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Abstrak

Pengoperasi Konvolusi Berinti Splin

Dalam projek ini, kita akan memperolehi rumusan asimptot bagi pengoperasi

konvolusi dengan inti splin untuk fungsi terbezakan peringkat tertinggi. Dua kelas

pengoperasi yang akan dipertimbangankan ialah pengoperasi de la Vallee Poussin­

Schoenberg Tm,k dengan inti B-splin trigonometri darjah m dan kamiran singular

Riemann- Lebesgue Rn,k dengan inti B-splin berkala darjah n - 1. Rumus-rumus

ini adalah analog perluasan Bernstein bagi anggaran Voronovskaya untuk polino­

mial Bernstein dan perluasan Marsden dan Riemenschneider untuk pengoperasi

Bernstein-Schoenberg bagi fungsi terbezakan peringkat tinggi.

Dalam Bab 1, kita akan mempertimbangkan anggaran asirnptot untuk Tm,k

dengan mh � 0, m tetap dan Rn,k dengan nh � 0, n tetap serta n � 00. Un­

tuk memperolehi rumus-rumus ini, kita hendaklah mengkaji telatah asimptot mo­

men trigonometri bagi inti-intinya yang boleh diungkapkan sebagai pekali Fourier.

Ungkapan ini masing-masing boleh dinilai sebagai suatu polinomial dalam m dan

n dengan menggunakan suatu algoritma.

Dalam Bab 2, kita akan memperolehi anggaran bagi Tm,k apabila mh � a E

(0,7r] dan bagi Rn,k apabila nh � f3 =1= 0. Min de la Vallee Poussin merupakan

kes khas bagi Tm,k apabila a = n . Hasil bagi Rn,k adalah ekoran dari Bab 1,

sementara untuk Tm,k, kita perlu menganggarkan momen trigonometri bagi B­

splin trigonometri dengan menggunakan hubungan rekursinya.

Dalam Bab 3, kita akan mempertimbangkan pengoperasi konvolusi dwipen­

gubah t<;) dengan K merupakan matrik tak singular 2 x 2, H = 27rK-1 dengan

jualatnya V(K) direntangi oleh {<I>K(' - Hn)}nEI di mana I = {no, nj , ... , nA-d

mewakili koset bagi 712 /K712• Kita akan tunjukkan bahawa fungsi eigen bagi

v



pengoperasi ini, yang tak bersandar pada a membentuk suatu asas otogon untuk

V(K). Kitajuga akan mempertimbangkan telatah penghad bagi t<;) bila IIHII -+ 0

dan memperolehi serni-bulatannya. Contoh yang akan dipertimbangkan ialah splin

kotak berkala Bet(x), a E (aI, a2, a3, a4)T E 1N'� dengan saring berarah empat eli

mana a3 = a4 dan H adalah matrik pepenjuru.
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Abstract

Convolution Operators with Spline Kernels

In this project, we shall derive the asymptotic formulas for convolution oper­

ators with spline kernels for higher order differentiable functions. The two classes

of operators which will be considered are the de la Vallee Poussin-Schoenberg

operators Tm,k with trigonometric B-spline kernel of degree m and the singular

integrals of Riemann-Lebesgue Rn,k with the periodic B-spline kernel of degree

n -1. These formulas are analogous to the Bernstein's extension of Voronovskaya's

estimate for Bernsteins polynomials and Marsden and Riemenschneider's extension

of Bernstein-Schoenberg operators for higher order derivatives.

In Chapter 1, we shall derive the asymptotic formulas for Tm,k by taking limit

as mh --+ 0 with m fixed and Rn.k as nh --+ 0 with n fixed as well as n --+ 00. In

order to derive these formulas we need to study the asymptotic behaviour of the

trigonometric moments of their kernels which can be expressed in terms of their

Fourier coefficients and also as polynomials in m and n respectively which can be

evaluated using an algorithm.

In Chapter 2, we shall derive the asymptotic estimates for Tm,k as mh --+

a E (0,71"] and for Rn,k as nh --+ f3 =I O. The former includes the de la Vallee

Poussin means as a special case when a = 71". The result for Rn,k follows from

Chapter 1, while for Tm,k, we have to estimate the trigonometric moments for the

trigonometric B-spline using its recurrence relation.

In Chapter 3, we shall consider discrete bivariate convolution operators t<;>
where K is a 2 x 2 nonsingular matrix over'll, H = 271"1(-1 whose range is a space

V(K) spanned by {<I>K(' - Hn)}nEI where I = {no,nl, ... ,n�-d denotes the

representatives of the cosets of '112 /K'll2. "vVe shall show that the eigenfunctions

Vll



of these operators which are independent of a form an orthogonal basis for VeX).

We shall also study the limiting behaviour of t<;> as IIHII __. 0 and compute the

corresponding limiting semi-groups. The example considered here is the periodic

box-spline B6:(x), a E (aI, a2, a3, (4)T E lN� on a 4-directional mesh with

a3 = a4 and H is a diagonal matrix.

Vlll



Chapter 1

Asymptotic Formulas for Convolution Operators
with Kernels of Fixed Degree

1.1. INTRODUCTION

The Bernstein-Schoenberg operators introduced by Schoenberg for continu-

ous functions on a finite interval are a spline extension of the Bernstein polyno-

mial operators. He also stated in [19] an analogue of Voronovskaya's formula for

the asymptotic behaviour of the operators for twice differentiable functions. An

extension to functions with higher order derivatives was made by Marsden and

Riemenschneider ([14],[15]). This extension was in line with Bernstein's extension

of Voronovskaya's result for Bernstein polynomial operators (see also [8]).

The de la Vallee Poussin means of a 27r-periodic function f,

(1.1.1) 1171'Vm(fj x) := - wm(x - t)f(t)dt,27r -71'

x E [0, 27r),

where

(1.1.2) () � (m!)2 iI/x 10
wm X := Z:: ( _ )I( )1

e , x E In.,
m v.m+v.

I/=-m

and m is a positive integer, are trigonometric counterparts of the Bernstein polyno­

mials (see [1],[3]). They are shape preserving trigonometric convolution operators

[17]. A spline extension of the de la Vallee Poussin means consists of the convolu-

tion operators

(1.1.3)
1 171'Tm(f;x) = Tm k(f;x):= - Tm k(X - t)f(t)dt,, 27r '

-71'

1



where m, k are positive integers with k 2: 2m + 1 and

(1.1.4) T(X) = 'Tm,k(X) := L f(v)eillx.
IIE1l

with Fourier coefficients

(1.1.5)

f(v) =

(m!)2(sin(m - v)� ... sin�)(sin(m + v)� ... sin�)
( )I( )I(

. mh . h)2m-v. m+v. smT ... sm'2

k(m!)2sin(v - m)�sin(v - m + 1)� ... sin(v + m)� Ivl >m,
7l"(v-m)(v-m+l) ... (v+m)(sin";h ... sin�)2

'

where h = 2;. The function Tm,k is the trigonometric B-spline of degree m

([6],[20],[21]). \Ve shall call Tm the de La Vallee Poussin-Schoenberq operators. If

k = 2m + 1, Tm reduces to the de la Vallee Poussin means.

A related sequence of operators is the sequence of sinqular itiieqrals of Riemann-

Lebesgue (see [31, pg.54),

(1.1.6)
1 111'Rn(f; x) == Rn,k(f; x) := 27r -11'

bn,k(X - t)f(t)dt,

which are convolution operators in which the kernels are defined by' their Fourier
. .

senes expansions

(1.1. 7) b ().= L (Sin vhl2)
n

illx IRn k x .

hi
e, x E ,,

v 2
IIE1l

where n, k are positive integers and h = 2k7r. The functions bn,k are the periodic

polynomial B-splines of degree n - 1 ([16] and see Section 6).

The following asymptotic formula for the de la Vallee Poussin means of a

twice differentiable function is due to Natanson (see [3], pg.115).

Theorem 1.1.1. (Natanson) If f(2)(x) exists,

(1.1.8) lim (m + l){Vm(Jj x) - f(x)} = j(2)(X).
m-oo

2



TJ:lls is the trigonometric analogue of Voronovskaya's estimate for Bernstein

polynomials. In line with Schoenberg's extension of Voronovskaya's theorem to

Bernstein-Schoenberg operators, it was shown in [7] that the following holds for

the de la Vallee Poussin -Schoenberg operators Tm,k(f; .) if f(2) (x) exists:

l� (m+1){Tm,k(f;x)-f(x)} = (1- � cot �)f(2)(x).mh-aE(O .... )
- -

(1.1.9)

The objective of this chapter is to derive the asymptotic formulas for the

de la Vallee Poussin-Schoenberg operators and the singular integrals of Riemann­

Lebesgue for higher order differentiable functions, in line with Bernstein's ex-

tension of Voronovskaya's estimate for Bernstein polynomials, and Marsden and

Riemenschneider's extension of Schoenberg's result on Bernstein-Schoenberg oper-

ators. vVe will first consider the cases where mh -+ 0, m fixed, for the de la Vallee

Poussin-Schoenberg operators and nh -+ 0 with n fixed, as well as nh -+ a with

n -+ 00 for the singular integrals of Riemann-Lebesgue. The main theorems are

stated in Section 1.2. A preliminary result on the asymptotic behaviour of pos-

itive convolution operators with even kernels is given in Section 1.3. The proofs

of the main theorems which require the trigonometric moments of the kernels are

obtained in Sections 1.5 and 1.6 for the de la Vallee Poussin-Schoenberg operators

and singular integrals of Riemann-Lebesgue operators respectively.

1.2. THE MAIN THEOREMS

To state the main theorems we shall first introduce the combinatorial numbers

which are coefficients in the expansion of the central factorial polynomials,

x[n] := { x��: (x - � + i), n > 0

1, n = 0,
(1.2.1)

where n > 0 is the degree of the polynomial x[n]. The coefficients t(n,j) in the

expansion

(1.2.2)
n

x[n] = I:t(n,j)xi, n E No,
j=O

3



are called the central factorial numbers of the first kind (see [18], pg.213). In

(1.2.2), INo denotes the set of nonnegative integers. V.le use IN to denote the

natural numbers,

The asymptotic formulas for the convolution operators involve the trigonomet-

ric moments of their kernels. For an even 21r-periodic kernel <p, its trigonometric

moment of order 2j, j E IN0, is defined by

(1.2.3)

For 8, V E IN, let
s

( l)i+llt(')' ') )(') _ '"'"
- _),_V M .( ')ail,1I q> -

� (2 .)!
. 2} q>

}=II
)

and let C2rr denote the class of continuous 21r-periodic functions. vVe are now in

(1.2.4)

the position to state the main theorems.

Theorem 1.2.1. For a fixed m E IN, 8 < m, and f E C2rr for which the derivatives

up to order 28 exist at x E (-1r, 1r),

(1.2.5) Ii"), h�' {Tm,.(f; x) - � a".(Tm,.)f(")(x) } = (-1)' <>;' f(")(z ),
where a': is a polynomial in m of degree 8 with leading coefficient (;;;���!' Further,
a': can be evaluated by the following algorithm:

For kEN,
(_l)kaO .

k .=

(2k + 1)!22k
'

and for r = 1, ... , m,

Theorem 1.2.2. For a fixed n E IN, 8 < n, and f E C21f for which the derivatives

up to order 28 exist at x E (-1r, 1r),

Ii"), h;' {Rn(f; z} - t. a".(bn,')f(")(z ) } = (-1)'P:/")(z ),(1.2.6)

4



°

h I dO ffi
°

t (-1)' F hwhere /3: is a polynomial in n of degree s uni ea mg coe csen (4!)' ,,! ° 'uri er,

/3: can be evaluated by the following algorithm:

For k E IN,
( _1)1:/3� :=

(2k + 1 )!221:
and for r = 2,3, ... , n

k

o; := "L /3;:�/3�.
11=0

Theorem 1.2.3. Supp03e s E IN. For f E C27r for which the derivatiues up to

order 2s ezis; at x E (-7r, 7r),

(1.2.7)

1.3. POSITIVE CONVOLUTION OPERATORS \VITH EVEN KERNELS

For nEW, let

(1.3.1)
1 j7rKn(fjx) := 2iT

-7r

f(t)kn(x - t)dt,

be a sequence of positive convolution operators with even kernels kn which are

nonnegative and normalised so that

(1.3.2)
1 I.- kn(t)dt = 1.
2iT

-7r

The asymptotic formula for J(n will involve the trigonometric mornents of its

kernel kn. vVe shall require the following Taylor expansion (see [16],[24]).
00

(1.3.3) (arcsin x)p = �(_I)i22i
(

p!
° t(p + 2j p)Xp+2i Ixl < 1,k. p + 2))! ' ,

where p E IN and t(n,j) are the central factorial numbers. For even p, p = 2v,

(1.3.3) can be written in the form

00

(? )'t2v = I)_1)i+v (;�)i t(2j, 2v)(2 sin � t?i, It I < tt,0_..) 2
}_v

(1.3.4)

5



We observe that for j E IN', x[2ij = ii1\x2 - (2). Therefore
l=O

(1.3.5)
2·} .

1� }-

�t(2j,1I)x" = II (x2 - (2).
11=0

l=O

It follows that

t(2j,0) = t(2j, 211 - 1) = O.

Furthermore, t(2m,211) satisfies the following partial difference equations:

(1.3.6)
.

2t(2m + 2,211) = t(2m, 211 - 2) - m t(2m,211)

with initial conditions

(1.3.7) t(2,0) = 0, t(2, 2) = 1.

In equation (1.3.6), which we obtained readily from (1.3.5), we have assumed that

t(2j,211) = 0 for 11 < 0 or 11 > m. It follows easily from (1.3.5), by induction, that

sgn(t(2j,211)) = (-l)i+lI, 11 = 1,2, ... ,j.

Hence the series (1.3.4) is a positive series.

Theorem 1.3.1. Suppose for j E IN', the limit lim nj1\12j(kn) exist, and
n-oo

(1.3.8)

If 1 E C27r and its derivatives up to order 28 exist at x E (-71",71"), then

(1.3.9)

Proof. For t E (-71",71"), Taylor's formula about x gives

(1.3.10)
J 1(211)( )

J-l
1(211+1)( )

I( + t) = "
x

t211 + '""'
x

t211+1 + (t)t2Jx

� (211)! � (211 + I)! g,

6



where g is continuous and lim get) = O. Using (1.3.4), one can express
t-O

(1.3.11)

Since kn is even, (1.3.11) leads to
� �

t('J' ? )
( . _ � (2,,) � j+II ..], _v

/.(.1.3.12)Kn(f, x). - c: f (x) ?--( -1) (2j)! ]0.12] kn) + SI,n + S2,n,
,,=0 ]=11

where

� 00

t(?' 'J )� (211) � ( )j+II -], _V
SI,n := c: f (x).c: -1

(2')! 1\f2j(kn)
,,=0 ]=8+1

]

and

Therefore

Since the series

converges absolutely and

lim n� lvf2j(kn) = 0 for s < i,
n-e-co

by (1.3.8), the first limit on the right of (1.3.13) vanishes. vVe will show that the

second limit is also zero.

7



For all e > 0, we can choose 8 > O.such that Ig(t)1 < e whenever It I < 8, and write

(1.3.14)

where

and

12 :=
n" r g(t)t2"kn(t)dt.2iT" 185:ltl5:7r

Because of the inequality t < it" sintt, t E [0, iT"],

(1.3.15)

(1.3.16)

which tends to zero as n --+ 00 by (1.3.8). 0

1.4. TRIGONOMETRIC B-SPLINES

271'
Let n, k be positive integers, h := k and define a sequence (cn,lI) IIEll , by

.__1_ n (1
- ei(j-II)h )Cn II .- n . II .,,

�iT"Z i=v 11 - )
11 E 'Il,(1.4.1)

8



where the factor in the product is taken to be ih when its denominator equals

zero. The terms of the sequence Cn,lI = ° if and only if v = kp + j, j = 0,1, ... , n,

P E 72\ {O}. It is known (see Schoenberg [20]) that

1\1n(eix) := L Cn,lIeillx, x E [0, 2 IT],
IIE�

IS a piecewise polynomial function in eix of degree n, with knots at j h,

j = 0,1, ... , k - 1, which possesses continuous derivatives up to order n - 1. It is

supported on [0, (n + l)h].

A straightforward computation gives

_
·n i<n+1)«tn-lI)h/2)tCn,lI - Z e II,

where

(1.4.2)
2n n sin( v - j)h/2

til := - II ., ° � v � n,
IT j=O (v-J)

and the factor in the product is taken to be � when its denominator equals zero.

Hence

(1.4.3) lVIn(eiX) = ineinx/2 L tllei(lI-n/2)(x-(n+l)h/2).
IIE�

Since til = tn-II' V E 72, the function

(1.4.4) Pn(X) '.= "'"' tllei(lI-n/2)(x-(n+l)h/2), E [0 ') )Z:: X ,_IT ,

IIE�

is a real function supported on [0, (n + l)h]. It is called a trigonometric B-spline

with uniform knots at vh, v = 0,1, ... , n + 1. From (1.4.3) and (1.4.4), we have

vVe are interested in the case n = 2m is an even integer, m = 1,2, ... , where we

define

(1.4.5) Tm,k(X) := P2m(X + (2m + l)h/2)/tm, x E IR.

9



Then

Tm,k(X) := 2.:= f(v)eiv.1:, x E lR,

where

f(v) = tv+m/tm
(m!?(sin(m - v)h/2 ... sinh/2)(sin(m + v)h/2 ... sinh/2)

( )I( )I(
. mh .

h)2 ' Ivl � m
m-v. m+v. szn-2- ... Sln"2

Ivl > m.
k(m!)2sin( v - m )h/2sin( v - m + 1 )h/2 ... sin( v + m)h/2

7r(v - m)(v - m + 1) ... (v + m)(sin �h •.• sin�)2
This is the trigonometric B-spline kernel defined by (1.1.4) and (1.1.5) (see [6]).
The sequence Pn satisfies the recurrence relation

(1.4.6)

npn(X) = 2 sin � XPn-l(X) + 2 sin �((n + l)h - X)Pn-l(X - h), n E N
_ 2

(see [6],[13]).

1.5. ASYMPTOTIC ESTIMATE FOR Tm,k WHEN mh -+ 0, m FIXED

In order to prove Theorem 1.2.1, we need a precise estimate for the trigono-

metric moments of the trigonometric B-spline kernels. For an even 27r-periodic

integrable function kn, its trigonometric moment of order 20", 0" E :IN, can be

expressed as follows.

(1.5.1)

10



For the trigonometric B-splines, Tm,k, its Fourier coefficients Q (0' - j),

0' � m, j = 0, ... ,20', can be expressed as

_.. (m!)2h2m 2m sinHm + 0' - j - l)h
(1.5.2) Tm,k(O' -)) = 2 II 1 '

.

(?
' 1 h ? 1 h) l=O -2 (m + 0' - j - l)h_ smZm ... _ smZ

where II denotes the product in which the undefined factor (in the above equation

the factor corresponds to l = a - j + m) is taken to be 1. Hence

(1.5.3)

( 1)2h2m
20'

(? )=

m.

?(_1)0'''"' -c: (-l)iA(m,j;h),
?'1 ?'l - �)(- smzmh, .. - smzh) j=O

where

,

r sinl(u - j - l)h
(1.5.4) A(r,); h) = II 1 t '

)
, r = 0,1, .. " m, j = 0,1, ... ,20',

l=-r 2" a
= : - l h

Hence forward we shall assume that a � m. For r = 0,1, ... , m and

j = 0,1" .. ,20', we define a sequence (A2k(r,j))kENo by

(1.5.5)
00

A(r,jj h) =L A2k(r,j)h2k.
k=o

Lemma 1.5.1. For r = 0,1, ... , m and j = 0,1, ... ,20',

(1.5.6) A2k(r,j) = ak(u - j)2k + polynomial in (0' - j) of degree < 2k,

11



where

(1.5.7)
(_1)ka� :=

(2k + 1)!22k
' k E INo,

and for r = 1, ... , m, ak are defined recur3ively by

(1.5.8)

Proof. The proof is by induction on r. For r = 0, consider

{
"in !(u-j)h .

_ ° 1 ?
A(O,j; h) = t(u-j)h' �

-

, , ... , _G',

1, ) = G'.

Expanding the sine function in powers of h gives
00

(l)k( ·)2k (h)2kA(O .. h) = ""
- G' - )

_.i: c: (2k+l)! 2
k=O
00

(l)k( ·)2k
_ ""

- G' - ) h2k-

� (2k + 1)!22k
.

k=O

It follows that

( l)k( ·)2k(.)
- 0' - ) 0 ( .)2kA2k 0,) =

22k(2k + I)!
= ak 0' = ) ,

where

Suppose that for r < m,

A2k(r,j) = ak(O' - j)2k + a polynomial in (G' - j) of degree < 2k.

By (1.5.4),

(1.5.9)
.

r+l sint(O' - j - f)hA(r+l,);h)= II
1(

.

f)h. l=-(r+l) 2" 0' - ) -

. sinHO'-j+r+l)hsint(a-j-r-l)h=A(r,);h) 1 -1....;;;;......------2(0'-j+r+l)h 2(a-j-r-l)h

12



The second and third factors of (1.5.9) can be expressed using the identity

cos(a - b) - cos(a + b) = 2 sin a sin b,

as

sin�(a - j + r + l)h sinHa - j - r - l)h
_

cos(r + l)h - cos(a - j)h
�(a - j + r + l)h t(a - j - r - l)h

-

2[(17 - j)2 - (r + 1)2](�h)2'
Expanding cos(r + l)h - cos(a - j)h in terms of powers of h gives

(1.5.10)

Using (1.5.5) and (1.5.10) on the right of (1.5.9) leads to

(00 )(00 ()kh2k[( )2k ( ')2k])A(r + 1 '. h) - '" A (r ')h2k '" -1 r + 1 - 17-)
.i: -

�
2k ,)

�2[(a-j)2-(r+1)2](�)2(2k)!
_ (00. . 2k)(00 (_1)k2h2(k-l)[(r+1)2k_(a_j)2k])- {; A2k(r,))h {; (2k)![(a _ j)2 - (r + 1)2]

.

= (f:A2k(r,j)h2k)k=O

(00 (_1)k2 {(r + 1)2(k+l) - (a -

j)2(k+l)} 2k)x {;(2k+2)! (r+1)2-(a-j)2
h.

Taking the Cauchy product leads to

(1.5.11)
.

00

(
k

. 2(-1)" {(r + 1)2"+2 - (a -

j)2"+2}) 2k

A(r+1,);h)={; �A2(k-II)(r'))(2L1+2)! (r+l)2-(a-j)2
h.

It follows from (1.5.5) and (1.5.11) that

13



A2k(r + l,j) =
k

. 2(-IY {(r + l)2v+2 _ (u _

j)2V+2}L AZ(k-v)(r,J) (2v + 2)! (r + 1)2 - (u - j)2
v=o

k

= 2: {Qk-v(U - j)2(k-v) + a polynomial in (u - j) of degree < 2(k - v)}
11;::::0

x �{(O" - j)2V + (u - j)2V-2(r + 1)2 + ... + (0" - j)2(r + 1)2V-2 + (r + 1)2V}
(2V + 2)!
k Qr (-IY2(u _ j)2k

= � k-v

( )1
+ a polynomial in (u - j)of degree < 2k

U 2v+2.
11;::::0

k

22VQk_VQe( .)2k 1
.

1· ( .) f d nk= a - J + a po ynomia in 0" - J 0 egree < L. ••
v+l

,,=0

Hence

A2k(r + l,j) = Q�+I(O" - j)2k + a polynomial in (u - j) of degree < 2k,

where

Lemma 1.5.2. Let j E IN, and for any r E IN, let

r

Sj(r) = L vj-I.
v=1

Then Sj(r) is a polynomial in r of degree j with leading coefficient ;..
J

Proof. For r ;::: 1,

r r-I

Sj(r) - Sj(r - 1) = L vj-I - L vj-1 = rj-1
v=l v=1

which is a difference equation for which the general solution is of the form

j

Sj(r) = L avrv,
v=o

14



where av are constants. Therefore

j j

rj-1 = Sj(r) - Sj(r -1) =L avrv - L aver - It
v=o v=o

j
= Lav(rV - (r -It)
v=l

= t. a.� ( � ) C-1)"-'-'r'

=% t�,(-1r'a. (�) }C-1l'r'.
Equating the coefficient of -i:», we have

rj-1 = (-1)j-1aj (j � 1) (_I)i-1rj-l
° }O_l= Jajr .

Hence

Lemma 1.5.3. For r = 1, ... , m, k E W,

(1.5.12) r (_I)krk I
°

I
°

f d kGk = ( I?)kkl
+ a po ynom�a m r 0 egree < '0

3._ .

Proof. We shall establish the result by induction on k using (1.5.7) and (1.5.8).
For k = 0, Ao(r,j) = 1. Hence Go = 1, for all r. By (1.5.8),

(1.5.13)

for r > 1. Repeated application of (1.5.13) gives

r
-r 1

G ----I
-

3!2 3!4

15



for all r 2:: 1, by (1.5.7). Hence (1.5.12) holds for k = 1.

Suppose that (1.5.12) holds for all k < e and for r > 1. Using the fact that

O'g = 1, equation (1.5.8) can be written as

Hence

(1.5.14)

for any integer j 2:: 1. Summing (1.5.14) for j from 1 to r leads to

(1.5.15)

Applying the inductive hypothesis on the summand of (1.5.15) leads to

(1.5.16)
r

r 0 ') 0"'" j-l .

1
.

I' f d 0
O't - O't = -0'1 L..., O'l_1 + a po ynorrua in r 0 egree < (.

i=1

2( -1)
r

(_l)l-l(j _ l)l-l . .

=

1,)2 L (1'))l-1 (e _ )1
+ a polynomial in r of degree < e

3._. 3._ 1 .

]=1
'.

(_l)l �(' l)l-l 1 ial i fd 0
=

(3!2)l(.e _ I)! k,
J - + a po ynorru in r 0 egree < c ,

r l

By Lemma 1.5.2, the leading terms in ?: (j _l)l-1 is ro . It follows from (1.5.16)
]=1 (.

that

r 0 (-1 )l rl
. .

O'l - O'l = (3!2)l(e _ I)! 7
+ a polynormal in r of degree < e

r (_l)lrl ..

O'l = (3!2)lf.!
+ a polynorrual in r of degree < e. o

Lemma 1.5.4. For any a, m E IN', -.

(1.5.17)
( 1)2h2m()
m.

( )U( )' mh2u O(h2u+2) hM2u Tm,k =
. 1 . 1 2 -1 2u ·O'u + ,as -+ O.

(2 sm 2mh ... 2 sm 2h)
16



Proof. Using (1.5.3), (1.5.4) and (1.5,5)

( ,)2h2m
20'

(2 )
00

M20'(rmk)=
m.

2(-1)0'�(-1)j � �A2k(m,j)h2k,

(? 1 h ? 1 h) Z:: J Z::
- Sln 2m ••. - szn 2 j=o k=O

00

The last estimate follows from the fact that the power series :L:: A2k(m,j)h2k is
k=O

absolutely convergent for sufficiently small h, and in particular
00

L A2k(m,j)h2k = O(h2(0'+1»).
k=O'+l

It follows that

( ,)2h2m
20' 0'

('J )M20'(rmk)=
m.

2(-1)0'��(-1)j -�
,

('J' 1 h 'J' 1 h) Z:: Z:: J
- Sln 2m ... - Sln 2" j=O k=O

(1.5.18) x {akj2k + a polynomial in j of degree < 2k}h2k + O(h20'+2).

Since

f(-l)i (2�)jv =0, 11=0,1, ... ,20"-1,
.

0
J

]=

and
20'

(? )L(-l)i -� j20' = (20")!,
.

0
J

]=

it follows from (1.5.18) that

Proof. [Proof of Theorem 1.2.11.

It follows from (1.5.17), that for a fixed m and for any s < m,

17



Hence Theorem 1.2.1 follows immediately from Theorem 1.3.1. 0

1.6. TRIGONOMETRIC MOMENTS OF PERIODIC B-SPLINE KERNELS

Let M, := X(-�,�l be the cha.:a�teristic function of the interval (-t, t] and
for n = 2,3, ... , let kIn := .1.\11 * lvIn_1 be the uniform B-spline of degree n - 1

([22],[23]). Let k be a positive integer, h := 2; and for n = 1,2, ... , we define

(1.6.1) bn,k(X) := L kMn(h-1(x - 2ITV)), x E IR,
vE�

the uniform, 27r-periodic B-spline of degree n - 1 . The Fourier transform of bn,k
can be computed using the Fourier transform of A1n. A straightforward computa-

tion gives

(1.6.2)

Hence

(1.6.3) bn,k(X) = L C (JL)eil'x.
I'E�

The function bn,k(X) is even, positive, 27r-periodic. Further, (b:'�)(O) - 1 and

(C)(JL) --+ 1, as k -+ 00 (i.e. h --+ 0). Suppose for all JL E 'll,

(1.6.4) (
.

( .) h)
l

.. sm a - J '2 .

B(£, J, h) =
(u _ j) �

, i = 1,2, ... , n, and J = 0,1, ... ,20'.

18



By (1.5.1),

(1.6.5)

For f = 1,2, ... ,n and j = 0,1, ... ,2cr, we define a sequence (B2k(f,j))kENo such

that

(1.6.6)
00

B(f,jjh) = LB2k(f,j)h2k.
k=O

Lemma 1.6.1. For e = 1,2, ... , nand j = 0,1, ... , 2cr,

(1.6.7)

where

(1.6.8) (_1)k/31----­k -

(2k + 1)!22k'

and for e = 2,3, ... , n

(1.6.9)
k

/3l _ '"' /3l-1 /31k -

6 k-v v·

v=o

Proof. For f = 1, we have

B(l ·.h)· sin(cr-j)�
,),

(.) h
a = ) '2

Expanding the sine function in powers of h gives

00

=L B2k(1,j)h2k.
k=O

It follows that

( .) (_1)k(cr_j)2k I( .2kB2k 1,) =

(2k + 1)!22k
= /3k a = i) ,

19



where

Note that for j = a, B(l, u; h) = 1.

Suppose that for f. < n,

(1.6.10)

From (1.6.4),
. . sin(u-j)!!'

B(e+1,);h)=B(e,);h)
( ')h2a =) '2

Expanding the second factor in powers of h and using (1.6.6) leads to

Taking the Cauchy product leads to

(1.6.11)

It follows from (1.6.6) and (1.6.10) that

.

k
. (-lY(u _ j?"

B2k(f. + 1,)) = � B2(k-II)(e,)) (211 + 1)!2211
k .

(1)"( ·)211
= '" fil (u _ j)2(k-lI)

- u -)
'-.J k-II (211 + 1)!221111=0

Hence

.) fil+l ( .)2kB2k(f.+l,) = k U-) ,

20



k

where ,8i+1 = I: ,8f-v,8�· 0
v=O

Lemma 1.6.2. For e = 1,2, ... , n, k E IN,

(1.6.12)
(_1)k£k,8f = (4!)kk!

+ polynomial in e of degree < k.

Proof. We will establish the result by induction on k using (1.6.8) and (1.6.9).

For k = 0, Bo(e, j) = 1. Hence ,8& = 1 for all e. By (1.6.9),

(1.6.13) ai i-I 1
fJl = {3l -

3!22

for £ > 1. Repeated application of (1.6.13) gives

ai = al
_

(e -1)
fJl fJl 3!22

( -1)£
--

4!

for any e > 1, by (1.6.8).

Hence (1.6.12) holds for k = 1. Suppose (1.6.12) holds for k < s and for all e > 1.

Using (1.6.9), and noting that ,8J = 1, we have

(1.6.14)
"

ai _ {3j-l = "" {3i-l al _ ai=)
fJ" " Z:: ,,-vfJv fJ"

v=o

"

= "" aj-l al
�fJ,,-vfJv
v=l

for any integer j > 1. Summing (1.6.14) for j from 2 to e leads to

(1.6.15)
" i

,8! - ,8; = I: I: ,8:=!,8�
v=l i=2
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Applying the inductive hypothesis to the summand on the right of (1.6.15) leads

to

(1.6.16)

f3l 131 _ � (f3j-d -1) f3j-1
1 f3t-l( -I)" )s

""

s
r:

� ,,-I4! + ,,-2 5!22
+ ... +

(2s + 1)!22"

(-1) [
l
{_1),,-1(j _ 1),,-1 . . .

=

-,- L ('),,-l( _ )'
+ polynomial III (J - 1) of degree4. 4. s 1.

j=2

=

( ,)�(1)� )' tw _l)S-1 + polynomial in (j - 1) of degree < s - I},4. s 1.
j=2

l

By Lemma 1.5.2, the leading term in L (j - 1)"-1 is c; It follows from (1.6.16)
j=2

"

that

(_l)S 1 es
f3� =

( ')S ( _ )'
- + polynomial in e of degree4. s 1. s

{_l)S es
=

( I)S I + polynomial in e of degree < s.
4. s:

<s

o

Lemma 1.6.3. For any (J E IN,

(1.6.17)

Proof. Using (1.6.5), (1.6.6) and (1.6.7), we have

Since

I)-1)j(2�)jv=O, for 1I=O, ... ,2(J-1,
.

0
)

)=
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I)-l)i (2�) j2U = (20")!,
.

0
J

)=

and

it follows from (1.6.18) that

(1.6.19)

M2.(bn,k) = (-I}"P:(2,,)!h2• + (-1)' f: (2;) (-l)i f i3'k( 0" - j)2k h2k.
)=0 k=u+l

00

By (1.6.12), for k E W, f3'k = O(nk) as n ...... 00. Since L: f3'k(0" - j)2kh2k is
k=u+l

convergent for sufficiently small nh2, for j = 0, ... ,20", and n E W, it follows that
00

L: f3;:(0" - j)2kh2k = O((nh2)u+l) as nh2 --+ O. Hence (1.6.17) follows from
k=u+l

(1.6.19). 0

Proof. [Proof of Theorem 1.2.2]

Suppose n is fixed and s < n. By (1.6.17) we have

It follows from (1.6.17) and (1.6.12) that

M2�(bn,k) = (-1)�(2s )!f3: h2� + O(n�+l h26+2)

{(-1)�n�= (-1)�(2s)! (I)� 1
+ a polynomial in n

4. s.

of degree < s } h2� + O(n�+l h2�+2).

The result follows immediately from Theorem 1.3.1. 0

Proof. [Proof of Theorem 1.2.3]

Hence

. 1
M (b) (25 )!11m

(h2)
2� n,k =

(I) "nh-O n � 4. �s.

and Theorem 1.2.3 follows immediately from Theorem 1.3.1. 0
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Chapter 2

Asymptotic Formulas for Convolution Operators
as the Degree of the Kernels tends to infinity

In the previous chapter, the asymptotic estimates for the singular integral of

Riemann-Lebesgue Rn were taken as nh - 0 with n fixed as well as nh - 0 with

n --+ 00. In the case of the de la Vallee Poussin-Schoenberg operators, Tm .k ,
the

asymptotic estimate was taken as mh - 0 with m fixed. In this chapter, we shall

derive the asymptotic formulas for Rn as nh - f3 =1= 0 with n - 00 and for Tm,k

as mh - a E (0,7i] with m - 00. The result for Rn follows from the lemmas in

Chapter 1. However, for Tm.k ,
a new approach is required to obtain a more precise

estimate for the trigonometric moments of the trigonometric B-spline kernels.

Here we shall derive an asymptotic recursive formula for the moments using the

recurrence relation of trigonometric B-splines. We shall use the recursive formula

to obtain the asymptotic estimate for Tm.k as mh - a E (0,7i].

2.1. THE MAIN THEORE?vIS

Theorem 2.1.1. For! E C2rr with deriuaiiues up to order 28 exist. at x E (-7i, ii),

(2.1.1)

where the limit is taken as n - 00 and nh - f3 > O.

The corresponding result for the de la Vallee Poussin-Schoenberg is

T'heorem 2.1.2. For! E C2rr with derivatives up to order 2s exist. at x E (-7i, 7i),

{
,,-1

} ( )8 !(2,,)( )
(2.1.2) 1� m" Tm,k(!; x)- :L a",v(Tm,k)!(2V)(x) = 1-; cot ; s!

x

mh-a v=o
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