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PENGESANAN AUTOMATIK KALSIFIKASI DALAM DIAGNOSIS KANSER 

PAYUDARA BERASASKAN PENGKLASIFIKASI PEMBELAJARAN MESIN 

ABSTRAK 

Pengesanan awal kanser payudara melalui mammogram adalah penting, dengan kalsifikasi dalam 

mammogram sebagai penunjuk utama. Membezakan antara kalsifikasi malignan dan benigna 

adalah penting untuk diagnosis dan rawatan yang tepat. Kajian ini bertujuan untuk membangunkan 

sistem Diagnosis Berbantuan Komputer untuk mengenal pasti dan mengklasifikasikan kalsifikasi 

payudara. Data kes kanser payudara di Women Imaging Suite (WISH), Hospital Universiti Sains 

Malaysia (HUSM) dikumpulkan dari Laboratory Information System (LIS) dan ditentusahkan 

dengan Sistem Pengarkiban dan Komunikasi Gambar untuk memilih mammogram yang 

menunjukkan kalsifikasi dari September 2020 hingga Disember 2023. Prestasi model Support 

Vector Machine (SVM), K-Nearest Neighbors (KNN) dan Random Forest (RF) dinilai 

menggunakan metrik seperti ketepatan, skor F1, recall, precision, kekhususan, sensitiviti dan area 

under the curve (AUC). Model SVM menunjukkan prestasi yang seimbang dengan ketepatan 

65.22% dan skor F1 0.6, yang menunjukkan kompromi antara precision (54.55%) dan recall 

(66.67%). Model KNN mempunyai prestasi terendah dengan ketepatan 47.83% dan skor F1 0.4, 

yang menyerlahkan cabaran klasifikasi. Model RF dinilai secara sederhana dengan ketepatan 

60.87% dan skor F1 0.47, menunjukkan kekhususan yang tinggi (71.43%) tetapi sensitiviti yang 

lebih rendah (44.44%). Mencapai ketepatan 95% masih sukar kerana pengesanan bergantung 

kepada nilai piksel yang tinggi, kerumitan model terhad, dan kekangan data. Meningkatkan 

pengekstrakan ciri, data dan mengoptimumkan model boleh meningkatkan ketepatan. 

Menggabungkan pembelajaran mesin dengan pembelajaran mendalam atau kaedah ensemble 

menawarkan klasifikasi yang lebih baik dan pengurusan pesakit yang lebih baik.  
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AUTOMATIC DETECTION OF CALCIFICATIONS IN BREAST CANCER 

DIAGNOSIS BASED ON MACHINE LEARNING CLASSIFIERS 

ABSTRACT 

 Early detection of breast cancer through mammography is vital, with calcifications in 

mammograms serving as key indicators. Distinguishing between benign and malignant 

calcifications is essential for accurate diagnosis and treatment. This study aims to develop a 

Computer-Aided Detection (CAD) system to identify and classify breast calcifications. Data from 

confirmed breast cancer cases were collected from the Laboratory Information System (LIS) at the 

Women Imaging Suite (WISH) of Hospital Universiti Sains Malaysia (HUSM) and cross-verified 

with the Picture Archiving and Communication System (PACS) to select mammograms showing 

calcifications that met the inclusion criteria from September 2020 to December 2023. The 

performance of Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Random 

Forest (RF) models was evaluated using metrics such as accuracy, F1 score, recall, precision, 

specificity, sensitivity, and area under the curve (AUC). The SVM model showed balanced 

performance with 65.22% accuracy and an F1 score of 0.6, indicating a trade-off between precision 

(54.55%) and recall (66.67%). The KNN model had the lowest performance with 47.83% accuracy 

and an F1 score of 0.4, highlighting classification challenges. The RF model performed moderately 

with 60.87% accuracy and an F1 score of 0.47, showing high specificity (71.43%) but lower 

sensitivity (44.44%). Achieving 95% accuracy remains difficult due to reliance on high pixel value 

detection, limited complexity of machine learning models, and data constraints. Enhancing feature 

extraction, data augmentation, and model optimization could improve accuracy. Combining 

machine learning with deep learning or using ensemble methods offers promise for better 

classification, ultimately improving patient management.
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CHAPTER 1 

INTRODUCTION 

1.1 Background of the Study 

  Breast cancer stands as the most prevalent malignancy affecting women worldwide. 

With its profound impact on public health, efforts in early detection and intervention have 

become paramount. The Malaysian Study on Cancer Survival (MySCan) obtained breast 

cancer data from the National Cancer Registry (NCR) database, comprising a total of 18,206 

entries. After rigorous processes to identify and remove duplicates, ensure data consistency, 

and verify morphology, 17,490 cases were considered eligible for analysis. However, the 

final study cohort consisted of only 17,009 cases diagnosed with breast cancer between 2007 

and 2011, with follow-up data available until December 31, 2016 (National Cancer Registry, 

2018). 

  Mammography, a specialized radiological technique aimed at diagnosing breast-

related diseases, particularly breast cancer, is recommended for both symptomatic young 

women and those at high risk due to family history, as well as for asymptomatic women over 

40 years old. This non-invasive screening tool serves as the gold standard in early breast 

cancer detection, utilizing low-dose x-rays, mammography produces images of the breast 

capable of identifying various lesions indicative of breast cancer including calcifications, 

masses, architectural distortions, and asymmetric densities (Coleman, 2017). Despite its 

effectiveness, interpreting mammograms can be challenging, particularly in cases of dense 

breast tissue, which may obscure abnormalities and lead to false negatives or missed 

diagnoses. Qualified radiologists may find interpretation difficult, necessitating careful 

analysis from different views, such as the Cranio-caudal (CC) and Mediolateral Oblique 
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(MLO) views, to distinguish true abnormalities. However, additional imaging modalities 

may be required to investigate suspected regions not adequately visualized on mammograms 

or obscured by dense tissue. Despite these challenges, mammography remains the most 

reliable screening tool due to its low cost, minimal radiation exposure, and high sensitivity 

in detecting breast cancer (Champaign & Cederbom, 2000). 

  Breast calcifications serve as indicators of potential carcinoma, often being the sole 

detectable sign of nonpalpable breast cancer during screening. Calcifications present as 

small, bright calcium deposits within the glandular tissue, typically measuring between 0.01 

and 0.1 mm in size. They appear as localized areas of high intensity on radiographic films, 

with clinical studies suggesting the presence of five or more calcification points per 

centimeter. These calcifications are typically intramammary, situated within and around 

ducts, lobules, and vascular structures. Various characteristics such as size, morphology, 

number, distribution pattern, location, and density contribute to the determination of 

pathology (Nalawade, 2009). 

  Machine learning-based computer-aided diagnosis (CAD) systems have been 

created to automatically identify calcifications during breast cancer screening. These 

systems aim to aid radiologists in early breast cancer detection by spotting suspicious 

calcifications on mammograms (Jiménez-Gaona et al., 2020). CAD systems have 

demonstrated potential in enhancing the specificity of mammography interpretation and 

decreasing the need for biopsies in cases of benign lesions (Gao et al., 2023). Nevertheless, 

obstacles persist in creating CAD models with high accuracy, such as insufficient training 

data and less-than-optimal performance in dense breast tissue (Gao et al., 2019). Current 

research aims to enhance CAD by employing machine learning algorithms, which can 
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autonomously extract pertinent features from mammographic images without necessitating 

manual feature engineering. Incorporating these advanced AI-driven CAD systems into 

clinical settings holds promise for augmenting radiologists' capacity to identify and analyze 

breast calcifications, potentially resulting in earlier cancer detection and better patient 

prognoses (Loizidou et al., 2023). 

1.2 Problem Statement 

  The complex and diverse malignant characteristics found in calcifications is highly 

challenging due to the presence of noise. However, due to the presence of inadequate noise 

in medical images, there are numerous limitations related to the process of interpreting a 

mammogram image (Rehman et al., 2017). Common difficulty encountered in diagnosing 

breast cancer is the frequent occurrence of incorrect diagnoses. In order to prognosticate 

calcifications clusters, a highly discriminative classifier is developed after pertinent 

manually constructed features are extracted. Nevertheless, this method frequently produces 

unreliable outcomes (Leong et al., 2022). A challenge in differentiating between malignant 

and benign tumours, particularly when there are associated calcifications. While numerous 

methods have been suggested for identifying calcifications points, each tends to exhibit a 

high occurrence of false positives (Mahmood et al., 2021). 

1.3 Objective 

1.3.1 General Objective 

To develop a Computer Aided Diagnosis (CAD) system to distinguish between benign 

and malignant breast calcifications. 

1.3.2 Specific Objectives 

1. To apply image processing to specify details of calcifications.  
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2. To evaluate the image quality from machine learning based algorithms using 

MATLAB software.  

3. To verify the effectiveness of machine learning classifiers for auto-detection of 

calcifications.  

1.4 Hypothesis 

1.4.1 Null Hypothesis 

The accuracy of differentiation between benign and malignant breast calcification by 

using machine learning classifiers produces results that do not match the BI-RADS 

subjective assessments. 

1.4.2 Alternative Hypothesis 

The accuracy of differentiation between benign and malignant breast calcification by 

using machine learning classifiers produces results that are more accurate than BI-

RADS subjective assessments. 

1.5 Significant of Study 

  This research focused on using machine learning classifiers to automatically detect 

calcifications in breast cancer holds considerable significance in breast cancer diagnosis. By 

aiming to improve diagnostic accuracy, minimize unnecessary biopsies, and utilize advanced 

machine learning techniques and ensemble models, these studies have the potential to 

transform breast cancer screening and diagnosis. Creating computer-aided diagnosis systems 

capable of precisely identifying and categorizing calcifications as benign or malignant not 

only enhances patient care by enabling early cancer detection but also helps reduce patient 

anxiety and increase survival rates (Mahmood et al., 2021). Moreover, integrating these 

systems into clinical practice can assist radiologists in making more informed decisions, 
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ultimately enhancing diagnostic capabilities, and improving patient outcomes through early 

cancer detection (Loizidou et al., 2023). 

1.6. Conceptual Framework 

  The conceptual framework of this study, illustrated in Figure 1.1, is the automatic 

detection of calcifications in breast cancer using machine learning. The images obtained for 

both training and testing sets will go through image pre-processing, detection, and feature 

extraction to be divided into pixel values. The pixel value will then be classified into 

classifiers to distinguish between benign and malignant breast calcifications. 

Figure 1.1 Conceptual Framework 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 Mammography Imaging and Calcification Detection 

  Mammography remains the foremost method for detecting and characterizing 

breast calcifications. Calcifications serve as a crucial signal for potential breast malignancy. 

Using the Breast Imaging Reporting and Data System (BI-RADS) lexicon, calcifications can 

be categorized as either benign or suspicious, with calcifications being classified as 

"suspicious” depending on their morphology and distribution. Calcifications, particularly 

those displaying suspicious morphology and distribution, may indicate early non-palpable 

breast cancers such as Ductal Carcinoma in Situ (DCIS) (Kameswari et al., 2021). 

  One of the key challenges associated with manual interpretation is the subjective 

aspect of evaluating mammographic calcifications. The assessment of calcifications can 

greatly depend on the experience, training, and cognitive biases of individual radiologists. 

Despite the aim of the BI-RADS lexicon to standardize mammographic findings reporting, 

there remains only moderate agreement among radiologists in using its terms to describe 

masses and calcifications. 

  Additionally, there is considerable diversity among radiologists in interpreting 

mammographic results, including calcifications. Research has shown moderate concordance 

among radiologists in utilizing BI-RADS terminology to characterize masses and 

calcifications, underscoring the difficulties in maintaining uniform interpretation. 

Radiologists' levels of experience, their training, and their familiarity with reporting 
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frameworks such as BI-RADS all play roles in this interpretative variability (Kerlikowske et 

al., 1998). 

  The quality of mammographic images is also essential for radiologists to accurately 

interpret calcifications. Reduced spatial resolution and increased quantum noise can notably 

impede radiologists' perceived ability to interpret calcification cases, making it challenging 

to differentiate between benign and malignant calcifications. Additionally, effects related to 

post-acquisition image processing can influence radiologists' interpretations, with certain 

issues affecting calcification cases compared to soft tissue cases (Boita et al., 2021). 

  Researchers have developed deep learning algorithms to identify calcifications in 

mammograms automatically. A study showcased a convolutional neural network that 

attained impressive accuracy rates (95%), F1-scores (76%), and AUC-ROC (76%) in 

detecting breast calcifications, linked to increased cardiovascular risks. This algorithm 

precisely pinpointed calcifications, including tiny ones, through gradient-weighted class 

activation mapping (Grad-CAM++) visualizations (Sakaida et al., 2023). 

2.2 Preprocessing Techniques 

  Preprocessing techniques play a crucial role in detecting calcifications related to 

breast cancer, which helps with early diagnosis and treatment planning. Several research 

works have focused on optimizing algorithms and methods to improve the precision and 

effectiveness of calcification detection in mammography images.  

  A fundamental step in these pre-processing techniques involves converting input 

images into grayscale. This conversion simplifies the data and prepares it for further analysis. 

By transforming the input image data into grayscale, the complexity of the image is reduced, 
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facilitating segmentation, feature extraction, and classification tasks. Grayscale conversion 

eliminates colour information, focusing solely on intensity variations within the image, 

which is crucial for identifying subtle features such as calcifications in breast tissue (Hirra 

et al., 2021). Various techniques can be employed for grayscale conversion, with Otsu's 

method being a popular choice for automatically selecting the optimal grayscale threshold 

for segmenting calcifications in breast cancer images. This method aids in generating binary 

images that highlight regions of interest, and also assisting in subsequent analysis and 

detection process (Guzmán-Cabrera et al., 2012). 

  Beyond grayscale conversion, it's crucial to address noise in mammography 

images, as it can obscure important details and hinder accurate analysis. This noise often 

originates from the imaging equipment itself and can manifest as random fluctuations in 

pixel values. One effective method to combat this noise while preserving the sharpness of 

edges and important features.is median filtering. Median filtering emerges as a powerful 

solution in this regard. Unlike other noise reduction methods that might blur or distort edges, 

median filtering maintains the integrity of these edges while effectively reducing noise.  

  For each pixel in the image, the median filter evaluates the values of its neighboring 

pixels within a defined window or kernel. Within this window, arrange the values in 

ascending order, instead of averaging these values, it selects the median value. This median 

value is then assigned to the pixel under consideration. Following this, discard the old value, 

acquire new samples, and repeat the aforementioned calculation procedure. By replacing 

each pixel's value with the median of its neighbors, median filtering effectively reduces the 

impact of random noise while preserving the sharpness of edges. This preservation of edge 

details is crucial in mammography, where even minor distortions or blurring can obscure 
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important features indicative of breast abnormalities (AlSalman, 2020). Figure 2.1 illustrates 

an example of a median filter calculation. 

 

2.3 Feature Extraction Methods: Thresholding  

Mammography is a crucial imaging technique for the early detection of breast cancer, 

as it provides detailed images of breast tissues to identify abnormalities such as masses and 

calcifications. A major challenge in mammography analysis is accurately separating these 

features from the surrounding breast tissue, which often exhibits varying densities and 

contrast levels (Yassir Edrees Almalki et al., 2022). Traditional thresholding methods, which 

apply a single threshold value across the entire image, may not effectively capture these 

variations, leading to suboptimal segmentation results. Adaptive thresholding techniques 

have shown promise in addressing these issues by improving the accuracy of feature 

extraction and classification in mammograms through the adjustment of thresholds based on 

local image characteristics (Adaptive Threshold-Based Tumor Detection Algorithm For 

Mammograms Images, 2023).  

Adaptive thresholding offers a significant advantage over global thresholding by 

allowing for local threshold adjustment, which is crucial for handling the heterogeneous 

nature of breast tissue (Yu, Wang and Zhang, 2023). Due to factors including tissue type and 

  
Figure 2.1 Median Filter Calculation 
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imaging settings, distinct sections of a mammogram may show notable changes in density 

and contrast. Adaptive thresholding improves the ability to distinguish between normal and 

aberrant tissues by dynamically modifying the threshold for each location according to its 

unique local characteristics (Yassir Edrees Almalki et al., 2022). This local modification is 

especially helpful in differentiating surrounding tissue structures from calcifications, which 

frequently show up in mammograms as tiny, high-contrast patches (Hanife Avcı and Jale 

Karakaya, 2023). Techniques such as the adaptive mean, adaptive Gaussian, and locally 

adaptive methods have been developed to implement this localized thresholding approach, 

leading to enhanced segmentation accuracy (Yu, Wang and Zhang, 2023). 

Adaptive thresholding improves segmentation accuracy in mammography analysis, as 

numerous studies have shown. As an example, it has been demonstrated that an adaptive 

thresholding technique based on local image statistics performs better than global 

thresholding in the correct identification of microcalcifications, which are important markers 

of early breast cancer. By leveraging local contrast and intensity information, adaptive 

thresholding reduces false positives and increases the reliability of computer-aided 

diagnostic (CAD) systems by more precisely distinguishing calcifications from the 

background (Yu, Wang and Zhang, 2023). Furthermore, adaptive thresholding approaches 

have been effectively integrated with other image processing techniques, like edge detection 

and texture analysis, to boost the overall diagnostic performance of mammography analysis 

systems and improve segmentation outcomes. 

One of the notable advantages of adaptive thresholding techniques is their potential for 

real-time applications due to their computational efficiency (Yu, Wang and Zhang, 2023). 

Since many adaptive thresholding techniques are computationally light weight by nature, 
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they can be used in real-time processing contexts and embedded devices (Yassir Edrees 

Almalki et al., 2022). This is especially crucial in healthcare situations when prompt 

diagnosis and analysis are required (Hanife Avcı and Jale Karakaya, 2023). Adaptive 

thresholding can help radiologists make timely and well-informed judgements by quickly 

and accurately segmenting mammograms, which will ultimately enhance patient outcomes. 

Furthermore, adaptive thresholding algorithms' scalability makes it possible to include them 

into a variety of CAD systems, expanding their usefulness in a range of healthcare contexts. 

Adaptive thresholding greatly improves mammography analysis, although it works 

best when paired with more sophisticated feature extraction methods (Adaptive Threshold-

Based Tumor Detection Algorithm For Mammograms Images, 2023). Combining adaptive 

thresholding with other methods like texture analysis, edge detection, and deep learning 

might result in a feature set that is more comprehensive and has a greater classification 

accuracy (Hanife Avcı and Jale Karakaya, 2023). It has been shown, for example, that 

integrating adaptive thresholding with convolutional neural networks (CNNs) enhances the 

identification and classification of breast lesions by gathering complex patterns and textures 

in mammograms. These hybrid techniques offer a solid basis for accurate and efficient 

mammography analysis by fusing the best features of adaptive thresholding's segmentation 

capabilities with the best parts of deep learning feature extraction. 

In conclusion, adaptive thresholding is a valuable technique for enhancing 

mammogram analysis by allowing for local threshold adjustments that address variations in 

tissue density and contrast. This improves the segmentation accuracy of important features 

like calcifications, making breast cancer detection more reliable and efficient. Its real-time 

potential and computational efficiency make it highly applicable in clinical settings. When 
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combined with other advanced feature extraction techniques, adaptive thresholding 

significantly enhances the detection and classification of suspicious lesions, supporting early 

breast cancer diagnosis and treatment planning. Future research should aim to develop more 

advanced algorithms and explore their integration with new technologies to further improve 

mammogram analysis. 

2.4 Machine Learning Algorithms 

  Breast cancer is still a common health issue in the world, which drives ongoing 

research into cutting-edge technology to improve detection and diagnosis. The field of 

medical imaging has witnessed the rise of machine learning algorithms as potent instruments 

in recent times. These algorithms hold great potential for enhancing the precision and 

effectiveness of breast cancer detection, especially in the identification of calcifications, 

which are crucial markers of cancerous growth (Chaudhury et al., 2021).  

  Support Vector Machines (SVM) have attracted a lot of interest because of its 

adaptability and efficiency in categorization applications. SVM algorithms have proven to 

be quite accurate in the field of breast cancer detection, especially when used with 

thermographic pictures (Khalid et al., 2023). Furthermore, SVM has demonstrated its 

efficacy in detecting the presence and severity of breast artery calcifications (BACs) from 

mammograms, demonstrating its usefulness in assisting with early diagnosis and treatment 

planning (Khan and Giovanni Luca Masala, 2023). 

  Artificial Neural Networks (ANN), including their versions like the Back-

propagation neural network, have demonstrated impressive performance in the breast 

calcification categorization. ANN algorithms have demonstrated good accuracy rates by 

utilizing textural data collected from fractal-based and Gabor wavelet-based approaches, 
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highlighting their potential for accurate diagnostic assessment. Moreover, early detection 

and diagnosis of breast cancer by ANN has the potential to improve patient outcomes by 

enabling prompt intervention and individualized treatment plans (Khalid et al., 2023). 

  Random forests have become essential tools for identifying breast calcifications 

and detecting breast cancer because of their exceptional adaptability and efficiency. Notably, 

with reported accuracy rates reaching up to 98%, these algorithms have proven superior to 

other machine learning competitors in accurately categorizing breast tumours as benign or 

malignant. They are exceptionally skilled at working with complex datasets, like 

mammography scans, because they can handle a large number of features and variables 

without becoming overfit (Anisha et al., 2021). In addition, Random Forests are very good 

at identifying nonlinear correlations and interactions between variables, which improves 

their ability to extract relevant information from complicated mammography data. 

Researchers have successfully isolated the most pertinent features for breast cancer detection 

by utilizing sophisticated feature selection approaches in conjunction with the Random 

Forest algorithm. This has greatly improved the identification and characterization of breast 

calcifications (Hasan, Sihem Chaabouni and Fakhfakh, 2023). 

  Convolutional Neural Networks (CNNs) have emerged as a revolutionary tool in 

breast cancer detection and characterization of breast calcifications, as revealed in the search 

results. Firstly, CNN algorithms have showcased promising efficacy in detecting breast 

arterial calcifications from mammographic images, alongside demonstrating high accuracy 

and specificity in distinguishing between benign and malignant breast calcifications based 

on textural features (Guevara-Ponce et al., 2023). Their transformative potential in medical 

imaging analysis is highlighted by their unmatched powers in image recognition and 
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classification, which outperform conventional machine learning techniques. CNN-based 

techniques provide a compelling answer for breast cancer diagnosis by improving diagnostic 

accuracy and clinical decision-making with their precision. CNN models also offer the 

benefit of automatically identifying pertinent features from mammography pictures, which 

gets around the drawbacks of expert-driven analysis and manual feature engineering (Masud, 

Eldin and M Shamim Hossain, 2020). When taken as a whole, these results highlight the 

important role that CNN algorithms have had in improving the identification of breast cancer 

and characterizing breast calcifications, which represents a critical development in medical 

imaging technology. 

  A wide range of advantages and skills are shown when machine learning algorithms 

for calcification classification and breast cancer diagnosis are compared. Artificial Neural 

Networks (ANN) and Support Vector Machines (SVM) emerge as major participants, 

exhibiting remarkable sensitivity and accuracy in both tasks (Ragab et al., 2019). SVM 

predicts breast cancer risk with high accuracy rates, but ANN successfully discriminates 

between breast tissues that are normal and pathological. While they have not received much 

attention, Random Forests demonstrate promise in classification tasks, which is consistent 

with their potential utility in the identification of breast cancer (Ebrahim Edriss Ebrahim and 

Feng, 2016). Convolutional Neural Networks (CNN) are a promising technology that can 

improve patient outcomes and diagnostic capacities due to their excellent specificity and 

accuracy. CNNs have significant promise in the detection of breast cancer because of their 

capacity to identify breast artery calcifications and distinguish between benign and 

malignant calcifications. When combined, these algorithms offer a wide range of tools that 
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can help improve breast cancer management by enhancing diagnostic skills (Ozcan, Aydin 

and Cetinkaya, 2022).  

2.5  ROC curve and AUC analysis 

  The receiver operating characteristic (ROC) curve and the area under the curve 

(AUC) are additional metrics used to assess the effectiveness of the proposed model across 

various classification thresholds. The ROC curve represents a probability curve, while the 

AUC indicates the level of separability, quantifying the model's ability to differentiate 

between classes (Chan, 2022). 

  Yang & Berdine (2017) explained that a ROC curve visually illustrates the 

performance of a classifier system as the discrimination cut-off value varies across the range 

of predictor variables. As depicted in Figure 2.2, the x-axis, or independent variable, denotes 

the False Positive Rate (FPR) for predictive data, reflecting the model's 1-specificity. 

Meanwhile, the y-axis, or dependent variable, signifies the True Positive Rate (TPR) for 

predictive data, indicating the model's sensitivity. 

  Yang & Berdine (2017) suggested that each point within ROC space corresponds 

to a pair of true positive and false positive data instances at a particular discrimination cut-

off value for a prediction test. By adjusting this threshold, multiple sets of TPR and FPR 

values can be generated, forming the basis for constructing a ROC curve (MathWorks, 

2023). Typically, in practical scenarios, each choice of discrimination cut-off results in a 

single point on the ROC graph. Classifiers with curves closer to the top-left corner 

demonstrate superior performance. Ideally, achieving coordinates (0, 1) indicates perfect 

results, signifying no false positives and only true positives (Nahm, 2021). 
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  When the discrimination cut-off value for the predictive variable is smaller than the 

lowest observed value, it forms the point (0, 0) in the ROC space. As this cut-off value 

increases to encompass more data points, a series of points within the ROC space is 

generated, potentially connected by a curve. Conversely, the point (1, 1) arises when the 

discrimination cut-off value surpasses the highest observed value. The diagonal line linking 

the (0, 0) and (1, 1) points signifies that test predictions are no more accurate than random 

guesses. The further a point extends from this diagonal line within the ROC space, the 

stronger the predictive capability of the test. However, if the curve approaches closer to the 

45-degree diagonal of the ROC space, the test's accuracy is less accurate (Park et al., 2004). 

  According to Lalkhen & McCluskey (2008), elevating the cut-off point leads to a 

reduction in false positives but an increase in false negatives, resulting in a highly specific 

yet not particularly sensitive. Conversely, lowering the cut-off point decreases false 

negatives but increases false positives, yielding a highly sensitive yet not particularly 

specific. 

  Additionally, a reliable method for assessing the performance of various classifiers 

involves calculating the area under the ROC curve (AUC). This metric serves multiple 

purposes, including determining the optimal cut-off value for a specific test and evaluating 

the performance of multiple alternative tests. A high AUC value, approaching one, indicates 

excellent separability in the model. The higher the AUC, the more accurately the model 

distinguishes between classes, effectively predicting zeros as zeros and ones as ones. 

Analogously, a greater AUC signifies a more precise differentiation between positive and 

negative classes. Conversely, when AUC is 0.5, the model lacks discrimination ability to 

distinguish between positive and negative classes. An AUC close to zero suggests that the 
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model is essentially reversing the classes, predicting negative as positive and vice versa 

(Narkhede, 2018). 

 

2.6 Performance Evaluation Metrics 

  Performance evaluation metrics play a vital role in machine learning, serving as 

essential tools for gauging the accuracy of a model's predictions. These metrics offer 

quantitative insights into a model's performance on specific datasets, enabling developers to 

iteratively refine and enhance their models. This study utilized metrics such as accuracy, 

loss, F-1 score, recall, precision, specificity, sensitivity, and AUC. 

  Accuracy stands as the most commonly used metric for assessing machine learning 

model performance. It quantifies the ratio of correct predictions to all predictions made by 

the model. For instance, if a model accurately predicts 90 out of 100 instances, its accuracy 

is 90%. Accuracy serves well when dealing with balanced datasets, where instances across 

classes are approximately equal. However, in the case of imbalanced datasets, accuracy can 

Figure 2.2 ROC Curve (Nahm, 2021) 
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be misleading, as a model might achieve high accuracy by simply predicting the majority 

class. It is defined as 

        (1) 

 

where TP, FP, TN, and FN represent the number of true positives, false positives, true 

negatives, and false negatives, respectively, as determined by the classifier's predictions. 

  Loss, also referred to as error or cost, gauges a model's performance by assessing 

the disparity between its predictions and the real outcomes. To train the model, a loss 

function is employed to tweak its parameters, aiming to minimize the gap between 

predictions and actual results. Typical loss functions comprise mean squared error, mean 

absolute error, and cross-entropy. The selection of a loss function hinges on the particular 

problem and the nature of the data under examination. For instance, mean squared error is 

frequently employed for regression tasks, while cross-entropy is favored for classification 

challenges (Alake, 2023). 

  The F1-score assesses a model's performance by considering both precision and 

recall, computed as the harmonic mean of these two metrics. This metric is used 

independently to determine the accuracy of test datasets. 

      (2) 

 

  Recall evaluates a model's ability to accurately detect all positive instances. It is 

determined by dividing the number of true positives by the sum of true positives and false 

negatives. Recall holds significance in scenarios where overlooking a positive instance can 

yield notable repercussions, such as in medical diagnosis or fraud detection. 
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          (3) 

 

  Precision gauges a model's effectiveness in accurately identifying positive 

instances while minimizing false positives. This metric is computed by dividing the number 

of true positives by the sum of true positives and false positives. Precision holds relevance 

in contexts where false positives can lead to notable repercussions, such as in medical 

diagnosis or spam detection. 

        (4) 

 

  Specificity, alternatively termed as the true negative rate, evaluates a model's ability 

to accurately identify negative instances. This metric is determined by dividing the number 

of true negatives by the sum of true negatives and false positives. Specificity holds 

significance, particularly in medical diagnosis scenarios, where high specificity guarantees 

that patients are not misdiagnosed with a condition they do not have. 

        (5) 

 

  Sensitivity, also referred to as the true positive rate, assesses a model's ability to 

accurately identify positive instances. This metric is computed by dividing the number of 

true positives by the sum of true positives and false negatives. Sensitivity holds paramount 

importance in medical diagnosis, where achieving high sensitivity ensures that patients are 

not overlooked if they indeed have a condition. 

        (6) 
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  The AUC evaluates a model's performance in terms of both sensitivity and 

specificity. This measure is obtained by plotting the true positive rate against the false 

positive rate across various thresholds and then calculating the area under the curve. AUC 

proves valuable in scenarios where both sensitivity and specificity hold significance, such as 

in medical diagnosis or credit risk assessment. 

2.7 Ensemble Learning 

  Ensemble learning is a sophisticated machine learning technique that enhances 

predictive performance by amalgamating the outputs from multiple models. These separate 

models, also known as base learners or base models, each add to the final prediction, 

resulting in more reliable and accurate outcomes overall (Keita, 2018). The fundamental 

tenet of ensemble learning is that the strengths of various models can be used to offset the 

shortcomings of individual models. This technique serves to reduce the overall 

generalizability of the ensemble and smooths out individual model biases, which shows to 

be especially useful when working with noisy and complicated datasets (Brownlee, 2021). 

  There are several ensemble techniques, each intended to take advantage of unique 

advantages. Bagging, also known as Bootstrap Aggregating, is the process of averaging the 

results of many models that have been trained on different subsets of the training data. The 

primary way that this strategy lowers variance is by averaging the errors of individual models 

(Brownlee, 2021). Boosting, on the other hand, progressively trains models to correct the 

mistakes made by their forebears in an effort to reduce bias and variance. A strong aggregate 

model is produced by models in a boosting setup learning from the errors of previous models. 

Another strategy is stacking, which is training a meta-model to combine the predictions of 
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multiple base models. This method frequently produces better results by identifying intricate 

relationships that individual models would miss (Keita, 2018). 

  Group learning offers numerous advantages. By combining the strengths of 

multiple algorithms, ensemble models often achieve higher prediction accuracy than single 

models. This combination results in more robust models that handle noise better and 

generalize more effectively to new data. Additionally, ensemble methods are highly 

versatile, applicable to both classification and regression problems (Simplilearn, 2021). 

However, there are some downsides to ensemble learning. One major drawback is 

interpretability; it can be challenging to understand the contributions of each base model 

within the ensemble. Furthermore, the computational cost of training multiple models and 

merging their predictions can be substantial, especially with large datasets. Overfitting is 

another potential issue, particularly if the base models are overly complex or if the ensemble 

is too large (Mwiti, 2022). 

  Ensemble learning is applied across various fields, leveraging multiple models to 

enhance prediction performance. In image classification, ensemble methods improve 

accuracy by combining outputs from several models, each capturing unique details and 

subtleties, leading to a more comprehensive understanding and better predictions (Brownlee, 

2021). Similarly, in natural language processing (NLP), ensemble techniques enhance 

performance in tasks like sentiment analysis, language translation, and text categorization 

by using diverse linguistic patterns identified by different models. This diversity allows for 

a better grasp of complex linguistic structures and semantics. For time series forecasting, 

ensemble approaches generate more accurate and reliable predictions by merging forecasts 
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from different models, effectively handling the inherent variability and complexity of time 

series data (Simplilearn, 2021).  

The implementation of ensemble learning in Python is facilitated by numerous tools 

and packages, making it accessible and practical for practitioners. Scikit-Learn, a versatile 

machine learning framework, provides robust implementations of various ensemble 

techniques, such as boosting, stacking, and bagging. XGBoost is favored for its efficiency 

and superior performance in gradient boosting, while LightGBM is known for its speed and 

effectiveness, and CatBoost excels in processing categorical features, broadening the scope 

of ensemble learning applications. These tools empower data scientists and machine learning 

engineers to experiment with and apply ensemble methods easily, harnessing their full 

potential to tackle complex predictive modelling challenges across different domains. 

Ensemble learning is a vital technique in modern machine learning, combining the strengths 

of multiple models to enhance prediction accuracy, robustness, and generalizability (Keita, 

2018).  
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CHAPTER 3 

METHODOLOGY 

3.1 Study Design 

This is a retrospective study to develop a Computer Aided Diagnosis (CAD) system to 

distinguish between benign and malignant breast calcifications. 384 mammogram images 

were obtained from HUSM PACS system from 2021 until 2023 based on the inclusion and 

exclusion criteria. The system evaluation in this study is divided into four major components 

which are cancer breast image data input, pre-processing, detection and feature extraction, 

and classification.   

3.2 Study Location 

The image dataset will be collected from picture archiving and communication system 

(PACS) in Hospital Universiti Sains Malaysia (HUSM), Kubang Kerian. 

3.3 Selection Criteria 

3.3.1 Inclusion Criteria 

  Women diagnosed with breast cancer who have undergone mammogram in 

standard mediolateral oblique (MLO) view and cranial caudal (CC) view. 

3.3.2 Exclusion Criteria 

i. Women with previous breast surgery.  

ii. Breast cancer women post neoadjuvant chemotherapy.  

iii. Women with breast implant or breast filler injection.  

iv. Mammogram images without calcifications. 
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3.4 Sample Size Estimation 

The sample size will measure the number of breast cancer images dataset used in 

this study. Cochran’s formula (1977) is used to determine the sample size of this research 

with a 95% confidence level within 0.5 of true value. The equation used is as follow:  

(7) 

The confidence level corresponds to a Z-score. The constant value for the 95% 

confidence level is 1.96. As there is no previous study yet, the true value of the sample size 

is assumed as 0.05. The estimated dataset proportion p=0.5, which will produce the largest 

possible sample size that would be required. The calculation is as follow: 

(8) 

3.5 Data Collection 

The data collection for this study will be conducted at the Women Imaging Suite 

(WISH) of Hospital Universiti Sains Malaysia (HUSM). Initially, data will be extracted from 

the Laboratory Information System (LIS) for cases of confirmed breast cancer. This data will 

then be cross verified with the Picture Archiving and Communication System (PACS) at 

HUSM to identify mammograms that show calcification and adhere to the inclusion criteria. 

The selection process will focus on mammogram images taken within the past four years, 

specifically from September 2020 to December 2023. Only mammograms in PACS that 




