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PENEMUAN PERENCAT CDK4 BAHARU BERPOTENSI BERASASKAN 

PIRIDO[2,3-D]PIRIMIDINA-7-ON MENGGUNAKAN PENDEKATAN 

PEMODELAN MOLEKUL 

ABSTRAK 

Kinase yang bergantung kepada siklin (CDK) adalah kelas enzim 

pengawalaturan yang memodulasi pelbagai sifat biokimia sel, antaranya 

pembahagian sel. Enzim CDK yang berbeza telah menjadi tapak sasaran biologi 

yang berguna untuk memerangi pelbagai jenis kanser. Enzim CDK4 telah meningkat 

ekspresinya dalam beberapa jenis kanser, antaranya kanser payudara. Penggunaan 

molekul drug kecil bagi menghalang aktiviti enzim CDK4 telah dibuktikan sebagai 

pendekatan yang sah secara klinikal. Walau bagaimanapun, pada masa ini 

pendekatan ini mengalami pelbagai kekurangan antaranya aktiviti yang tidak 

mencukupi. Antara perencat penting bagi enzim CDK4 adalah sebatian yang 

berasaskan kerangka pirido[2,3-D]pirimidina-7-on. Dalam kajian ini, kaedah reka 

bentuk drug berbantuan komputer (CADD) termasuklah kaedah yang berdasarkan 

ligan dan yang berdasarkan struktur, telah diaplikasikan kepada sebatian yang 

diterbitkan daripada kerangka ini. Kaedah CADD yang digunakan menunjukkan 

korelasi antara sifat fizikokimia dan aktiviti, juga memberi pemahaman mengenai 

proses pengikatannya. Kaedah CADD berasaskan ligan yang digunakan dalam kajian 

ini termasuk hubungan struktur-aktiviti kuantitatif (QSAR) dan pemodelan 

farmakofor. Kedua-dua model 2D dan 3D-QSAR telah dibangunkan dan disahkan 

dengan ketat, menghasilkan model yang boleh digunakan untuk meramalkan aktiviti 

sebatian yang belum disintesis atau bagi mengutamakan sebatian calon bagi 

penilaian biologi. Model ini juga boleh memberikan kefahaman berkenaan keperluan 

struktur bagi menghasilkan aktiviti yang tinggi. Model yang terbaik menghasilkan 



xvi 
 

parameter validasi berikut: pekali penentuan (R2=0.913), pekali korelasi pengesahan 

silang (Q2=0.745) dan pekali korelasi aktiviti ramalan (R2
(pred)=0.764). Model 

farmakofor untuk sebatian aktif menunjukkan keperluan ciri farmakofor yang terdiri 

daripada satu penerima ikatan hidrogen, satu hidrofobik dan dua gelang aromatik. 

Kaedah berasaskan struktur antaranya pengedokan molekul juga telah dijalankan. 

Prosedur pengedokan telah disahkan melalui eksperimen pengedokan semula iaitu 

berdasarkan pengukuran sisihan punca min kuasa dua (RMSD) bagi membuktikan 

bahawa hasil dok adalah boleh dipercayai. Pengedokan juga menunjukkan interaksi 

pengikatan penting yang berlaku dalam tapak sasaran, antaranya ikatan hidrogen 

dengan residu HIS95 dan VAL96. Akhirnya, penyaringan maya pangkalan data 

CHEMBL yang mengandungi 2,086,898 sebatian telah dijalankan dengan 

menggunakan model QSAR yang telah dibangun dan disahkan, dan prosedur 

pengedokan molekul untuk mengenal pasti sebatian novel yang berpotensi sebagai 

perencat CDK4. Terdapat 7 sebatian aktif yang telah dikenal pasti.  Ciri 

farmakokinetik dan ketoksikan sebatian tersebut telah dianalisis dan menunjukkan 

bahawa sebatian ini mempunyai sifat seperti drug dan boleh digunakan sebagai 

sebatian peneraju bagi pembangunan agen teraputik antikanser yang berguna secara 

klinikal. 
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DISCOVERY OF NEW POTENTIAL PYRIDO[2,3-D]PYRIMIDIN-7-ONE 

BASED CDK4 INHIBITORS USING MOLECULAR MODELLING 

APPROACHES  

ABSTRACT 

Cyclin-dependent kinases (CDKs) are a class of regulatory enzymes that 

modulate various biochemical properties of the cell such as cell division. Different 

CDK enzymes have been shown to be promising biological targets for combating 

different types of cancer. In particular, the CDK4 enzyme has been observed to be 

overexpressed in several types of cancer including breast cancer. The usage of small-

drug molecules that inhibits the activity of the CDK4 enzyme has proved to be 

clinically valid approach. However, currently available solutions suffer from various 

limitations such as insufficient activity. Among the most notable inhibitors of the 

CDK4 enzyme are the compounds based on the pyrido[2,3-d]pyrimidin-7-one 

scaffold. In this study, computer-aided drug design (CADD) methods including 

ligand-based and structure-based methods have been applied on the compounds 

derived from this scaffold. The applied CADD methods revealed the correlation of 

the physicochemical properties with the activity and gave insights into the binding 

process. The used ligand-based CADD methods included quantitative structure-

activity relationship (QSAR) and pharmacophore modeling. Both 2D- and 3D-QSAR 

models were developed and rigorously validated, which yielded models that can be 

used for predicting the activity of compounds that are not yet synthesized or to 

prioritize the biological evaluation of candidate compounds. The models also provide 

insights regarding the structural requirements for achieving high activity. The best 

model’s validation parameters included: coefficient of determination (R2=0.913), 
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correlation coefficient of cross validation (Q2=0.745) and coefficient of 

determination of the test set (R2(pred)=0.764). The obtained pharmacophore model 

detailed the required pharmacophoric features for active compounds which included 

a hydrogen-bond acceptor, hydrophobic and two aromatic rings. Structure-based 

methods were also conducted including molecular docking. The docking procedure 

was validated by a re-docking experiment which proved that the docking results are 

reliable based on root mean-squared deviation (RMSD) measurement. The docking 

also revealed the important binding interactions which included critical hydrogen-

bonds with HIS95 and VAL96 residues at the active site of the enzyme. Finally, 

virtual screening of 2,086,898 compounds from the ChEMBL database was carried 

out using the developed and validated QSAR models and the molecular docking 

procedure to identify novel potentially active CDK4 inhibitors. A total of 7 

potentially active compounds were identified. The pharmacokinetic properties and 

the toxicity of the identified compounds were analyzed and showed that these 

compounds possess drug-like properties and can serve as lead-compounds for 

developing clinically useful anti-cancer therapeutic agents. 

 



 

 

1 

 

CHAPTER ONE 

 

INTRODUCTION 

 

Cancer is a highly prevalent disease that is characterized by rapid and abnormal 

cellular divisions in certain tissues (Otto and Sicinski, 2017, Hassanpour and 

Dehghani, 2017). Despite the relative success in chemotherapy which involves the 

usage of chemical substances to combat the cancerous cells, various limitations and 

obstacles exist. Those limitations include the ineffectiveness of the marketed 

therapeutics against certain types of cancers or in certain patients (Bøttcher et al., 2019, 

Yamamoto et al., 2019, Otto and Sicinski, 2017). Also, the emergence of resistance in 

the course of the therapy is one major issue in the treatment of many types of cancer 

(Spring et al., 2019, Pandey et al., 2019). Hence, the development of novel and 

effective anti-cancer agents is a continuous demand in the drug design and discovery 

field. 

  

 The treatment of cancer via small drug molecules mainly involves targeting 

certain biomolecules that are vital for the cancerous cells and inhibiting/disabling those 

targets leads to the death of the cell (Peyressatre et al., 2015). Different biomolecules 

have been identified that are present in the cancerous cells in a larger proportion 

compared to the normal cells. This difference makes them appealing targets for small 

drug molecules that are intended to act as anti-cancer agents (Otto and Sicinski, 2017). 

Among the most notable targets for combating different types of cancer is the cyclin-

dependent kinase (CDK) family of enzymes. The CDK enzymes play important roles 
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in the regulation of processes related to cell division (Cicenas and Valius, 2011). It has 

been observed that certain CDK enzymes are overexpressed in cancerous cells. Thus, 

inhibiting those enzymes can halt the cancer cell division (Braal et al., 2021). 

 

 This study focuses on the cyclin-dependent kinase 4 (CDK4) enzyme. This 

enzyme has been overexpressed in different types of cancer, particularly breast cancer 

(Bøttcher et al., 2019). Also, targeting this enzyme by small drug molecules has been 

shown to be an effective and promising approach for the treatment of breast cancer. 

However, the existing CDK4 inhibitors suffer from certain issues and limitations, 

which mainly include the development of resistance throughout the course of the 

treatment as well as the lack of effectiveness in certain cases (Condorelli et al., 2018, 

Spring et al., 2019). Thus, the discovery of novel CDK4 inhibitors and to better 

characterize the structural requirements for inhibiting this target is of prime 

importance. 

 

 Different chemical scaffolds were discovered that possessed CDK4 inhibitory 

activity. Among the most notable and promising scaffolds is the pyrido[2,3-

d]pyrimidin-7-one scaffold (1). Derivatives based on the pyrido[2,3-d]pyrimidin-7-

one scaffold were shown to have good inhibitory concentration (IC50) values against 

the CDK4 enzyme while exhibiting a good selectivity towards other protein kinases 

(Mascarenhas et al., 2010). However, limited computation studies have been 

conducted on the pyrido[2,3-d]pyrimidin-7-one based CDK4 inhibitors. In the modern 

drug design and discovery paradigm, computational molecular modeling has become 
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an essential and invaluable tool, particularly in early computational studies 

(Chandrasekaran et al., 2018). 

 

 

 

Pyrido[2,3-d]pyrimidin-7-one scaffold (1) 

 

In this study, various computer-aided drug design (CADD) methods were 

performed to analyze the current CDK4 inhibitors and characterize the essential 

structural and physicochemical requirements for achieving high activity. Also, 

quantitative structure-activity relationship (QSAR) and pharmacophore models were 

developed, which can be used to predict the activity quantitatively and qualitatively, 

respectively. Thus, this serves to accelerate the identification of novel and potentially 

active CDK4 inhibitors via virtual screening. Pharmacokinetic analysis and toxicity 

assessment are applied to the newly identified compounds to ensure that they possess 

drug-like properties. Hence, the newly identified structures can serve as lead 

compounds for developing CDK4 inhibitors anti-cancer agents.  

 

 Figure 1.1 shows a schematic diagram of the steps followed in the molecular 

modeling process. In the first part, QSAR and pharmacophore models were developed 

and validated, also the molecular docking protocol was established and validated. In 
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the second part, the developed models and the docking procedure were used in a virtual 

screening campaign to identify novel and potentially active CDK4 inhibitors. 

Pharmacokinetic analysis and toxicity assessment were conducted on the identified 

compounds to validate their drug-like properties. Also, the top identified compound 

was subjected to molecular dynamics (MD) simulation to further validate its activity 

as a CDK4 inhibitor. 
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Figure 1.1: The main workflow followed in this study. 
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1.1 Objective of the Study 

The aim of the study is to use CADD methods to identify novel and potentially active 

CDK4 inhibitors based on the pyrido[2,3-d]pyrimidin-7-one scaffold.  

1.2 Specific Objectives 

i. To develop and validate predictive QSAR models that can estimate the 

activity of potential CDK4 inhibitors. 

ii. To develop and validate pharmacophore models that can identify potentially 

active CDK4 inhibitors. 

iii. To predict the essential binding interactions between the CDK4 enzyme and 

the inhibitors by using molecular docking. 

iv. To identify novel and potentially active CDK4 inhibitors via virtual screening and 

molecular dynamics simulation. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

2.1 CDK Enzymes in Cancer 

The CDK enzymes belong to the family of serine/threonine kinases are responsible for 

modulating the progression of the cell cycle (O'leary et al., 2016). This family of 

enzymes operates by catalyzing the phosphorylation of certain targets which would 

subsequently lead to the advancement of the cell cycle events. In order for the CDK 

enzymes to achieve their activity, they need to form heterodimeric complexes with 

their respective cyclin components (Dey et al., 2020). Only when a CDK enzyme is 

bound to its cyclin component, it can catalyze the phosphorylation of its targets. Also, 

some of the CDK enzymes require to be phosphorylated to become in the active state, 

often they are phosphorylated by the CDK-activating kinase (CAK) enzyme, which is 

also referred to as the CDK7 enzyme (Morgan, 1997). The transition between the 

active and inactive state of the CDK enzymes is strictly regulated, as improper 

functioning could lead to undesired division and proliferation of the cell (Morgan, 

1995, Besson et al., 2008). 

 

The various processes that occur in the cell as it grows and divides are referred 

to as the cell cycle (Kasten and Giordano, 1998). There are four distinct phases in each 

cell cycle. The first phase is known as the Gap-1 (G1) phase, in which the cell grows 

and increases in size. The second phase is called the Synthesis (S) phase, in which the 

cell synthesizes a copy of its current DNA. The third phase is the Gap-2 (G2) phase, 
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in which the cell prepares for the division process. The fourth and final phase is the 

Mitosis (M) phase, in which the cell divides into two individual cells (O'leary et al., 

2016, Zhang et al., 2021). In mammalian cells, various CDK enzymes are in control 

of different phases of the cell cycle process, and they act as an on/off switch on the 

progression of the cell cycle events (Vermeulen et al., 2003). When a particular CDK 

enzyme is active, the cell is permitted to progress through the stage in which that CDK 

enzyme is modulating. On the other hand, if a particular CDK enzyme is inactive, the 

cell is not permitted to pass through the stage which that CDK enzyme controls and 

the cell cycle is halted (Zhang et al., 2021). Abnormal expression of different CDK 

enzymes has been observed in various types of cancer (Peyressatre et al., 2015). For 

example, the CDK1 enzyme was found to be overexpressed in advanced melanoma as 

well as B lymphoma (Abdullah et al., 2011, Zhao et al., 2009), and the CDK2 enzyme 

is overexpressed in laryngeal squamous cell cancer, breast cancer and advanced 

melanoma (Peyressatre et al., 2015).  

 

The involvement of the CDK enzymes in the development of different cancer 

types gave them value in different therapeutic applications (Cicenas and Valius, 2011). 

For instance, the CDK1 enzyme possesses diagnostic value in breast and esophageal 

cancers (Hansel et al., 2005). Also, the expression and activity of the CDK2 enzyme 

have been used clinically to monitor the prognosis of oral and ovarian cancers (Mihara 

et al., 2001, Kim et al., 2008). Thus, CDK enzymes represent appealing targets in 

cancer therapy, both as targets for combating the cancer cell as well as for purposes of 

clinical diagnosis and prognosis (Cicenas and Valius, 2011).  
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2.1.1 CDK4 Enzyme 

The CDK4 enzyme is one of the most targeted CDKs for the treatment of cancerous 

cells (Spring et al., 2019). Aberrant expression of the CDK4 enzyme has been observed 

in different types of cancer including breast, ovarian and oral cancers (Peyressatre et 

al., 2015). The central role of the CDK4 enzyme in the progression of the cell cycle 

process is the main cause of its direct involvement in the development of cancer (Sherr 

et al., 2016). In particular, at the early stages of the cell cycle process, the CDK4 and 

the CDK6 enzymes carry out the phosphorylation of the retinoblastoma family of 

proteins, mainly the pRb, p130 and p107. Phosphorylation of those retinoblastoma 

proteins leads to a subsequent cascade of events required for successful cell division 

(Kasten and Giordano, 1998). Thus, amplification or overexpression of the CDK4 

enzyme would lead to abnormal and rapid cell divisions. 

 

The active site of the CDK4 has been analyzed from the available crystal 

structures of the enzyme (in particular, PDB-ID: 2W96). It has been also compared to 

the active sites of other CDK enzymes such as CDK2 (PDB-ID: 1FIN) and CDK6 

(PDB-ID: 1G3N). The key amino acid residues in the active site of the CDK4 enzyme 

include HIS95, VAL96, THR120 and ASP97 (Shafiq et al., 2012). All of these amino 

acid residues are often found to interact with the inhibitors of the CDK4 enzyme. For 

example, the carbonyl backbone of the VAL96 residue often acts as a hydrogen bond 

acceptor with a hydrogen bond donor of the inhibitor. Also, the ASP97 residue 

contains a negatively charged group in its side chain that can interact with the inhibitor 

present in the active site via an ionic bond (Coleman et al., 1997, Shafiq et al., 2012). 

The other amino acid residues of the active site of the CDK4 enzyme seem to be less 

significant in interacting with the inhibitors.  
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 Various studies have shown that targeting the CDK4 enzyme by small 

molecule inhibitors is a validated approach against certain cancers such as breast 

cancer (Sherr et al., 2016). The inhibition of the CDK4 enzyme prevents the cell cycle 

from advancing to the G1 phase, hence no cell division occurs. Figure 2.1 illustrates 

the role of the CDK4 enzyme in the cell cycle flow. Currently, three clinically 

approved CDK4 inhibitors are used for the treatment of metastatic HR+ (hormone 

receptor+) breast cancer, namely, Palbociclib (2), Abemaciclib (3) and Ribociclib 

(4). Those CDK4 inhibitors are used usually in combination with other agents for the 

treatment of cancer (Sammons et al., 2017, Bøttcher et al., 2019, Braal et al., 2021). 

Despite the widespread of those agents, certain limitations exist and call for the 

development of new and improved CDK4 inhibitors. The current therapeutic agents 

suffer from limitations such as the lack of efficiency and the ineffectiveness in many 

clinical cases (Spring et al., 2019). Also, the emergence of resistant cancerous cells 

against the clinical CDK4 inhibitors during the course of the treatment is a major 

concern (Pandey et al., 2019, Condorelli et al., 2018). 
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Figure 2.1: The role of the CDK4 enzyme in the cell cycle flow. 
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Ribociclib (4) 

 

2.1.2 The pyrido[2,3-d]pyrimidin-7-ones Scaffold 

There have been various scaffolds that were identified as CDK4 inhibitors such as 

indenopyrazole (5), indolocarbazoles (6) and tetrahydronaphthyridine (7) 

(Muzaffar-ur-Rehman et al., 2017, O'leary et al., 2016, Zhu et al., 2003, Zha et al., 

2018). Among the most notable and promising scaffolds that possess CDK4 inhibitory 

activity is the Pyrido[2,3-d]pyrimidin-7-one scaffold (1). The main reason why this 

scaffold is considered to be promising is the high selectivity of its derivatives towards 

the CDK4 enzyme in comparison with the other kinases (Mascarenhas et al., 2010). 

Developing selective CDK4 inhibitors is highly desired as non-selective agents that 

bind to other kinases can cause a variety of non-desired adverse effects (Toogood et 

al., 2005, McInnes et al., 2004). Other advantages of the pyrido[2,3-d]pyrimidin-7-one 

scaffold include the relative ease of synthesis. Indeed, a large number of derivatives of 

the pyrido[2,3-d]pyrimidin-7-one scaffold have been synthesized and their biological 

activities have been reported in the literature as well as in databases of chemical 

compounds (VanderWel et al., 2005, Barvian et al., 2000). However, very limited 

computational studies have been performed on this class of compounds, and they have 
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not been thoroughly studied in terms of binding modes, correlation of activity with 

physicochemical properties and pharmacokinetic analysis (Barvian et al., 2000). 

Additionally, the currently highly active compounds of this class generally do not have 

high drug-like properties, for example, they tend to have high molecular weight, high 

number of rotatable bonds and high hydrophobicity (Pollastri, 2010, Veber et al., 

2002). These properties can halt the further development of these compounds into 

clinically useful drugs. Thus, more computational studies are required to further 

understand the pyrido[2,3-d]pyrimidin-7-one based CDK4 inhibitors.  

 

 

Indenopyrazole (5) 
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2.2 CADD Methods in Developing CDK4 Inhibitors 

Computer Aided Drug Design (CADD) methods have become essential tools in the 

drug discovery and development process. CADD methods mainly include structure-

based and ligand-based methods (Hassan Baig, Ahmad et al. 2016). Figure 2.2 shows 

a general scheme of the most used CADD methods. Structure-based methods such as 

molecular docking are used when the crystal structure of the target is available (Śledź 

and Caflisch, 2018). On the other hand, ligand-based methods such as QSAR can be 

applied even in the absence of the target crystal structure. CADD methods can provide 

predictive models to predict the activity of compounds that are not yet synthesized and 

prioritize their biological evaluation (Roy et al., 2015a). Also, these methods can 

provide valuable information regarding the binding process of the inhibitors to the 

target as well as the structural requirements for achieving high activity (Śledź and 

Caflisch, 2018). In the upcoming sections, a brief description of each method and how 

it has been applied to analyze and develop CDK4 inhibitors are provided. 
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Figure 2.2: General scheme of the commonly used CADD methods based on their 

type. 

 

2.2.1 QSAR Modeling 

QSAR modeling is a valuable method in drug design and discovery. It is used to derive 

mathematical models that can be used to predict the activities of new compounds 

(Tropsha, 2010). Also, QSAR models provide details regarding the correlation 

between molecular properties and the activity (Golbraikh et al., 2016). Despite the 

availability of many different QSAR methods, they all share a basic concept, which is 

to relate the physicochemical properties to biological activities. The used 

physicochemical properties in model development are often referred to as molecular 

descriptors in the context of QSAR modeling, and their types can vary widely (Yap, 
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2011, Prasanna and Doerksen, 2009). Figure 2.3 illustrates the general QSAR 

modeling workflow. 

 

 

 

Figure 2.3: The general steps of QSAR modeling. 

 

Another component that can vary greatly in QSAR methods is the choice of 

the statistical method that is used to correlate the molecular descriptors with the 

activity (Gramatica, 2007). Linear methods such as the multiple linear regression 

(MLR) method are very popular as they offer rapid model generation as well as ease 

of use. For instance, the MLR method does not require any specific parameters to be 

fined tuned when fitting the model. Also, the results of the linear methods can be easily 

and directly interpreted. Often, a regression coefficient is assigned to each molecular 

descriptor used which reflects the significance and contribution of the descriptor to the 
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predicted activity (Roy et al., 2016, Ambure et al., 2015, Saxena and Prathipati, 2003). 

On the other hand, non-linear regression methods such as artificial neural networks 

(ANN) require more parameter fine tuning and a relatively long time for building the 

model, especially when using a large dataset. Also, in most cases of QSAR model 

development, interpretation of the resulted model is not possible due to the non-linear 

nature of those methods. However; non-linear methods such as the ANN method can 

often provide better quantitative predictions of the activity compared to the linear 

methods (Devillers, 1996). Currently, there are various QSAR methods available. 

Since some QSAR methods may perform poorly on certain datasets it is often preferred 

that more than one method is applied to the available dataset (Roy et al., 2015b). 

 

2.2.1(a) 2D-QSAR 

The 2D-QSAR methods use only molecular descriptors that are computed using the 

2D-graph of the structures. Thus, the information included in those descriptors is 

independent of the 3D conformation or orientation of the structure (Roy and Narayan 

Das, 2014). Although a large number of diverse molecular descriptors is available and 

can be computed easily, the number of descriptors used in the model building process 

should be kept relatively low to avoid over-fitting the model. For this purpose, a 

descriptor-selection method is often used that selects only a small portion of the 

computed descriptors for model building (Saxena and Prathipati, 2003). Also, many 

2D descriptors are difficult to interpret as they are based on complex computations 

from the 2D graph of the structure. The main advantage of this method is that it does 

not require a 3D-conformation generation or alignments of the structures prior to 

building the model. This advantage also makes 2D-QSAR methods easier to use in the 
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virtual screening of large databases (Saíz-Urra et al., 2007, Roy and Narayan Das, 

2014, Lewis and Wood, 2014). 

 

 Several 2D-QSAR studies on different CDK4 inhibitors have been reported, 

for instance, Divya and co-workers conducted a 2D-QSAR analysis on a dataset 

composed of 43 CDK4 inhibitors (Divya et al., 2018). The compounds were 

derivatives of different scaffolds and did not share a single core structure. The dataset 

was split into a training set (75%) for model fitting and a test set (25%) for model 

validation. Different combinations of physicochemical properties and statistical 

methods were used to generate a large number of models in a combinatorial manner. 

Each model was validated and scored, the top model was retained which had 

statistically significant parameters such as R2 = 0.8947 and Q2 = 0.8909. 

 

2.2.1(b) 3D-QSAR 

Compared with the 2D-QSAR approach, the 3D-QSAR method has been more widely 

used in the analysis of CDK4 inhibitors. Mainly, this is because of the ability of the 

alignment-dependent 3D-QSAR methods such as CoMFA to visualize the model onto 

the compounds of the dataset (Muzaffar-ur-Rehman et al., 2017, Metibemu, 2021, Cai 

et al., 2014). The visualization shows the regions and nature of chemical substituents 

that are beneficial or detrimental to the activity in terms of electrostatic and steric 

properties (Martin, 1998). Various 3D-QSAR models have been reported using 

datasets based on a variety of chemical scaffolds.  
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For instance, Muzaffar-ur-Rehman and co-workers used a dataset composed of 

93 derivatives based on the indenopyrazole scaffold in an alignment-dependent 3D-

QSAR study (Muzaffar-ur-Rehman et al., 2017). The CoMFA and CoMSIA methods 

were applied. Initially, all the compounds of the dataset were aligned on a template 

structure. The similarity of the electrostatic and steric fields was used for optimizing 

the compounds onto the template structure. Statistical analysis was performed via the 

partial least squares (PLS) method and the obtained model was validated and 

visualized onto the compounds for analysis. The best model had an R2 and Q2 values 

of 0.946 and 0.845, respectively. 

 

 Another similar study was conducted by Cai and co-workers where they used 

the CoMFA method on a dataset of thieno[2,3-d]pyrimidin-4-yl hydrazine derivatives 

to develop a 3D-QSAR model (Cai et al., 2014). A total of 48 compounds were used 

for model fitting and 9 compounds were used as an external validation test set. The 

statistical validation parameters indicated a reliable mode, for example, the R2 and Q2 

had values of 0.965 and 0.724, respectively. The visualization of the contour maps of 

the model gave insights into the required chemical nature of substituents for activity 

as well as selectivity. It revealed the nature of the electrostatic and steric characteristics 

of the required substituents for obtaining a high activity.  

 In another study, Metibemu and co-workers used a different approach in which 

they combined alignment-independent 3D-descriptors and 2D-descriptors for 

developing a QSAR model (Metibemu, 2021). A total of 100 CDK4 inhibitors that are 

derivatives of different chemical scaffolds were used for building the model. The 

percentages of training and test sets were 70% and 30%, respectively. Initially, a large 



 

 

20 

 

number of descriptors were calculated for each compound, then a genetic algorithm 

was used for descriptors selection. The final model contained a total of 12 molecular 

descriptors. Also, the model exhibited good statistical parameters including an R2 

value of 0.872. 

 

2.2.2 Pharmacophore Modeling   

In pharmacophore modeling, the ligands are represented using their pharmacophore 

features such as hydrogen bond donors, acceptors and aromatic rings (Schaller et al., 

2020). Pharmacophore modeling aims to generate pharmacophore models that capture 

the required chemical features and their spatial arrangements for binding to a 

biological target (Qing et al., 2014a). Generally, a set of active ligands is used to derive 

the models by aligning them and then extracting the necessary pharmacophore features 

(Schaller et al., 2020, Taminau et al., 2008). The commonly used chemical features 

include hydrogen bond donors, hydrogen bond acceptors, aromatic rings, positively 

charged centers, negatively charged centers and hydrophobic groups (Dixon et al., 

2006). Once a pharmacophore model is generated, it is validated against a validation 

set of known active and inactive molecules (decoys) to assess the model’s ability to 

distinguish active from inactive structures (Yang, 2010, Mysinger et al., 2012). 

Validated models can then be used in virtual screening as a filtering step by only 

retaining structures that can match the pharmacophore model. The main advantage of 

pharmacophore modeling in virtual screening is the relatively fast screening rate 

compared to other methods such as molecular docking. Hence, pharmacophore model 

matching is often carried out during the initial steps of the virtual screening process 

(Belal, 2021, Qing et al., 2014b). 
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In a study by Yuan and co-workers, they developed pharmacophore models 

that aimed to identify novel and selective CDK4 inhibitors (Yuan et al., 2020). For 

building the model, a total of 6 compounds that are representative and belonged to 

diverse chemical scaffolds were used as a training set. For model validation, a decoy 

set was used which contained compounds that are presumed to be inactive. Those 

decoy compounds were generated using the Directory of Useful Decoys-Enhanced 

(DUD-E) algorithm which is a dedicated algorithm for generating inactive compounds 

for validation purposes. The HipHop algorithm was applied for developing the 

pharmacophore models. The best obtained model contained seven different 

pharmacophore features, namely, a hydrogen bond donor, an aromatic ring and three 

hydrophobic groups. Subsequently, the model was used as a part of a virtual screening 

campaign to identify novel CDK4 inhibitors from the Specs database. Finally, the 

compounds filtered by the pharmacophore model were then subjected to molecular 

docking and visual inspection steps.  

 

 Susanti and co-workers used an interesting approach in which they relied on 

clinically approved CDK4 inhibitors for building a pharmacophore model (Susanti et 

al., 2021). Specifically, three marketed CDK4 inhibitors, namely, palbociclib, 

ribociclib, and abemaciclib were used as the training set. For validation, a decoy set of 

650 inactive compounds was used to assess the ability of the models to distinguish 

active from inactive compounds. The pharmacophore models were built with the 

Molecular Operating Environment (MOE) software. The best model was selected 

based on various validation parameters including accuracy, sensitivity, and specificity. 
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The pharmacophore features of the top model included 5 features, namely, two 

hydrogen bond acceptors, a hydrogen bond donor and two aromatic rings. In the virtual 

screening process, the pharmacophore was used as a filtering step and was followed 

by structure-based methods including molecular docking and MD simulation to detect 

potentially active CDK4 inhibitors.  

 

2.2.3 Molecular Docking  

Molecular docking is a widely used drug design method that aims to predict the 

binding pose of a particular ligand towards a target. Also, the binding energy of the 

pose is estimated (Torres et al., 2019). Molecular docking methods use search 

algorithms that generates different poses of the ligand inside the binding site of the 

target. The generated poses are evaluated using a scoring function which aims to 

calculate the binding energy using certain terms such as hydrogen bonds (Trott and 

Olson, 2010). Molecular docking has been applied for different purposes in the design 

and discovery of CDK4 inhibitors. The most common uses include the analysis of 

binding poses of known inhibitors as well as the identifying of possibly active novel 

CDK4 inhibitors, often as a part of a virtual screening campaign (Belal, 2021, Susanti 

et al., 2021, Metibemu, 2021). Also, it has been used to understand the selectivity of 

the CDK4 inhibitors toward other CDK enzymes such as the CDK2 enzyme (McInnes 

et al., 2004).  

 

2.2.3(a) Crystal Structures of CDK4 

Although various 3D-crystal structures of the CDK4 enzyme have been crystallized 

and are deposited in the protein databank (PDB), those crystal structures suffer from 
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two main problems. The first problem is the lack of a co-crystallized ligand in the 

active site of the CDK4 enzyme, which could make the validation of the docking 

protocol more difficult (Day et al., 2009, Vaughan et al., 2006). A common solution 

to this problem is to align the crystal structure of the CDK4 enzyme onto a crystal 

structure of a CDK2 enzyme that has a co-crystallized ligand. Then the CDK2 enzyme 

structure (i. e., the protein part) is removed, leaving the CDK4 enzyme with the co-

crystallized ligand of the CDK2 as a protein-ligand complex. Then the re-docking 

experiment can be performed on this created complex. This approach takes advantage 

of the similarity between the active sites of the CDK4 and CDK2 enzymes and has 

been successfully used in the literature repeatedly (Al-Warhi et al., 2020).  

 

 The other issue with the available CDK4 crystal structures is that they are in 

an inactive state, and they need to be in the active state prior to performing docking 

experiments. Various approaches have been used to tackle this problem, for instance, 

a homology modeling approach has been used in which a crystal structure of the CDK6 

enzyme (active state) was used as a template to correct the CDK4 (inactive state) loops 

to make it in the active state. This produced a hybrid CDK4 model that was further 

refined using MD simulation. The hybrid CDK4 model has been successfully used in 

molecular docking and is available for researchers to use (Shafiq et al., 2012). 

 

2.2.4 Molecular Dynamics 

In drug design and discovery, MD simulations are used to investigate binding events 

of ligands towards a certain target (Śledź and Caflisch, 2018).  By simulating the 

movement of the atoms of the ligand-target complex for a certain period of time, it can 
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be revealed whether the ligand is binding with the target or not. Also, the binding 

interactions can be analyzed from the simulation results to understand the binding 

process (Ramos et al., 2020). MD simulations use newton’s laws of motion to predict 

the movement of atoms in a particular system. They are widely used in drug design, in 

particular for studying protein-ligand complexes (Huang et al., 2018, Hospital et al., 

2015). The MD simulation can reveal whether a complex is stable as well as give 

insights regarding the non-covalent binding interactions taking place at the binding 

site (Śledź and Caflisch, 2018).  

 

The main application of MD simulation with regard to the CDK4 inhibitors is 

in virtual screening. Commonly, MD simulation is performed on top candidate 

compounds identified by the previous steps of the virtual screening campaign. This is 

because of the computationally expensive nature of the MD simulations compared to 

the other drug design methods such as molecular docking; hence it is often limited to 

few candidate compounds (Mascarenhas et al., 2010, Sarhan et al., 2021). However, 

MD simulation is also used for other purposes such as analyzing the selectivity of one 

inhibitor towards other CDK enzymes as well as in understanding the binding 

interactions (Aixiao et al., 2008). 

 

For example, Aixiao and co-workers combined molecular docking and MD 

simulation methods to analyze the binding and selectivity of the 2PU inhibitor on the 

CDK4 and CDK2 enzymes (Aixiao et al., 2008). The 2PU is a small molecule CDK4 

and CDK2 inhibitor, however, it is more selective towards the CDK4 enzyme. Initially, 

the targets were prepared, and the ligand was docked into the active site of each 


