.10	The amplification efficiency and R ² obtained from standard curves for each target gene

LIST OF FIGURES

Page

Figure 2.1	Illustration of three major types of ischemic stroke (a) thrombotic,
	(b) embolic and (c) lacunar stroke. (modified from: (Lacunar Stroke
	Guide: Causes, Symptoms and Treatment Options, 2023))9
Figure 2.2	Pathophysiology of ischemic stroke leads to cerebral damage, initiating a complex series of events. Excitotoxicity gives rise to oxidative stress and a post-ischemic inflammatory response leading to cell apoptosis, cell necrosis, blood-brain barrier dysfunction. Ultimately, these processes culminate in led cell death and
	consequently, cerebral damage.(modified from: (Mir et al., 2014))12
Figure 2.3	Representative images of <i>O. indicum</i> plant and its components; a) <i>O. indicum</i> plant, b) bark, c) leaves, d) flower and e) sword shape of fruit
Figure 2.4	The chemical structure of baicalein, C ₁₅ H ₁₀ O ₅ 24
Figure 3.1	Overall flowchart of this study
Figure 3.2	Set up of Soxhlet extractor for crude extraction process
Figure 3.3	Set up of rotary evaporator for extract solvent drying process
Figure 3.4	Set up of Diaion® HP-20 resin column chromatography for fractionation process
Figure 3.5	(a) Drill bur was adjusted to make hole using stereotaxic, (b) adjusted position was marked with permanent marker, (c) the cannula assembly consisted of guide cannula and cannula cap while internal canula is used during injection of ET-1, (d) guide cannula was inserted and lowered with final tip position of 4.5 mm ventral to bregma and the mounting screws to support the cannula assembly, (e) dental cement was allowed to harden to secure the cannula assembly and mounting screws, (f) the open wound was sutured carefully

Figure 3.6	ET-1 solution was infused using Hamilton microsyringe at the rate	
	of 1 μ L per minute via the guide cannula into the brain to induce	
	vasoconstriction on MCA	72
Figure 3.7	Representative image of motor function measured by forelimb	
	flexion	76
Figure 3.8	Representative image of motor coordination and balance function	
	mesaured the ability of rat to (a) floor walking and (b) transverse a	
	beam without slipping	77
Figure 3.9	Representative image of sensory function mesaured (a)	
	proprioceptive test and (b) placing test	78
Figure 3.10	Representative image of cylinder test (a) Normal rat tends to	
	explore the cylinder with both forelimbs; (b) Ischemic stroke-	
	induced rat could grip its contralateral forelimb and avoid touching	
	the cylinder's wall	30
Figure 3.11	Representative image of grid-walking test (a) rat tends to explore	
	the grid; (b) Normal rat could touch and place its limb on the grid	
	properly; (c) Ischemic stroke-induced rat could slip its limb through	
	an open grid	31
Figure 3.12	Overview of RNA microarray experiment workflow	32
Figure 3.13	RNA integrity number measurement using a) Bioanalyzer 2100	
	system machine and b) RNA Nano 6000 chip	38
Figure 3.14	Illustration of the layout on a RNA 6000 Nano chip for RNA	
	integrity number measurement. There was a total of 12 wells on one	
	chip. Row A, column 1-3 = RNA extracted from Group 1 (non-	
	treated rats, $n = 3$; Row B, column 1-3 = RNA extracted from	
	Group 2 (rats treated with non-preconditioned NSCs, $n = 3$); Row	
	C, column $1-3 = RNA$ extracted from Group 3 (rats treated with	
	BEF-preconditioned NSCs, $n = 3$; Row D, column 1-3 = gel-dye	
	matrix; Row A-C, column 4 = RNase free water (for negative	
	control, n = 3); Row D, column 4 = RNA ladder	38

Figure 3.15	Flowchart of overall procedure to generate purified 2 nd cycle ss- cDNA from extracted RNA sample from brain tissue using double cycle RNA reverse transcription process
Figure 3.16	Illustration of mechanism of reaction between total RNA and poly- A control prior to synthesis cDNA90
Figure 3.17	Illustration of mechanism of reaction of reverse transcription enzyme to synthesis ss-cDNA using the RNA91
Figure 3.18	Illustration of mechanism of reaction to synthesis ds-cDNA using ss-cDNA
Figure 3.19	Illustration of mechanism of reaction to synthesis cRNA using ds- cDNA as template
Figure 3.20	Illustration of mechanism of reaction to synthesis 2 nd cycle ss- cDNA using cRNA as template
Figure 3.21	The fluidics station machine (Affymetrix, USA) consists of four modules. a) Clariom TM S Array Rat Genome microarray chip, b) array cartridge with inserted microarray chip, c) three microvials containing SAPE solution, antibody solution and SAPE solution, respectively, and lastly d) the reservoir bottle for Wash A buffer, Wash B buffer, deionized water and waste solution, respectively97
Figure 3.22	Illustration of GeneChip ® Scanner 3000 scanner
Figure 3.23	Overview of microarray data analysis
Figure 4.1	Macroscopic characteristics of <i>O. indicum</i> leaf106
Figure 4.2	Transverse section of midrib of <i>O. indicum</i> leaf107
Figure 4.3	Tranverse section of lamina of <i>O. indicum</i> leaf107
Figure 4.4	Microscopic structure of stoma of <i>O. indicum</i> leaf108
Figure 4.5	Powder microscopic of <i>O. indicum</i> leaf108
Figure 4.6	Dried crude extract powder of O. indicum leaves110
Figure 4.7	Dried fractionated powder, BEF of O. indicum leaves110

- Figure 4.12 Relative mRNA marker expression of a) Nestin and b) SOX2 following BEF treatment. Relative mRNA expression of the genes was normalized to HRPT1 and RPL13A genes. Values represented the mean \pm SEM (n=3). The statistical significance of differences was analyzed by t-test. *indicates p<0.05 vs non-treated group.116
- Figure 4.14 Comparison of weight changes in treatment groups for 2 weeks. Group 1 = non-treated, Group 2 = treated with non-preconditioned

NSCs and Group 3 = treated with BEF-preconditioned NSCs. Each value represents the mean \pm SEM (n = 5)119

- Figure 4.24 Volcano plots to show whole transcriptomic gene expression pattern for a) Pair 1: Group 3 vs Group 1, b) Pair 2: Group 3 vs Group 2 and c) Pair 3: Group 2 vs Group 1, in which Group 1 = non-treated rats, Group 2 = rats treated with non-preconditioned NSCs and Group 3 = rats treated with BEF-preconditioned NSCs. Red dots represent significantly upregulated genes with fold changes more than 1.5 (p < 0.05), green dots represent significantly downregulated genes with fold changes less than 1.5 (p < 0.5), while

- Figure 4.26 Gene Ontology (GO) enrichment analysis bar showing the top 10 most-regulated biological processes, cellular components and molecular functions, respectively, for Pair 1: Group 3 vs Group 1...143
- Figure 4.27 Gene Ontology (GO) enrichment analysis bar showing the top 10 most-regulated biological processes, cellular components and molecular functions, respectively, for Pair 2: Group 3 vs Group 2...144
- Figure 4.28 Gene Ontology (GO) enrichment analysis bar showing the top 10 most-regulated biological processes, cellular components and molecular functions, respectively, for Pair 3: Group 2 vs Group 1...145

- Figure 4.32 Relative mRNA expression of a) GABRA6, b) NGF, c) JAKMIP1,d) DRD3 e) STAT6 f) NF-κβ, g) SLC6A3, h) IL-1RN following

treatment with BEF-preconditioned NSCS. Relative mRNA expression of genes of interest were normalized to HRPT1 and RPL13A housekeeping genes. Group 1 = non - treated, Group 2 =treated with non-preconditioned NSCs and Group 3 = treated with BEF-preconditioned NSCs. Values represent the mean \pm SEM (n=5). The statistical significance of differences was analyzed by one-way ANOVA and post-hoc Tukey's multiple comparison test. *indicates p < 0.05 vs Group 1; # indicates p < 0.05 vs Group 2......154

LIST OF EQUATIONS

Page

Equation 3.1	Formula to obtain the volume of sterile PBS to get 1 mM ET-1 stock
	solution4
Equation 3.2	Formula to dilute ET-1 stock solution into 80 μ M working solutio42
Equation 3.3	Formula to calculate the percentage of moisture content
Equation 3.4	Formula on percentage of total-ash value
Equation 3.5	Formula on water soluble ash value percentage
Equation 3.6	Formula on acid-insoluble ash value percentage
Equation 3.7	Percentage of cell viability. ODsample = absorbance of samples and
	ODnegativecontrol = absorbance of the negative control
Equation 3.8	Formula of asymmetry score was recorded to determine the motor
	function by cylinder test

LIST OF SYMBOLS

<	Less than
>	More than
-	Minus
%	Percentage
α	Type I errors
β	Type II errors
°C	Degree Celsius
Ca ²⁺	Calcium
cm	Centimeter
CO ₂	Carbon dioxide
C_T	Threshold cycle
g	gram
H^+	Protons
H^+ H_2O_2	Protons Hydrogen peroxide
H ₂ O ₂	Hydrogen peroxide
H ₂ O ₂ HCl	Hydrogen peroxide Hydrochloric acid
H ₂ O ₂ HCl ip	Hydrogen peroxide Hydrochloric acid Intraperitoneal
H ₂ O ₂ HCl ip K ⁺	Hydrogen peroxide Hydrochloric acid Intraperitoneal Potassium
H2O2 HCl ip K ⁺ kg	Hydrogen peroxide Hydrochloric acid Intraperitoneal Potassium kilogram
H2O2 HCl ip K ⁺ kg Na ²⁺	Hydrogen peroxide Hydrochloric acid Intraperitoneal Potassium kilogram Sodium
H ₂ O ₂ HCl ip K ⁺ kg Na ²⁺ mg	Hydrogen peroxide Hydrochloric acid Intraperitoneal Potassium kilogram Sodium milligram
H ₂ O ₂ HCl ip K ⁺ kg Na ²⁺ mg mL	Hydrogen peroxide Hydrochloric acid Intraperitoneal Potassium kilogram Sodium milligram Milliliter

nm	nanometer
O_2^-	Superoxide
pН	Potential hydrogen
psi	Pound per square inch
R_{f}	Retention factor
μg	microgram
μL	microliter
μm	micrometer
x g	Relative centrifuge force

LIST OF ABBREVIATIONS

ABCC9	Keratin associated protein 3-2
AGCC	Affymetrix GeneChip Common Console
ANOVA	Analysis of variance
AOAH	Acyloxyacyl hydrolase
APE 1	Apyrimidinic Endonuclease
ARASC	Animal Research and Service Centre
ASD	Autism Spectrum Disorder
AUC	Area under curve
BBB	blood-brain barrier
BCR	B-cell receptor
BEF	baicalein-enriched fraction
bFGF	basic Fibroblast Growth Factor
BOC	BOC cell adhesion associated, oncogene regulated
CALCB	calcitonin-related polypeptide, beta
CAMK2D	calcium/calmodulin-dependent protein kinase II delta
cAMP	Cyclic adenosine monophosphate
CAR8	Carbonic anhydrase 8
CARD11	caspase recruitment domain family, member 11
CBLN1	Cerebellin 1 precursor
CBLN3	Cerebellin 3 precursor
CDHR1	cadherin-related family member 1
cDNA	Complementary deoxyribonucleic acid
CGH	comparative genomic hybridization
CNS	central nervous system

CO2	Carbon dioxide
cREB	cAMP response element-binding protein
cRNA	Complementary ribonucleic acid
CST	Corticospinal tract
CVA	cerebrovascular disease
DALYs	disability-adjusted life years
DAT	Dopamine transporter
DAVID	Database for Annotation, Visualization and Integrated Discovery
DEG	differential expression genes
DMSO	Dimethyl sulfoxide
DNA	Deoxyribonucleic acid
D-PBS	Dulbecco phosphate buffer saline
DPSCs	dental pulp stem cells
DRD2	dopamine receptor D2
DRD3	Dopamine receptor D3
ds-cDNA	Double stranded complementary deoxyribonucleic acid
EDTA	Ethylenediaminetetraacetic Acid
EGF	Epidermal Growth Factor
ET-1	Endothelin-1
F5	Fraction 5
FAT2	FAT atypical cadherin 2
FCGR2B	Fc gamma receptor 2B
FCGR3A	Fc gamma receptor 3A
FDA	Food and Drug Administration
FGF1	fibroblast growth factor 1
FGFR3	fibroblast growth factor receptor 3

GABA	γ-Aminobutyric acid
GABRA6	Gamma-aminobutyric acid type A receptor subunit alpha 6
GLRA	glycine receptor, alpha 1
GNG3	G protein subunit gamma 3
GNG4	G protein subunit gamma 4
GO	Gene Ontology
GPR88	Keratin associated protein 3-3
GRID2	glutamate ionotropic receptor delta type subunit 2
HC1	hydrochloric acid
HIST2H3C2	Histone cluster 2 H3 family member C2
HPLC	High-performance liquid chromatography (
HRPT1	Hypoxanthine phosphoribosyltransferase 1
IGSF9B	Phosphodiesterase 10A
IL16	Interleukin 16
IL-1RN	Interleukin-1 receptor antagonist
IL1β	Interleukin-1-beta
IL33	Interleukin 33
INHBA	Immunoglobulin superfamily, member 9B
iPSC	Induced pluripotent stem cell
IVT	intravenous thrombolysis
IVT	In vitro transcription
JAKMIP1	Janus kinase and microtubule interacting protein 1
JAK-STAT	Janus kinases (JAKs), signal transducer and activator of transcription proteins (STAT)
KCNJ2	Inhibin subunit beta A
KEGG	Kyoto Encyclopedia of Genes and Genomes
KRTAP3-2	Olfactory receptor family 52 subfamily W member 1

KRTAP3-3	ATP binding cassette subfamily C member 9
LBP	enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase
LCN2	Lipocalin 2
LIFR	LIF receptor subunit alpha
LOC686660	Keratin associated protein 3-3
МАРК	Mitogen-activated protein kinase
MCA	middle cerebral artery
MEIS1	Meis homeobox 1
MGP	Matrix Gla protein
mNSS	modified neurological severity score
MPEG1	Macrophage expressed 1
MPZ	myelin protein zero
MS4A12	Membrane spanning 4-domains A12
MSCs	mesenchymal stem cells
MT	Mechanical thrombectomy
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
NaCl	Sodium chloride
NDNF	Neuron-derived neurotrophic facto
NEUROD1	Neuronal differentiation 1
NF-β	Nuclear factor kappa B subunit 1
NGF	Nerve growth factor
NGFR	nerve growth factor receptor
NGFR	Nerve growth factor receptor
NSCs	neural stem cells
NSS-R	The Revised Neurobehavioral Severity Scale
OLR903	Olfactory receptor family 6 subfamily C member 35
PAX6	paired box 6

xxviii

PBS	phosphate buffer saline
PCA	Principal component analysis
PCR	polymerase chain reaction
PDE10A	Potassium inwardly-rectifying channel, subfamily J, member 2
PIK3R3	phosphoinositide-3-kinase regulatory subunit 3
PKIB	cAMP-dependent protein kinase inhibitor beta
РМСН	Pro-melanin-concentrating hormone
QC	Quality check
qPCR	Quantitative real-time PCR
RET	ret proto-oncogene
RGS9	Inhibin subunit beta A
RIN	RNA integrity number
RNA	ribonucleic acid
ROS	reactive oxygen species
RPL13A	Ribosomal protein L13A
rt-PA	recombinant tissue plasminogen activator
SAPE	streptavidin phycoerythrin
SD	Sprague Dawley
SD	Standard deviation
SEM	Standard error mean
SFM	serum free medium
SGK1	Serum/glucocorticoid regulated kinase 1
SLC6A3	Solute carrier family 6 member 3
SNP	single nucleotide polymorphism
ss-cDNA	Single-stranded complementary deoxyribonucleic acid
STAT6	Signal transducer and activator of transcription 6
SVZ	subventricular zone

TAC	Transcriptome analysis console
TAE	Tris base-acetic acid-EDTA
TBE	Tris base-boric acid-EDTA
TdT	Terminal Deoxynucleotidyl Transferase
TH	tyrosine hydroxylase
TLR	Toll-like receptor
TNFRSF1A	TNF receptor superfamily member 1A
TNK	Tenecteplase
TRDN	Triadin
TTC	2,3,5-Triphenyltetrazolium chloride
UDG	Uracil-DNA glycosylase (
USM	Universiti Sains Malaysia
UV	Ultraviolet
VEGF	vascular endothelial growth factor A
WDR66	WD Receptor domain 66
WT	Whole transcriptome

LIST OF APPENDICES

Appendix A	Specimen voucher of O. indicum for this study
Appendix B	Animal Ethics approval obtained from Universiti Sains Malaysia (USM) Institutional Animal Care and use committee (IACUC)
Appendix C	List of biological pathways based on KEGG analysis of pair 1, pair 2 and pair 3
Appendix D	List of presentations and awards
Appendix E	List of publications

ANALISA TRANSKRIPTOM PEMULIHAN STROK ISKEMIA YANG TERARUH OLEH SEL STEM SARAF YANG DIPRAKONDISI DENGAN FRAKSI BAICALEIN *OROXYLUM INDICUM*

ABSTRAK

Strok iskemia merupakan salah satu punca utama kematian dan penyumbang utama kepada kecacatan di seluruh dunia. Transplantasi sel stem regeneratif yang telah diprakondisi dengan produk semulajadi telah digunakan untuk memulihkan saraf yang rosak selepas serangan strok iskemia. Walaubagaimanapun, pemacu kunci dan laluan yang mendasari pemulihan tersebut masih tidak diketahui. Dalam kajian ini, sel stem saraf (NSCs) yang telah diprakondisi dengan fraksi baicalein (BEF), sebatian aktif neuroprotektif yang diekstrak dari tumbuhan perubatan tempatan yang dikenali sebagai Oroxylum indicum (O. indicum), telah ditransplankan ke dalam model tikus strok iskemia dan analisa transkriptom telah digunakan untuk mengekspresikan asid ribonukleik (RNA) otak untuk mengenal pasti gen dan jalan utama yang mendasari pemulihan stroke iskemia yang diinduksi oleh penanaman NSC yang telah diprakondisikan. Sejumlah 15 ekor tikus Sprague-Dawley (SD) disuntik dengan endothelin-1 (ET-1) untuk menghalang pembuluh darah arteri serebral tengah (MCA) di dalam otak, ianya menyerupai penyakit strok iskemia pada manusia. Model tikus strok iskemia yang diinduksi ET-1 ini dibahagikan secara rawak kepada 3 kumpulan, iaitu Kumpulan 1: Tidak dirawat (kumpulan kawalan, n = 5), Kumpulan 2: Dirawat dengan NSC yang tidak diprakondisi (n = 5), dan Kumpulan 3: Dirawat dengan NSC yang diprakondisi dengan BEF (n = 5). Tingkah laku neurologi haiwan dipantau dan dicatat berdasarkan ujian skor keparahan neurologi yang diubahsuai (mNSS), ujian silinder, dan ujian berjalan diatas grid selama 14 hari (*p*-value < 0.05). Selepas 14 hari,

semua tikus dimatikan melalui suntikan intraperitoneal ketamin (200 mg/kg) dan xilazin (20 mg/kg). Tisu otak dikumpulkan dan dibekukan dengan menggunakan nitrogen cecair untuk homogenkan tisu otak bagi tujuan pengekstrakan RNA. RNA yang diekstrak dianalisis menggunakan ujian mikroarray untuk mengenalpasti perbezaan gen (DEG), ontologi gen (GO), dan mekanisma biologi yang berkait dengan peningkatan tingkah laku neurologi tikus. Hasil kajian menunjukkan bahawa tikus yang dirawat dengan NSC yang prekondisi dengan BEF pada $3.125 \,\mu$ g/mL selama 48 jam meningkatkan fungsi tingkah laku neurologi secepat 24 jam selepas rawatan, (pvalue < 0.05) berbanding dengan tikus yang dirawat dengan NSC yang tidak diprakondisikan dan kumpulan yang tidak dirawat. Selanjutnya, berdasarkan hasil mikroarray menunjukkan bahawa ekspresi GABRA6, NGF, JAKMIP1, DRD3, STAT6, NF-κβ, SLC6A3, dan IL-1RN telah diidentifikasi secara signifikan berdasarkan 10 teratas DEG, Gene Ontology (p-value < 0.05), dan laluan biologi menggunakan analisis laluan KEGG (p-value < 0.05). Laluan-laluan utama seperti laluan isyarat cAMP, laluan isyarat reseptor Toll-like, laluan isyarat reseptor B-cell, dan fagositosis termediasi oleh Fc gamma R berkaitan dengan peningkatan perilaku neurologi dalam model tikus strok iskemia. Secara ringkasnya, kajian ini menyediakan pengetahuan baru mengenai mekanisme rawatan NSC yang dipersiapkan dengan BEF untuk merawat strok iskemia berdasarkan ekspresi utama gen yang signifikan menggunakan analisis mikroarray.

TRANSCRIPTOME ANALYSIS OF ISCHEMIC STROKE RECOVERY INDUCED BY NEURAL STEM CELL PRECONDITIONED WITH BAICALEIN-ENRICHED FRACTION OF *OROXYLUM INDICUM* ABSTRACT

Ischemic stroke is one of the leading causes of death and a major contributor adult disability worldwide. Transplantation of regenerative stem cells to preconditioned with natural products was applied to restore the damaged neural circuity after an attack of ischemic stroke. However, the key regulators and pathways underlying such recovery are still mainly unknown. In this study, neural stem cells (NSCs) preconditioned with baicalein enriched fraction (BEF), a neuroprotective active compound extracted from a local medicinal plant known as Oroxylum indicum (O. indicum), was transplanted into an ischemic stroke rat model and a transcriptome analysis was applied to profile the brain total ribonucleic acid (RNA) expression to identify the key genes and pathways underlying the ischemic stroke recovery induced by the preconditioned NSC transplantation. A total of 15 Sprague-Dawley (SD) rats were injected with endothelin-1 (ET-1) to occlude the middle cerebral artery (MCA) blood vessel inside the brain, mimicking the ischemic stroke disease in human. The ET-1 induced ischemic stroke rat models were randomly assigned into 3 subgroups, namely Group 1: Non-treated (control group, n = 5), Group 2: Treated with nonpreconditioned NSCs (n = 5) and Group 3: Treated with BEF-preconditioned NSCs (n= 5). The animal neurological behaviours were monitored and scored based on modified neurological severity score (mNSS) test, cylinder test and grid-walking test for 14 days (*p*-value < 0.05). After 14 days, all the rats were sacrificed by intraperitoneal injection of ketamine (200 mg/kg) and Xylazine (20 mg/kg). The brain

tissues were harvested and snap-frozen using liquid nitrogen to homogenize the brain tissue for RNA extraction. The extracted RNA was analysed using microarray assay to reveal differentially expressed genes (DEGs), gene ontology (GO) and biological pathways related to neurological behavior improvement of the rats. The results revealed that the experimental rats treated with NSCs preconditioned with BEF at 3.125 µg/mL for 48 hours improved neurological behavioral function as fast as just 24 hours after the treatment (p-value < 0.05), compared to rats treated with nonpreconditioned NSCs and non-treated group. Furthermore, based on microarray result showed the expression of GABRA6, NGF, JAKMIP1, DRD3, STAT6, NF-κβ, SLC6A3 and IL-1RN were significantly identified based on the top 10 of DEGs (pvalue < 0.05), Gene Ontology (*p*-value < 0.05) and biological pathways using KEGG pathways analysis (p-value < 0.05). The key regulated pathways such as cAMP signaling pathway, Toll-like receptor signaling pathway, B-cell receptor signaling pathway and Fc gamma R-mediated phagocytosis were associated with the improvement of neurological behavior in the ischemic stroke rat model. In brief, this study provides new knowledge regarding the mechanism of BEF-preconditioned NSCs therapy to treat ischemic stroke based on the significant main expression of genes using microarray analysis.

CHAPTER 1

INTRODUCTION

1.1 Background of study

Stroke is one of the global health burdens with increasing trend over the past few decades. Ischemic stroke, being the most common type of stroke, is causing almost 3.3 million deaths annually and it remains as the major causal factor of adult disability worldwide (Fraser *et al.*, 2023). Clinically, ischemic stroke is defined as a syndrome of acute, focal neurological deficits that occurs due to insufficient cerebral blood supply attributed to vascular injury of the central nervous system (CNS). The onset of ischemic stroke neuronal injury is initiated by the retardation of brain nutrients and oxygen, which triggers a series of interrelated and coordinated biochemical events that ultimately lead to neuronal cell death and neurological dysfunction (Hamblin *et al.*, 2021).

The tissue damage caused by ischemic stroke attack can be reduced if the blood flow occlusion is removed rapidly. Up-to-date, intravenous thrombolysis (IVT) with intravenous recombinant tissue plasminogen activator (rt-PA, alteplase) is the only approved pharmacological systemic therapy by the United State Food and Drug Administration (FDA) to remove blood clots in the ischemic stroke patients (Giulia & Maurizio, 2022). Even though this primary therapy could allow rapid restoration of blood supply and reduce stroke-related disability and mortality, this therapy is unable to regenerate new neuronal cells to replace the damaged brain tissue and thus brain function cannot be completely restored. The limitations of current ischemic stroke therapies have led to alternative therapeutic approaches such as using neural stem cells (NSCs)-based regenerative therapy to induce brain repair and remodeling in patients.

NSCs are multipotent cells which are able to generate progenitor cells that primarily differentiate into neurons, astrocytes, and oligodendrocytes to maintain brain homeostasis (Los et al., 2018). The NSCs possess a unique ability to mitigate stroke pathology since they can migrate through the CNS and repopulate lesion sites after ischemic injury (Jiang et al., 2019). Therefore, NSC-based therapy has been recognized and highly expected as an effective strategy for treating degenerative brain diseases such as ischemic stroke (Hamblin et al., 2021). Fundamentally, this therapy focuses on replacing dead cells in the infarcted area or enhancing the self-repair system by providing trophic support for reconstruction of neuronal cells. Nonetheless, when transplanted into the ischemic brain, these stem cells are forced to encounter with the hostile microenvironment at the acute ischemic site which is high in detrimental factors including reactive oxygen species (ROS) and inflammatory cytokines, resulting in a reduced stem cell engraftment rate, poor survival and lower proliferative abilities, which altogether limit the effectiveness of this cell-based therapy (Raziyeva et al., 2020). In order to overcome the limitations of the cell-based therapy for ischemic stroke, preconditioned stem cells approach has been suggested to improve the stem cell survival rate and their therapeutic potential within the ischemic brain microenvironment prior to transplantation.

In this study, rat NSCs were preconditioned with baicalein-enriched fraction (BEF), a natural neuroprotective extract isolated from a local medicinal plant known as *Oroxylum indicum* or also known as Beko in Malaysia. Baicalein is a flavonoid compound that has been well known for its antioxidant, anti-inflammatory, anti-allergic, anti-virus, anti-bacteria, anti-cancer, as well as the neuroprotective properties (Nik Salleh *et al.*, 2020). Here, the BEF-preconditioned NSCs were used to treat rat models induced with ischemic stroke using a vasoconstrictor known as endothelin-1

(ET-1). The ET-1 ischemic stroke rat model has been widely utilized because the occlusion of middle cerebral artery (MCA) and its branches by ET-1 is effective, reliable and capable of producing well-reproducible infarcts mimicking the human focal ischemic stroke (Hermann *et al.*, 2019; Komatsu *et al.*, 2021). Neurobehavioral of the ET-1 ischemic stroke rat models were evaluated after the treatment with BEF-preconditioned NSCs and compared with those treated with non-preconditioned NSCs for ischemic stroke disease.

Additionally, a comprehensive transcriptomic analysis using microarray techniques was performed to profile total ribonucleic acid (RNA) expression in the animal brain tissue with and without BEF-preconditioned NSC treatments. This high-throughput transcriptome profiling enabled the identification of key regulator genes and pathways that mediated the neurological behavior changes as observed in the rat models. The elucidation key genes and pathways underlying ischemic stroke recovery induced by the BEF-preconditioned NSCs transplantation were valuable in assessing the potential of the BEF as an important natural compound supplement for stem cell-based ischemic stroke regenerative therapy in the future.

1.2 Problem statement

Ischemic stroke onset could trigger irreversible neuronal damage in patients afflicted with it. NSC-based therapy has been introduced as an alternative treatment for ischemic stroke because of its ability to self-renew and differentiate into matured functional neuronal cells. However, the treatment is limited by low cell survival after transplantation into the ischemic brain with hostile microenvironment high in ROS and inflammatory cytokines. A neuroprotective natural compound known as baicalein has emerged as a potential candidate to precondition NSC to enhance their biological activities for higher efficiency in ischemic stroke treatment. Nonetheless, the exact mechanism underlying of such a natural product-based preconditioning strategy and its actual effectiveness in repairing the ischemic area in the brain remained ambiguous. Therefore, transcriptomic analysis using microarrays presented in this study was imperative to reveal the key genes, pathways and biological activities involved in the neurogenesis and brain tissue remodeling after the BEF-preconditioned NSCs ischemic stroke treatment for the first time.

1.3 Significance of the study

Current ischemic stroke treatment is still very limited, and the rate of recurrence is also very high. Moreover, the high costs of access to post-stroke care and monitoring at private health care settings is also a difficult challenge for stroke survivors. Therefore, the application of potential neuroprotective BEF extracted from *O. indicum* medicinal plant to precondition rat NSCs could provide alternative ischemic stroke treatment with higher efficiency at more affordable cost. This is because *O. indicum* plant is a native plant that can be easily grown locally for the source of the targeted baicalein flavonoid, making it accessible at low cost. Most importantly, the baicalein extracted from this plant has been proven non-toxic based on the Organization for Economic Co-operation and Development (OECD) Toxicity Test Guidelines for Chemicals (Othman *et al.*, 2023), making it safe to be applied in clinical setting in future. Moreover, this study also provided a detailed insight into the assessment of neurological recovery after the transplantation of BEF-preconditioned NSCs to the infarcted area compared to nonpreconditioned NSCs treatment group. Subsequently, this study also elucidated transcriptomic profile to reveal key genes and pathways underlying ischemic stroke recovery mechanisms induced by BEF-preconditioned NSCs transplantation into ischemic stroke rat models. Understanding of such mechanisms will be essential to pioneer the establishment of NSC-based regenerative therapy for ischemic stroke in clinical setting in future.

1.4 **Objective of the study**

1.4.1 General objective

To elucidate the key regulator genes and pathways underlying ischemic stroke recovery mechanisms induced by neural stem cell preconditioned with baicaleinenriched fraction of *O. indicum* transplantation in ET-1 ischemic stroke rat models.

1.4.2 Specific objectives

- 1. To study the physicochemical features of *O. indicum* plant, and extract BEF from the leaves of *O. indicum* plant.
- To determine the cytotoxicity effects and the optimum concentration of BEF for NSC preconditioning *in vitro*.
- 3. To determine the effects of BEF-preconditioned NSC transplantation on neurological functions and behaviors of the ET-1 ischemic stroke rat model.
- To identify the key genes and pathways involved in the regulation of neurological functions and behaviors recovery in the ET-1 ischemic stroke rat model.

1.5 Hypothesis of the study

- 1. Physicochemical features of *O. indicum* could be successfully determined prior to extraction and fractionation of baicalein in the form of BEF.
- 2. BEF could precondition NSCs and activate cell proliferation rate at optimum concentration and duration.
- BEF-preconditioned NSC transplantation could significantly improve the neurological deficits in ET-1 ischemic stroke rat models compared to the nontreated or non-preconditioned NSC-treated groups.
- 4. Transcriptomic analysis using microarray assay could successfully reveal the key genes and pathways involved in the improvement of ischemic stroke deficits triggered by BEF-preconditioned NSC transplantation in ET-1 ischemic stroke rat models.

CHAPTER 2

LITERATURE REVIEW

2.1 Stroke

Stroke is known as cerebrovascular disease (CVA) caused by either blocking an artery or bursting a blood vessel in the brain. It is one of the leading causes of death and disability in many countries, including Malaysia. Its incidence in Malaysia has steadily increased over the last 2 decades. In 2019, data from Malaysia recorded 47, 911 incident cases, 19,928 deaths, 443,995 prevalent cases and 512,726 disability-adjusted life years (DALYs) lost due to stroke (Tan & Venketasubramanian, 2022).

There are two main classes of stroke: ischemic stroke and hemorrhagic stroke. According to Clinical Practice Guidelines in Malaysia, the majority of stroke cases in Malaysia are ischemic stroke (~72%), while only approximately 18% of strokes cases are hemorrhagic stroke. Acute ischemic stroke is continued to be the major cause of morbidity and is currently the third leading cause of mortality in Malaysia (Clinical Practice Guidelines Management of Ischemic Stroke, 2021). Therefore, this study focused on the investigation of treatments for ischemic stroke.

2.1.1 Ischemic stroke

Ischemic stroke is triggered by the interruption of blood supply to a part of the brain, leading to oxygen and nutrient deprivation in the affected brain area and subsequently causing irreversible brain cell death. Ischemic brain cell death resulted in brain morphological alterations, neurological behavioral disturbance, and significant impairment of cognitive functions (Heiss, 2016).

There are three major types of ischemic stroke, namely thrombotic stroke, embolic stroke and lacunar stroke (Figure 2.1). Thrombotic stroke occurs when a thrombus (blood clot) develops in the brain arteries and disrupts normal blood flow to the brain tissue (Figure 2.1a). Most of the thrombus develops due to atherosclerosis which is a deposit of a fatty substance called 'plaque' on the artery lining (Maida *et al.*, 2020). The thrombus can halt the flow of blood and form blood clots that totally occlude the blood flow (Rojsanga *et al.*, 2019).

On the other hand, embolic stroke is caused by an embolus that has formed in other body parts (e.g., heart or carotid arteries) and travels via the bloodstream of internal carotid artery until it reaches a smaller blood vessel in the brain, where its passage is blocked (Figure 2.1b). It accounts for approximately 14-30% of the total ischemic stroke incidences (Maida *et al.*, 2020). Embolic stroke is usually associated with atrial fibrillation, such as abnormal heart rhythm in which the atria does not beat effectively and increases the risk of clot formation. It can also be caused by a clot dislodging from the atherosclerotic plaque formed in the aorta and carotid artery (Yang *et al.*, 2022).

Lastly, lacunar stroke occurs when an occlusion (clot) forms in a small lenticulostriate arteries branched from the main middle cerebral artery (MCA) in the brain that penetrates deep into the organ (Figure 2.1c). The lacunar stroke is often associated with chronic hypertension, itself facilitating a small arteriole to become abnormal and susceptible to occlusion from micro-thrombi (Regenhardt *et al.*, 2018). This subtype is recorded to has 15-25% of all cerebral ischemic infarctions (Maida *et al.*, 2020).

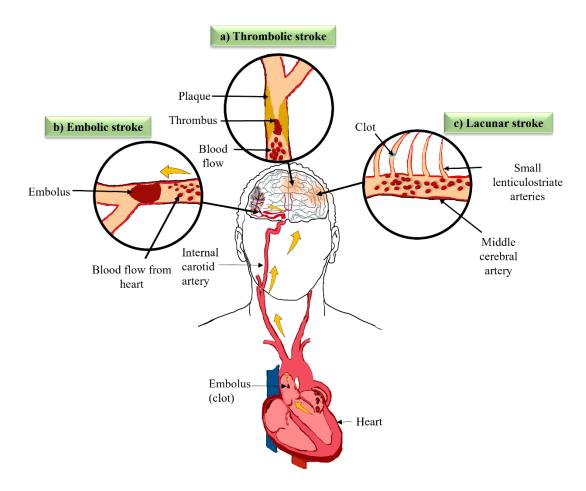


Figure 2.1 Illustration of three major types of ischemic stroke (a) thrombotic, (b) embolic and (c) lacunar stroke. (modified from: (*Lacunar Stroke Guide: Causes, Symptoms and Treatment Options*, 2023)).

2.1.2 Pathophysiological events of ischemic stroke

The occlusion of a cerebral infarction resulted in rapid depletion of oxygen and energy supplies and subsequently triggered a cascade of pathophysiological events including excitotoxicity, oxidative stress, mitochondrial impairment, blood-brain barrier dysfunction, inflammatory response and eventually caused neuronal cell death as illustrated in Figure 2.2.

Excitotoxicity is a hallmark sign of ischemic stroke onset. It occurs due to the deterioration of membrane ion gradient, excessive calcium influx, and release of excess glutamate after the shutdown of oxygen and nutrients supplies (Kumar et al., 2019). This excitotoxicity could directly contribute to inflammatory responses and subsequently lead to the breakdown of blood-brain barrier (BBB) by disrupting the tight junctions between endothelial cells, allowing the entry of substances that would normally be restricted and potentially leading to further damage in the brain (Chen & Li, 2021). Additionally, excessive intracellular calcium and glutamate lead to cell oxidative stress. Oxidative stress is defined as a disturbance in the balance between the production of reactive oxygen species (ROS) and antioxidant defenses that can relate to tissue damage. ROS are highly reactive molecules with one or more unpaired electrons. It can cause varying damage and dysfunction of cells in which the free radicals can react with DNA, proteins and lipid at cell membranes by stealing their electrons through oxidation process following reperfusion of ischemic tissue (Arman, 2019). This oxidation stress causes further tissue damage and triggers apoptosis after ischemic stroke.

In the meantime, cell apoptosis could impair the BBB which play critical role as a tight diffusion barrier to strictly regulate the movement of molecules, ions and cells between the CNS and the blood system (Dong, 2018). Once BBB is impaired, it could result in leakage of circulating neurotoxic substances into the CNS, causing inflammatory responses such as intravascular leukocytes activation and release of proinflammatory mediators from the ischemic endothelium and brain parenchymal, thus increased the chances of brain tissue injury which could lead to cerebral damage (Kumar *et al.*, 2019). All these events are interrelated and coordinated which can ultimately lead to ischemic necrosis in the severely infarcted ischemic region. Ischemic necrosis is an uncontrolled cell death and morphologically characterized by cellular and organelle swelling, leads to disruption of the nuclear, lysis of cell and spillage of intracellular contents into surrounding tissue and eventually leading to irreversible tissue damage (Khalid & Azimpouran, 2022).

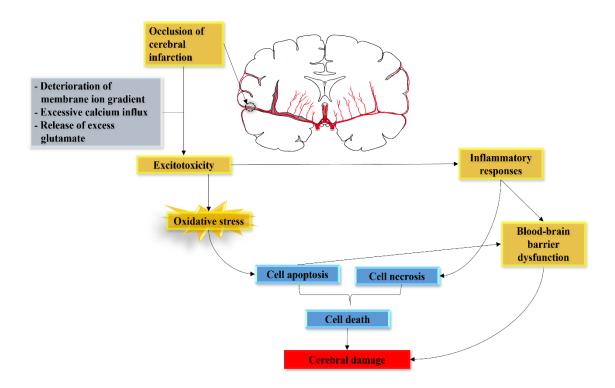


Figure 2.2 Pathophysiology of ischemic stroke leads to cerebral damage, initiating a complex series of events. Excitotoxicity gives rise to oxidative stress and a post-ischemic inflammatory response leading to cell apoptosis, cell necrosis, blood-brain barrier dysfunction. Ultimately, these processes culminate in led cell death and consequently, cerebral damage. (modified from: (Mir *et al.*, 2014)).

2.1.3 Risk factors of ischemic stroke

The understanding of the risk factors for ischemic stroke among Malaysian opens a passage for primary prevention strategies specifically according to the population needs. Most of the risk factors of ischemic strokes are similar, even though there are some differences among the etiologic categories of ischemic stroke. Generally, ischemic stroke risk factors can be grouped into two, namely non-modifiable and modifiable risk factors. The non-modifiable risk factors are age, sex and family history. Generally, stroke is a disease of aging that has been recorded with doubling incidence rates after age of 55 years. The ischemic stroke incidence and mortality vary by sex and age, in which the incidence and mortality are similar in both sexes among young patients (below 45 years of age). Between age 45 and 74 years, males show higher incidence and mortality than woman. However, the incidence likely to be reversed at age of 75 years, where women are mostly at higher risk for ischemic stroke (Wajngarten & Silva, 2019).

On the other hand, modifiable risk factors including hypertension (67%), diabetes mellitus (39.6%), smoking (25.2%), hypercholesterolemia (23%) and atrial fibrillation (3%) according to data obtained from Malaysia National Stroke Registry (Feigin *et al.*, 2021). The order of these risk factors remained fairly the same for five years period of observation. Hypertension is always the predominant risk factors for stroke attack, mainly because the stress on the blood vessels (vascular stress) associated with high blood pressure can exacerbate changes in blood vessel which leads to a larger causal factor for stroke. When the blood vessels experience chronic stress due to hypertension, it can lead to changes in the structure and function of the BBB of the brain and can further compromise the barrier's ability to control the passage of substances (Elsaid *et al.*, 2021).

Moreover, a major contributor to coronary heart disease that can complicate ischemic stroke is hyperlipidemia, which is also known as hypercholesterolemia. It is caused by excessive consumption of a high-cholesterol diet leading to high levels of blood lipids that increase the risk of stroke incidence. Hyperlipidemia has been reported to increase BBB permeability and promote brain edema formation in cerebral ischemia in the acute phase (Menet *et al.*, 2018).

Lastly, atrial fibrillation is also an important risk factor for stroke in which it comes up to 15% of all strokes worldwide and produces more severe disability and higher mortality compared to non-atrial fibrillation-related strokes. Its consequence was caused by decreased oxygen blood flow in the left atrium and thus led to embolism in the brain (Kuriakose & Xiao, 2020).

13

2.2 Current treatment for ischemic stroke

Following a blood vessel occlusion, brain cells can deteriorate rapidly and ultimately die within minutes. Due to the acute onset, repairing the cellular damage in the ischemic brain remains one of the most crucial challenges of medical science. Therefore, up to date, there are still limited treatments available for patients with acute ischemic.

2.2.1 Thrombolysis

Application of intravenous thrombolysis with rt-PA shows a significantly reduced mortality rate and disability associated with ischemic stroke within 4.5 h after onset and later treatment may improve outcomes in selected patients up to 9 h after stroke. To date, rt-PA is the one and only approved drug for ischemic stroke treatment by FDA. However, a major limitation of this pharmacological treatment is that rt-PA drug must be administered to the patient within a limited time window typically 3 to 4.5 hours of stroke onset to be effective (Urrutia et al., 2018). This short therapeutic window has greatly limited its utilization rates in routine clinical practice because hospitalization delays for stroke occurrence is very common (Mohamadpour et al., 2019). Thus, the administration of rt-PA within a specific hour such as 4.5 h after onset of stroke is difficult in many situations. Over the past years, it was found that almost 80% of ischemic stroke patients were late to be admitted to hospital within the golden treatment window of rt-PA due to several factors including slow or gradual onset, mild neurological symptoms, patients were alone during the onset or those who were unbale to contact anybody when their symptoms occurred (Mohamadpour et al., 2019). Any administration of rt-PA beyond the golden therapeutic window could result in severe

side effects, commonly being hemorrhage or even life-threatening (Liaw & Liebeskind, 2020).

2.2.2 Mechanical thrombectomy

Mechanical thrombectomy (MT) is an available treatment with high efficacy within 6-8 h of ischemic stroke onset. Instead of using thrombolytic agents, MT technique physically remove blood clot using stent-retriever devices and it is most recommended in cases of large proximal cases vessel occlusion, in which thrombolysis agent is less than 10% effective (Derex & Cho, 2017). Nonetheless, MT treatment option is limited by the technical difficulty to navigate stent-retriever wire in delicate intracranial vessels to reach the occluded site. In some cases, the MT surgical procedure could cause trauma to vessels, distal embolization, vessel dissection and vasopasm leading to worsening of stroke (Hurd *et al.*, 2021). Moreover, both thrombolysis and MT have critical problem in which they only able to regenerate the dead neuronal cell to restore brain function completely (Samaniego *et al.*, 2018). Due to these reasons, alternative treatments based on regenerative cell-based therapy have been discovered to address these problems.

2.3 Regenerative treatment for ischemic stroke

Over the past decades, stem cell-based therapy has been discovered as an alternative treatment for ischemic stroke due to the ability of stem cells to regenerate the infarcted area. There are two fundamental characteristics of stem cells that make them beneficial in ischemic stroke therapy. First, stem cells are able to self-renew and differentiate into viable neuronal cells to replace the dead cells after ischemic stroke attack (replacement mechanism). Secondly, stem cells are able to secrete neuroprotective cytokines to maintain viable microenvironment (paracrine mechanism)

(Samaniego *et al.*, 2018). Many types of stem cells have been studied for their regenerative potential in treating neurological diseases including the mesenchymal stem cells (MSCs) (Abdullahi *et al.*, 2021), induced pluripotent stem cells (iPSCs) (Salikhova *et al.*, 2021), dental pulp stem cells (DPSCs) (Zhang *et al.*, 2018) and as well as NSCs (Hamblin & Lee, 2021).

Among the different stem cell types extensively studied nowadays, NSCs are the only stem cells found in the brain. The NSCs are originally in the neuronal lineage, and they possess the natural instinct to differentiate into neurons, astrocytes and oligodendrocytes. Furthermore, NSCs also can preserve the BBB, ameliorate inflammation, promote neurogenesis and angiogenesis and promote functional recovery and motor skills (Boese *et al.*, 2018). Hence, they have very high potential for ischemic stroke treatment. In this study, the therapeutic potential of NSC for ischemic stroke treatment was investigated.

2.3.1 Neural stem cells (NSCs)

Neural stem cells (NSCs) are multipotent cells that generate progenitor cells, which later primarily differentiate into neurons, astrocytes and oligodendrocytes to maintain brain homeostasis (Łos *et al.*, 2018). They were first isolated from the lateral ventricle ependymal cell layer called the subventricular zone (SVZ) in the mouse brain by Reynold and Weiss (1992). NSCs possess the unique ability to mitigate stroke pathology since they are able to migrate through the CNS and repopulate lesion site after ischemic injury (Baker *et al.*, 2019).

There have been studies reporting natural endogenous neurogenesis in the ischemic penumbra region of the brain (Guo *et al.*, 2022; Hamblin & Lee, 2021; Tornero, 2022). Kevin *et al.* also reported that tissue after stroke attack was replaced by

new viable immature neuronal cells (neuroblasts) which were differentiated from endogenous NSCs originated from SVZ. However, the natural neurogenesis of endogenous NSCs is insufficient and is not enough to restore the damaged area and whole brain functions (Hurd *et al.*, 2021). Consequently, the efficiency of endogenous NSC-based therapy is not fully achieved. This could be due to hostile microenvironment in the ischemic regions which limit the survival rate of these NSCs (Hicks *et al.*, 2009; Othman & Tan, 2020).

Therefore, in this study, the therapeutic potential of NSCs was enhanced using natural product-based preconditioning strategy. This approach was an attractive option due to its potential to increase the stem cell viability, survival, proliferation and migration after transplantation to ischemic area (Othman & Tan, 2020).

2.4 Preconditioning strategies to enhance NSC-based therapy

Various preconditioning strategies have been utilized and explored in this recent years to improve the donor cell survival after transplantation and to enhance their therapeutic potential by improving their paracrine effects, and boosting their capacity for tissue regeneration and for the cerebral function restoring (Hu & Li, 2018).

Many different preconditioning strategies have been tested in stem cells prior to cell grafting. Among them, hypoxic preconditioning is by far the most commonly applied strategies to enhance stem cells for ischemic disease therapy. In general, hypoxia is characterized as insufficient oxygens delivery to tissues and cells in the body and is prevalent in many human physiology processes and diseases. Hypoxic preconditioning involves brief hypoxia (~1-5% oxygen level) exposure periods in various cell types, organs, animal model and humans, leading to upregulation of genes associates with cell stress response pathways, protective signaling pathways, and

enhance sturdiness to ischemia via the activation of a master transcription factor known as hypoxia-inducible factor (HIF) (Othman & Tan, 2020). Nonetheless, hypoxic preconditioning for stem cell culture is technically challenging due to the difficulty to monitor intermittent exposure to ambient air oxygen level (~21%) during cell culture procedure in laboratory (Al-Ani *et al.*, 2018).

On the other hand, natural compounds with neuroprotective effects are another promising strategy to briefly expose the stem cells following their properties in a more sustainable and environmentally friendly strategy. This pharmacological preconditioning represents a novel and successful technique to stimulate stem cells for the secretory of beneficial cytokines for regenerative treatment. Shu et al. (2022) reported that bone-marrow-derived mesenchymal stem cell (BMSC) preconditioned with trehalose (Tre), a pharmacological agent was successfully increased proliferation, enhanced the survival of transplanted stem cells under oxidative stress of ischemic nerve injury and ultimately improved functional recovery (Shu et al., 2022). Furthermore, Lee et al. 2020 also proposed strategies to enhance biological processes of MSCs, including their migration and proliferation. The strategy involved preconditioning MSCs with ethionamide, an antibiotic compound, and it was found that these cells survived longer in the brain after transplantation, thereby augmenting their therapeutic properties through the secretion beneficial paracrine factors in neurodegenerative diseases (Lee et al., 2020). In this study, NSCs were preconditioned with a neuroprotective natural compound known as, baicalein, extracted from the leaves of O. indicum plant.

2.5 Oroxylum indicum plant

O. indicum is a genus of medium-sized deciduous tree belongs to the Family Bignoniaceae. This is characterized by brown bark and large pinnate leaves and is mainly distributed in India, Sri Lanka, Malaysia, China, Thailand, Philippines, and Indonesia. The list of botanical classification of *O. indicum* was shown in Table 2.1.

Botanical classification		
Kingdom	Plantae	
Class	Magnoliophyta	
Order	Lamiales	
Family	Bignoniaceae	
Genus	Oroxylum	
Species	Indicum	

Table 2.1The classification of botanical for O. indicum.

Figure 2.3 illustrates the *O. indicum* plant which can grow up to 20 meters of height with fruits hanging down from the bare branches like dangling swords and the flowers bloom on top of the tree (Figure 2.3(a)). The bark of the plant is light brown or greyish-brown colored, which is soft and spongy with numerous corky lenticels (Figure 2.3(b)), while the leaves are pinnately compound which normally grows up to 3-10 cm long and the adjacent leaflets of the leafstalks are 6-15 mm long (Figure 2.3(c)). The flower corolla is funnel shaped with 5 lobes and 10 cm long, subequal with wrinkled margin, outside is reddish, while inside is yellowish to pinkish colored (Figure 2.3(d)). The plant flowers are numerous in numbers, bisexual and the stalks of the flowers is roughly 30 cm. The fruits are winged, woody, large and flat, capsule or sword shaped (Figure 2.3(e)). During rainy season in December until March, the flowers are usually

blooming, and fruit appears (Jagetia, 2021; Kalra & Kaushik, 2017; Salleh *et al.*, 2020). Moreover, this plant also has mutualistic symbiosis with an actinomycete *Pseudonocardia oroxyli*, a gram-positive bacterium that has the capability to produce many secondary metabolites exhibiting a wide variety of biological activities (Ahad *et al.*, 2012; Lalrinzuali *et al.*, 2018). *O. indicum* is known for its high commercial and economic importance with several medicinal properties as stated in the Ayurveda and Unani system of medicines. It has been found to have astringent, antioxidant, anti-inflammatory, antihelminthic, antibronchitic, antileucodermatic, antirheumatic, anti-anorexic and many other properties of medicinal (Pondugula *et al.*, 2021).

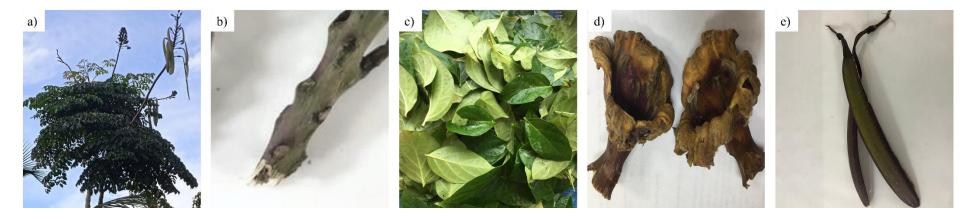


Figure 2.3 Representative images of *O. indicum* plant and its components; a) *O. indicum* plant, b) bark, c) leaves, d) flower and e) sword shape of fruit

2.5.1 Phytochemical of O. indicum

To date, many secondary metabolites such as alkaloids, flavonoids, tannins, terpenoids, carotenoids and anthocyanin have been reported from different parts of *O. indicum* with flavonoids as the major storage constituent (Amancharla, 2017). Major flavonoid constituents present in *O. indicum* are baicalin, baicalein, scutellarin, oroxylin -A and chrysin (Amancharla, 2017; Rojsanga *et al.*, 2020). Based on phytochemical analysis done by Amancharla, 2017 on different parts of *O. indicum*, the presence of flavonoids was strongly positive in the fresh leaves extract followed by the fruits and seeds. In addition, leaves part have been focused in this study due to their availability are evergreen for every season compared to other parts, flowers and fruits (Amancharla, 2017). Commonly found compounds from each part of *O. indicum* are stated in Table 2.2.

Plant part	General name of active compound found	References
Leaves	Flavonoids: baicalein, chrysin, oroxylin, Phenols: stilbenes, coumarins, Alkaloids: campothecin, vinblastine, vincristine, Tannins, Glycosides, Quinones: blumbagin, shikonin, thymoquinones	(Rojsanga <i>et al.,</i> 2017)
Fruits	Flavonoids: baicalein, chrysin, oroxylin, Triterpene carboxylic acid, Quinones: blumbagin, shikonin, thymoquinones.	(Sithisarn <i>et al.</i> , 2016)
Seeds	Flavonoids: baicalein, baicalein-7-O- diglucoside, baicalein-7-O-glucoside, chrysin, oroxylin A, oroxylin B, apigenin, Alkaloids: campothecin, vinblastine, Terpenes, Saponins, Oils.	(Samatha <i>et al</i> ., 2012)
Root barks	Flavonoids: baicalein, chrysin, oroxylin-A, scutellarin-7-rutinoside, sitosterol, galactose, biochanin-A, Alkaloids: campothecin, vinblastin, vincristin, Ellagic acid, Biochanin-A.	(Zaveri <i>et al.</i> , 2008)
Stem barks	Flavonoids: baicalein, baicalein-7-O-glucoside, baicalein-7-O-diglucoside, chrysin, Phenols: stilbenes and coumarins.	(Lalrinzuali <i>et al.</i> , 2018)

Table 2.2Different parts of O. indicum and the compounds.

2.6 Baicalein

Baicalein (5,6,7-trihydroxyflavone) is composed of 15 carbon compounds $(C_{15}H_{10}O_5)$ as illustrated in Figure 2.4. It is also often identified as a drug for liver protection and reduces inflammatory diseases (Shi *et al.*, 2017). Various other biological functions of baicalein also have been revealed, such as baicalein could significantly restrain 12-lipoxygenase (Li *et al.*, 2019), exert antioxidant and anti-inflammatory effects (Dai *et al.*, 2017; Shi *et al.*, 2018), involve in autophagy activation

(Wu *et al.*, 2018), activate cancer cell apoptosis (Liu *et al.*, 2017) and attenuate cancer cell proliferation and invasion (Wang *et al.*, 2015). Most importantly, baicalein was found to possess neuroprotective effects and could enhance neuronal cell proliferation (Liang *et al.*, 2017). Therefore, baicalein extracted from the *O. indicum* is postulated to be able to enhance the therapeutic potential of NSC for ischemic stroke therapy in this study.

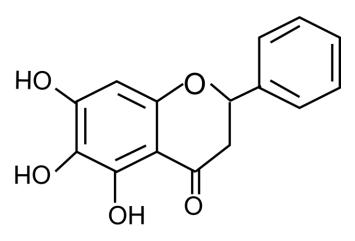


Figure 2.4 The chemical structure of baicalein, $C_{15}H_{10}O_5$.

2.7 Endothelin-1 ischemic stroke rat model

In this study, NSCs preconditioned with baicalein extracted from *O. indicum* were transplanted into *in vivo* ischemic stroke rat models induced using a vasoconstrictor known as ET-1. ET-1 is 21-amino acid peptide produced by vascular endothelium and it has potent vasoconstrictor action first identified by Yanagisawa's group in 1988 (Yanagisawa *et al.*, 1988). In addition, it also possesses long-acting vasoconstriction properties which act through two types of receptors, the endothelin A and endothelin B receptors which are responsible for potent vascular contraction, cell proliferation and a proinflammatory effects (Kowalczyk *et al.*, 2015).

Up to date, the application of ET-1 is the only method to induce stroke in conscious animals (Abeysinghe & Roulston, 2018). This is because the ET-1 can be