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Abstrak
Pengoperasi Konvolusi Berinti Splin

Dalam projek ini, kita akan memperolehi rumusan asimptot bagi pengoperasi
konvolusi dengan inti splin untuk fungsi terbezakan peringkat tertinggi. Dua kelas
pengoperasi yang akan dipertimbangankan ialah pengoperasi de la Vallée Poussin-
Schoenberg T;, x dengan inti B-splin trigonometri darjah m dan kamiran singular
Riemann- Lebesgue R, x dengan inti B-splin berkala darjah n — 1. Rumus-rumus
ini adalah analog perluasan Bernstein bagi anggaran Voronovskaya untuk polino-
mial Bernstein dan perluasan Marsden dan Riemenschneider untuk pengoperasi
Bernstein-Schoenberg bagi fungsi terbezakan peringkat tinggi.

Dalam Bab 1, kita akan mempertimbangkan anggaran asimptot untuk T &
dengan mh — 0, m tetap dan R, dengan nh — 0, n tetap serta n — oco. Un-
tuk memperolehi rumus-rumus ini, kita hendaklah mengkaji telatah asimptot mo-
men trigonometri bagi inti-intinya yang boleh diungkapkan sebagai pekali Fourier.
Ungkapan ini masing-masing boleh dinilai sebagai suatu polinomial dalam m dan
n dengan menggunakan suatu algoritma.

Dalam Bab 2, kita akan memperolehi anggaran bagi T, x apabila mh — a €
(0, 7] dan bagi Rn. x apabila nh — f # 0. Min de la Vallée Poussin merupakan
kes khas bagi Trm x apabila @ = 7. Hasil bagi R, adalah ekoran dari Bab 1,
sementara untuk Ty, x, kita perlu menganggarkan momen trigonometri bagi B-

splin trigonometri dengan menggunakan hubungan rekursinya.

Dalam Bab 3, kita akan mempertimbangkan pengoperasi konvolusi dwipen-
gubah t(I?) dengan K merupakan matrik tak singular 2 x 2, H = 27K ~! dengan
jualatnya V(K) direntangi oleh {¢x(- — Hn)}per di mana I = {ng,ny,...,na—1}
mewakili koset bagi Z?/K7Z*. Kita akan tunjukkan bahawa fungsi eigen bagi
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pengoperasi ini, yang tak bersandar pada o membentuk suatu asas otogon untuk
V(K). Kita juga akan mempertimbangkan telatah penghad bagi ¢’ bila | H|| — 0
dan memperolehi semi-bulatannya. Contoh yang akan dipertimbangkan ialah splin
kotak berkala Ba(X), a € (a1, a2, a3,a4)T € INj dengan saring berarah empat di

mana a3 = a4 dan H adalah matrik pepenjuru.
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Abstract
Convolution Operators with Spline Kernels

In this project, we shall derive the asymptotic formulas for convolution oper-
ators with spline kernels for higher order differentiable functions. The two classes
of operators which will be considered are the de la Vallée Poussin-Schoenberg
operators Ty, ; with trigonometric B-spline kernel of degree m and the singular
integrals of Riemann-Lebesgue R, x with the periodic B-spline kernel of degree
n—1. These formulas are analogous to the Bernstein’s extension of Voronovskaya's
estimate for Bernsteins polynomials and Marsden and Riemenschneider’s extension

of Bernstein-Schoenberg operators for higher order derivatives.

In Chapter 1, we shall derive the asymptotic formulas for T}, x by taking limit
as mh — 0 with m fixed and R, x as nh — 0 with n fixed as well as n — co. In
order to derive these formulas we need to study the asymptotic behaviour of the
trigonometric moments of their kernels which can be expressed in terms of their
Fourier coefficients and also as polynomials in m and n respectively which can be

evaluated using an algorithm.

In Chapter 2, we shall derive the asymptotic estimates for Tp, x as mh —
a € (0,7] and for Rpx as nh — f # 0. The former includes the de la Vallée
Poussin rﬁeans as a special case when a = 7. The result for R, x follows from
Chapter 1, while for Ty, x, we have to estimate the trigonometric moments for the

trigonometric B-spline using its recurrence relation.

In Chapter 3, we shall consider discrete bivariate convolution operators t(;)
where K is a 2 x 2 nonsingular matrix over Z, H = 2rK~! whose range is a space
V(K) spanned by {¢x(- — Hn)},er where I = {ng,n;,...,na_;} denotes the

representatives of the cosets of Z?/K7*. We shall show that the eigenfunctions

vii



of these operators which are independent of a form an orthogonal basis for V(K).
We shall also study the limiting behaviour of t(I?) as ||H|| — 0 and compute the
corresponding limiting semi-groups. The example considered here is the periodic
box-spline Ba(x), @ € (a1, a2,a3,a4)T € Nj on a 4-directional mesh with

a3 = a4 and H is a diagonal matrix.
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Chapter 1

Asymptotic Formulas for Convolution Operators

with Kernels of Fixed Degree

1.1. INTRODUCTION

The Bernstein-Schoenberg operators introduced by Schoenberg for continu-
ous functions on a finite interval are a spline extension of the Bernstein polyno-
mial operators. He also stated in [19] an analogue of Voronovskaya’s formula for
the asymptotic behaviour of the operators for twice differentiable functions. An
extension to functions with higher order derivatives was made by Marsden and
Riemenschneider ([14],[15]). This extension was in line with Bernstein’s extension

of Voronovskaya'’s result for Bernstein polynomial operators (see also [8]).

The de la Vallée Poussin means of a 2w-periodic function f,

(1.1.1) Vin(fi2) 1= ziw [ (e - 07(@)t, = € [0,27),
where

- ( ')2 vz
(1f1'2) () 8 u;m e z/m'(m T V)|e , €I,

and m is a positive integer, are trigonometric counterparts of the Bernstein polyno-
mials (see [1],(3]). They are shape preserving trigonometric convolution operators
[17]). A spline extension of the de la Vallée Poussin means consists of the convolu-

tion operators

us

(113)  Ta(fi9)=Taalfi2)i= 5= [ rmalz = (),

-7



where m, k are positive integers with k¥ > 2m + 1 and

(1.1.4) r(2) = Tma(a) i= 3 #(v)els

vEZL

with Fourier coefficients

(1.1.5)
" . . . R
() (singm = )3 . sing) (sin(m + )3 .-ooind)
(m —v)(m+v)!(sinZk ... sind)
F(v) =
k(m!)?sin(v — m)%sin(y -m+ 1)% coosin(v + m)% V> m
{ 7r(V—-m)(u—m+1)...(u+m)(sz’nﬂ2’l,__sing)2 J "

2

2®  The function 7, is the trigonometric B-spline of degree m
k ' g P g

([6],(20],[21]). We shall call T, the de la Vallée Poussin-Schoenberg operators. If

where h =

k =2m+ 1, T,, reduces to the de la Vallée Poussin means.

A related sequence of operators is the sequence of singular integrals of Riemann-
Lebesgue (see 3], pg.54),
1 ™
(1.1.6) Ro(fi;z) = Rap(fi2) 1= - box(z —t) f(2)dt,
which are convolution operators in which the kernels are defined by their Fourier

series expansions

(1.1.7) buk() = 3 <fi’ﬂ’h—/2)ne""=, z€R,

2
= vh/2
sk s 2m ' -
where n, k are positive integers and h = = The functions b, x are the periodic

polynomial B-splines of degree n — 1 ([16] and see Section 6).

The following asymptotic formula for the de la Vallée Poussin means of a

twice differentiable function is due to Natanson (see [3], pg.115).

Theorem 1.1.1. (Natanson) If f(?)(z) ezists,

(1.1.8) mh'inoo(m + 1){Va(f;z) = f(z)} = FD(a).

2



This is the trigonometric analogue of Voronovskaya'’s estimate for Bernstein
polynomials. In line with Schoenberg’s extension of Voronovskaya’s theorem to
Bernstein-Schoenberg operators, it was shown in [7] that the following holds for

the de la Vallée Poussin -Schoenberg operators T x(f;-) if f(P(2) exists:

(1.1.9) lim  (m+1){Tmi(fiz) - f(2)} = (1 - 5 cot g) fO(z).

mh—a€(0,x]

The objective of this chapter is to derive the asymptotic formulas for the
de la Vallée Poussin-Schoenberg operators and the singular integrals of Riemann-
Lebesgue for higher order differentiable functions, in line with Bernstein’s ex-
tension of Voronovskaya's estimate for Bernstein polynomials, and Marsden and
Riemenschneider’s extension of Schoenberg'’s result on Bernstein-Schoenberg oper-
ators. We will first consider the cases where mh — 0, m fixed, for the de la Vallée
Poussin-Schoenberg operators and nh — 0 with n fixed, as well as nh — 0 with
n — co for the singular integrals of Riemann-Lebesgue. The main theorems are
stated in Section 1.2. A preliminary result on the asymptotic behaviour of pos-
itive convolution operators with even kernels is given in Section 1.3. The proofs
of the main theorems which require the trigonometric moments of the kernels are
obtained in Sections 1.5 and 1.6 for the de la Vallée Poussin-Schoenberg operators

and singular integrals of Riemann-Lebesgue operators respectively.

1.2. THE MAIN THEOREMS

To state the main theorems we shall first introduce the combinatorial numbers

which are coefficients in the expansion of the central factorial polynomials,

n—1 ’
(1.2.1) " = {xjgl (z-%+j), n>0
11 n = 0,

where n > 0 is the degree of the polynomial z[™. The coefficients t(n, ;) in the

expansion

n

(1.2.2) 2l = Zt(n,j)a:j, n € Ny,

=0



are called the central factorial numbers of the first kind (see [18], pg.213).
(1.2.2), INg denotes the set of nonnegative integers. We use IN to denote the

natural numbers.

The asymptotic formulas for the convolution operators involve the trigonomet-
ric moments of their kernels. For an even 2w-periodic kernel @, its trigonometric

moment of order 2j, j € INg, is defined by

(1.2.3) Mys(9)= o= [ (25im é £ §(2)dt
For s, v € IN, let

1)7+v4(25,2 ,
(1.2.4) as,,(9) = Z (-1Y™"4(2),2v) Ma;(9)

(25)!
and let Cy» denote the class of continuous 27-periodic functions. We are now in

the position to state the main theorems.

Theorem 1.2.1. Fora fitedm € IN, s < m, and f € Cor for which the derivatives

up to order 2s ezist at ¢ € (—m, ™),

s—1

1 v s m 3
(1.2.5) 11m s {Tm,k(f;x) - XZa,',,(Tm,k)f(2 )(1:)} = (=1)’a™ f9)(z),
v=0
where aT* is a polynomial in m of degree s with leading coefficient (%%172—;-7 Further,
aT can be evaluated by the following algorithm:

For k € IN,

o (=DF
T (2k +1)122F

and for r = 1, .y m,

k 2v..r=1_0
. 2% _ 0,
) = E
v+1
v=0

Theorem 1.2.2. Fora fizedn € N, s < n, and f € C2x for which the derivatives

up to order 2s ezist at z € (—m, ™),

s—1

(1.2.6) ’El_r’r%)%’-{Rn(f, z)— Z a_,,”(bn,k)f(%)(x)} = (—1)",3:f(2-’)(2:),

v=0



where BT is a polynomial in n of degree s with leading coefficient ((4,)1,) r. Further,

B* can be evaluated by the following algorithm:

3

For k € N,

,31 . (_l)k
BT (2k + 1)122k

and forr=2,3; usn

Br = Zﬂr_l 3

Theorem 1.2.3. Suppose s € IN. For f € Cyr for which the derivatives up to
order 2s ezist at z € (—m, ),

,.l;i...o( hz),{R (fiz)— Za,y(b,,k)f(%)(x)} ( ) f(2’)(x)

|
n—oo S.

(1.2.7)

1.3. POSITIVE CONVOLUTION OPERATORS WITH EVEN KERNELS

For n € IN, let

(131) I\’n(f,z) = '21;' B f(t)kn(.’l: - t)dtv f & C?ﬂ')

be a sequence of positive convolution operators with even kernels kn, which are

nonnegative and normalised so that

(1.3.2) L di=1,

27 J_»

The asymptotic formula for K, will involve the trigonometric moments of its

kernel k,. We shall require the following Taylor expansion (see [16],[24]).

[e o]
; _ 162
(1.3.3) (aresin ) = FZO(—1)J2 J___(p aitle + 2 PPt |z <1,

where p € IN and ¢(n,j) are the central factorial numbers. For even p, P =2,

(1.3.3) can be written in the form

+u 3 1 y
(1.34) = Z J (21)| *"], V)(?- sn -2- t)2J, |t| <.

(3]



We observe that for j € IN, z[?/] = JI—II(:r,z — £2). Therefore
=0

2j

i=1
1.3.5 t(24,v)z" = Y ),
(1.3.5) D t(2,v)e" = I (a* - &)

v=(0
It follows that

t(27,0) =¢(2j5,2v — 1) = 0.
Furthermore, t(2m, 2v) satisfies the following partial difference equations:
(1.3.6) t(2m + 2,2v) = t(2m, 2v — 2) — m?*t(2m, 2v)
with initial conditions
(1.3.7) #2,0)=0, 223 =l.

In equation (1.3.6), which we obtained readily from (1.3.5), we have assumed that

1(27,2v) =0 for v < 0 or ¥ > m. It follows easily from (1.3.5), by induction, that
sgn(t(27,20)) = (-1)**, v =1,2,...j.

Hence the series (1.3.4) is a positive series.

Theorem 1.3.1. Suppose for j € IN, the limit lim n/ M3j(k,) ezists and
n—oo

(1.3.8) lim n? My;(k,) = A

If f € Car and its derivatives up to order 2s ezist at z € (—m, ), then

s—1 (29) x
(1.3.9) nli_.ngon"{Kn(f;x) - Za,,y(kn)f(“)(z)} = ,\3{25)!( )

Proof. For t € (—m,w), Taylor’s formula about z gives

(20) (4 (2+1)
(1.3.10) flz+1t)= Z ! ( ) v Z f(,,u+ 1(),) 12+ 4 g(2)e>,

v=0



where g is continuous and lin'(l) g(t) = 0. Using (1.3.4), one can express

(1.3.11) f(z+t>—Zf<2"><x)Z( i+l n:t)”

prd (27)!
2v Jj ut(-’ 12”) 2]
+‘§f( )(x)j;.1(—l)+ (i 3 (2 si )
£ jer(a)

|
A (2v +1)!

Since k, is even, (1.3.11) leads to

(1.3.12)Kn(f; ) = Z £ )Z( 1y SOL2) 0 ) 4 S1m + S

(25)!
where
3 (e o) ) 't 2 .\ 2
= Zf(z")(:z:) Z (—1)’+"(—i'—.lL) Mayj(kn)

v=0 Jj=s+1 (-'])'
and

1 [T s

Sn 1= o B g(t)kn ()t dt.

Therefore
(1.3.13)

. = 2 f(za)(f)
lim n’{K,,(f;:c) = agu(kn)f 0(.1-)} = A, + lim n’Si,n + lim n’Ssn.

n—oo (28)' n—oo n—oo

Since the series

S @) 3 (1 )

v=0 j=s+1 (2 )|

converges absolutely and
im n’Maj(k,) =0 for s < j,

by (1.3.8), the first limit on the right of (1.3.13) vanishes. We will show that the

second limit is also zero.



For all € > 0, we can choose § > 0.such that |g(¢)| < € whenever [t| < §, and write

(1314) n,SZ.n =1 + I21
where
s 3 ’
I = — gtt’kntdt
= e [ SO
and
B = G(E)2 ko (£)dt.
2T Js<lt|<n

Because of the inequality ¢t < = sinjt, t € (0,7,

3
(1.3.15) 5] e / (7 sin 3 £ ka(t)]dt
27 Jiu<s 2

<

,n.!

|
= —c¢ T sin = t)*k,(t)dt
2m /|:|<5( 2

- 2s 1 1 2s
= n"e<;) ;r' [t|<6 (2 sin 5 t) kn(t)dt

- 2s
=€(-;> n"l\/fg,(kn).

o~

which is arbitrarily small, since n® M2,(k5) is bounded. On the other hand,

2
1 t
1.3.16 |I2] < n’||g —/ <—> 2% ko (t)dt
(1316) EI<wlolzs | (F) ka0

n’||g|| 1 / 2342
- L3 12942 (1)dt
82 27 Js<tign )

s 2(s+1) 1 1
< ™ llg| (—) — (2 sin = t)z(’“)kn(t)dt
2™ Js<|ti<n 2

2(s+1)
™
= "6!;2“ (3) n’ Ma(s4+1)(kn)

which tends to zero as n — oo by (1.3.8). O

1.4. TRIGONOMETRIC B-SPLINES

2r
Let n, k be positive integers, h := - and define a sequence (cp,)vez, by

1 — gili=v)h
1 (S5, vea
Tl j= v—j

8

l ’—‘

(1.4.1) G =

)
=k



where the factor in the product is taken to be :A when its denominator equals
zero. The terms of the sequence ¢,, = 0ifand onlyif v =kp+ 7,5 =0,1,...,n,
p € Z\{0}. 1t is known (see Schoenberg [20]) that

Mp(e'%) := Z cnpe®, z € 0,27,
veZ

is a piecewise polynomial function in e of degree n, with knots at jh,
j =0,1,...,k — 1, which possesses continuous derivatives up to order n — 1. It is
supported on [0, (n + 1)A].

A straightforward computation gives

= jneitnt) ((3n=n)h/2) t)

Cn,w
where
an 5 — 1h/2
(1.4.2) ty 1= — 1l g J,) / , 0<v<n
T j=0 (v —17)

and the factor in the product is taken to be % when its denominator equals zero.

Hence

(143) A/[n(ei::) — inein:/Z Z tuei(u—n/2)(1:—(n+l)h/2).
veZ

Since t, = t,_,, v € Z, the function

(1.4.4) p(z) = Z tuei(u—n/2)(1:-(n+l)h/’2), z € [0,27),
veZ

is a real function supported on [0,(n + 1)A]. It is called a trigonometric B-spline

with uniform knots at vh, v =0,1,...,n + 1. From (1.4.3) and (1.4.4), we have
pn(z) = (1) 2 M, (), =z € [0,27).

We are interested in the case n = 2m is an even integer, m = 1,2, ..., where we

define

(1.4.5) Tm k(z) = pam(z + (Cm + 1)h/2)/tm, z €IR.

9



Then
T k() 1= Z?(V)ei"’, z € R,

where

2) =tsimltn
[ (m!)?(sin(m —v)R/2...s51mk/2)(sin(m + v)h/2...sinh/2)

(m—v)i(m+ U)!(sin"‘Th . sin%)2

y vl sm

k(m!)sin(v — m)h/2sin(v —m + 1)h/2...sin(v + m)h/2

\ W(V—m)(V"m'*'1)...(V+m)(3in1"2—h...sin%)2

, vl > m.

This is the trigonometric B-spline kernel defined by (1.1.4) and (1.1.5) (see [6]).

The sequence p, satisfies the recurrence relation

(1.4.6)

npa(z) = 2 sin % Tpn-1(z) + 2 sin %((n +1)h —z)pp—1(z —h), n€N
(see [6],(13]).

1.5. ASYMPTOTIC ESTIMATE FOR T, x WHEN mh — 0, m FIXED

In order to prove Theorem 1.2.1, we need a precise estimate for the trigono-
metric moments of the trigonometric B-spline kernels. For an even 2w-periodic
integrable function kp, its trigonometric moment of order 20, ¢ € IN, can be

expressed as follows.

(1.5.1)

-7

i .1 20
1 L 2(ex%t - e-—t;t)
= _,r( - kn(t)dt

[

= (--1)°'2i7r /, et (1 — e7*) "k (t)dt

-1

1 = 1 \%*
) o 2sin =t -
Mss(kn) 27r/ ( sin 5 ) kn(t)dt

(X

20
- e‘*%‘) ka(t)dt

10



=(-1)° i (2;’) (1)~ % / " ek (1)t

-1

= (—1)’2 (2;’ ) (=1)Yka(o - J).

For the trigonometric B-splines, Ty k, its Fourier coefficients 7 x (0 — j),

o <m,j=0,..,20, can be expressed as

(m!)2h2m 2m sint(m+0—j—€)h

(2sinimh...2 sin%—h)2 t=0 z(m+o—j—0h

(1.5.2) Fmk(o — ) =

)

where II denotes the product in which the undefined factor (in the above equation

the factor corresponds to £ = 0 — j + m) is taken to be 1. Hence

Mao(Tmp) = (m)* A% (<1)7
20 m,k (? sin lmh 9 sin lh)?
L 2 3 . 2
20 . - . l i _e h
o Z <2f.r) (—1 2H sul'zz(m+0' '] )
izo\J t=0 z(m+o—j—20h
(1.5.3)
(m!)2p2m . e 75 _ .
= 9 arm 1 ) 9 eim ] '2(—1) Z ] (_I)JA(m’];h),
(2 singmh...2 sinlh) =0
where

r sink(c —j—0)h
1.5.4) A(r,j;h) = 2
( ) (7',], ) lE—r %(o__j _e)h b

Hence forward we shall assume that ¢ <m. Forr =0,1,...,m and

7=0,1,...,20, we define a sequence (A2x(r,7))ken, by

(1.5.5) A(r,j;h) = Z Agi(r,7)R2E.

k=0

Lemma 1.5.1. Forr=0,1,...,m and j =0,1,...,20,

(1.5.6) Agi(r,7) = ai(o = 7)** + polynomial in (o — J) of degree < 2k,

11



where

B s
(157) ag = m’:, ke INo,

and for r =1,...,m, a} are defined recursively by

k
(1.5.8) ap=) W

Proof. The proof is by induction on r. For r = 0, consider

A(O’J;h) = 1 z(e=j)h ? .7.— 5 hy vy &0y
) J = 0.

Expanding the sine function in powers of h gives

s (2DRe = )% R\
A(O’J’h)"g (2k +1)! (5)

il wad] k _ \2k
B Z((zz ia1)!:>]2)k a

=0

It follows that
(=1)*(o —5)**

where
o (-1F
BT 22k(2k 4 1)1

Suppose that for r < m,

Agi(r,7) = ai(e —7)%¥ + a polynomial in (0 —j) of degree < 2k.
By (1.5.4),
(1.5.9)
r+1 sinl(o—j —0)h
A(r +1,5;h) = e

t=—(r+1) 3(c—j—20)h
sing(0 —j+r+1)hsini(oc —j—r—1)h
Yo—j+r+1)h Lo—-j—-r—1)h

= A(r,j; h)

12



The second and third factors of (1.5.9) can be expressed using the identity

cos(a —b) — cos(a+ b) =2 sin a sin b,

sing(c —j+r+1)hsini(c —j—r—1)h _ cos(r +1)h —cos(a — j)h
2@ —j+r+Dhgle—j-r=Dh 90 —j)2—(r+1)2)(sh)"

Expanding cos(r + 1)k — cos(o — j)h in terms of powers of h gives

(1.5.10) cos(r + 1)h — cos(o — j)h
r+1)2h2  (r+1)%h*  (r+1)8hS
=[1—( 7 Myt 4!) _ 5 +]
[1 & _91)2;12 + @ _43;)%4 _le _63!‘)6"6 +]

oo ')

Z Gl + D = (e =)

=1

Using (1.5.5) and (1.5.10) on the right of (1.5.9) leads to

By = (S Aua(r i CHRH(r 4 1% = (o — )
4150 = (i) (3 LRSS

= (S (X e e )
- (3 (W)
- (=D}2 [ (r+ 104D - (g — D
(L g e ),

Taking the Cauchy product leads to

(1.5.11)

S I (R et Gt i AP
A(r+1,5;h) = ;(;}Az(i:-u)( ’J)(o +2)!{ (r+1)2 = (o —j)? }>h '

It follows from (1.5.5) and (1.5.11) that

13



A2l¢(7' i 1’.7) =

k . 2(_1)v (7‘ 4 1)2u+2 _ (a’ _ j)2y+2
;AZ(k—u)(r,J)(2V+2)!{ (7‘+ 1)2 —(0‘-—j)2 }

k
= Z{a;_,(a — 7)%*=*) 4 a polynomial in (0 —j) of degree < 2(k — v)}
v=0
(-1)*2
x e
(2v +2)!

o e (D)2 = i
_ k—v . . _ . L
= OFD + a polynomial in (o — j)of degree < 2k

{(0=3)"+(@=)*r+1)*+... 4+ (e =) (r + 1) 2+ (r +1)%)

o — 7)2¥ + a polynomial in (o — j)of degree < 2k.

Agk(r+1,7) = a; (0 — j)** + a polynomial in (¢ —j) of degree < 2k,

where .
0

2v . r

r41 Zg Xk—v %y

a;’ = _— O
v+1

v=0

Lemma 1.5.2. Letj € IN, and for any r € IN, let

Siry=> v,
v=l1

Then S;j(r) is a polynomial in r of degree j with leading coefficient l
J

Proof. Forr 21,

r r—1
Si(r) = Si(r —=1) =Y vt = "It =yl
v=1 v=1

which is a difference equation for which the general solution is of the form

14



where a, are constants. Therefore

J

ﬂ:@@-&h—n=iﬁw-iﬁw‘”"

=0

=Za,, (r’=(r-1)")

_i%§(>(wae

=0 (=0

- :1{ _ZZI( 1)g (e)}( _1)trt,

—

<

<

Equating the coefficient of r/~!, we have

Pl = (_l)j_laj (] i 1) (-1y~1r 7t

= jaer'l.
Hence

1
a, = —. D
7

Lemma 1.5.3. Forr=1,...,m, k € N,

_l)krk
(312)F K1

—~~

(1.5.12) ol = + a polynomial in r of degree < k.

Proof. We shall establish the result by induction on & using (1.5.7) and (1.5.8).
For k =0, Ao(r,j) = 1. Hence af =1, for all r. By (1.5.8),

1 2v . r—=1_0
2« «a
1.5.13 P ) —— e
( ) a VZ__O el
1
. ' N
I TP

-r 1
a = —— — —

312 34



for all r 2 1, by (1.5.7). Hence (1.5.12) holds for & = 1.

Suppose that (1.5.12) holds for all £ < £ and for r > 1. Using the fact that
@) = 1, equation (1.5.8) can be written as

. 22v J—lao L 92ua lao
“f=2—ui%=°‘f t
v=0
Hence
L o2v,.3-1 0
; 22v ) o,
(1.5.14) A Z L=l

v=1

v+1

for any integer 7 > 1. Summing (1 5.14) for j from 1 to r leads to

22v 0
1.5.15 7 —a) iy
(15.15) oi-af= Y (T e )

v=1 Y)=1

Applying the inductive hypothesis on the summand of (1.5.15) leads to

(1.5.16)

af —a = 2a? Z Y ! + a polynomial in r of degree < ¢
j=1

(-1 — 1)t , ] e :
= 3|92 Z (312)-1(¢ — 1) + a polynomial 1n r of degree <

—1 ‘ r . — . .
= '(31_2_()1—(3)7_1)—1 Z(J —1)*"! + a polynomial in r of degree < ¢.
j=1

" ¢
By Lemma 1.5.2, the leading terms in }_ (5 — 1)¢1 is L. It follows from (1.5.16)

J=1 ¢
that
a —al = ——(———1)—t—rt+a olynomial in r of degree < ¢
L L — (3|‘)) (e _ 1)| Z poly g
r (— )t ¢ s 1
ay = m + a polynomial in r of degree < . a

Lemma 1.5.4. For any o,m € IN,
(1.5.17)

m! 212m
Mza(Tm,k) = ( I) h

(2 sin %mh...2 sin %h)

> (=1)7(20)!ah2% 4+ O(h27+2), as h — 0.
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Proof. Using (1.5.3), (1.5.4) and (1.5.5)

Maa(rm) = ()7 5017 (%) 3 Am(m, 8
j=0 k=0

2 sin mh . 2sin 1h
(2

_ : (m!)2h-m. 2(_1)02320:( 1)i (20)A2k(m,])h2k

(2 sin 3mh...2 sin 1h) =0 k=0
£y O(h2a+2)
The last estimate follows from the fact that the power series ) Azx(m, j)h.”c 1s

k=0
absolutely convergent for sufficiently small k, and in particular

S Aai(m, j)R%* = O(hX“+D).
k=o+1

It follows that

m‘2 2m o
ey
sin =0 k=0

(2szn%mh...2

(1.5.18) x {afj** +a polynormal in j of degree < 2k}AZ* + O(R27*?).

Since
20 ) %
> (-1y (“J )j" =0, v=0,1,..,20 —1,
Jj=0

and

-1y (3) 2 = 2o,

j=0
it follows from (1.5.18) that

(m|)2h2m 2 e ; (20) .2
Moo(Tm k) = a™hl?(-1)" —1)/ _ 7 4 O(R20+2
2ot = e PR L () 7+ 0w
1 2h2m
- (m) . (-1)7(20)laT % + O(h27+?), 0

(2 sin 3mh...2 sin 1h)
Proof. [Proof of Theorem 1.2.1].

It follows from (1.5.17), that for a fixed m and for any s < m,

) 1
lim e My, (7m ) = (=1)°(25)la].

17



Hence Theorem 1.2.1 follows immediately from Theorem 1.3.1. O

1.6. TRIGONOMETRIC MOMENTS OF PERIODIC B-SPLINE KERNELS

Let M, := X(=1,1] be the characteristic function of the interval (—-21—, %] and

for n = 2,3,..., let M, := M; x M,_; be the uniform B-spline of degree n — 1

2
([22],[23]). Let k be a positive integer, h := —kl and for n = 1,2, ..., we define

(1.6.1) bni(z) =Y kMu(h7'(z - 27v)), z€RR,
vEZ

the uniform, 27-periodic B-spline of degree n — 1 . The Fourier transform of b, i
can be computed using the Fourier transform of M,. A straightforward computa-

tion gives

(162)  Gan) = o= [ basle)ed

= ~—

= 5 ki-/ M (h~Y(z = 27v))e”#2dz
27 J_
veZ T

X—=2%xV

=ary |
= / M, (t)e et dy

vVEZL

- / M, (t)e"#htdy

- 00

— ) 2
= 3 = (S

Hence

—

(1.6.3) buk(z) =D o (m)e™=.

HEZ

The function bn,k(Z) is even, positive, 2r-periodic. Further, (b’,,,\k)(O) = 1 and

(b/n:)(,u) — 1,35 k — oo (i.e. h — 0). Suppose for all x4 € Z,

sin(o — )2 ¢

(1.6.4) B(¢,5; k) = ( o)k ) ,€=1,2,..,n,and j = 0,1, ..., 20.
2

18



By (1.5.1),

20

2 ;
(1.6.5) Mo(bnx) = (1) Z (”;) (-1)’B(n, j; h).
=0
For £ = 1,2,...,n and j = 0,1,...,20, we define a sequence (B2x(¢,7))kenN, such
that
(1.6.6) B(4,j;h) =) _ Bax(£,5)R?*.

k=0

Lemma 1.6.1. For¢=1,2,..,n aend j=0,1,...,20,

(1.6.7) Bai(8,5) = Bi(c — 7)%*, k € N,
where
(1.6.8) T )

T2k + 1)1928”

und far L =23, =0

k
(1.6.9) Bi =Y BilLBs.
v=0

Proof. For £ =1, we have

" sin(c—3)2
2

Expanding the sine function in powers of h gives

) 9 ., | k oc—1 2kh2k
sy 5 e

oo
= Z B2k(1aj)h2k'
k=0

It follows that

(=1)*(o = 5)*

Bai(1,5) = (2k + 1)!2%

= Bi(o — j)*,

19



where

_ (-
B = @ i

Note that for j = o, B(1l,0;h)=1.

Suppose that for £ < n,

(1.6.10) Bk (£,5) = Pi(o — 5)**

From (1.6.4), .
sin(o —j)3
(0-9%

Expanding the second factor in powers of h and using (1.6.6) leads to

. oo ' % (1Y — 7)2RR2E
B(¢+1,5;h) = (ngk(e,J)h“) (Z( ()21§+1)]!;2k )

k=0

B(¢+1,j5;k) = B(¢,5;h)

Taking the Cauchy product leads to

(1.6.11) B(£+1,j;h) = Z(}:Bo(k il ])( V(e —5)" )h”‘

o S (‘)y+ 1)")211

It follows from (1.6.6) and (1.6.10) that

(=1)"(e = j)*
(2v + 1)122v

k
Bok(£+1,5) = Y Bagr—u)(4,5)

v=0

k g 1) (g — 1 2v
= yZoﬂltc— )2(k ) ( (23 _E_ 1)!2]2)1/

Hence
Box(£+1,7) = Bt (0 = 5)*,
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k
where gt = 3 6{_,8,. O

v=0

Lemma 1.6.2. For¢=1,2,...,n, k€N,

L (1t -
(1.6.12) B = W + polynomaial in € of degree < k.

Proof. We will establish the result by induction on & using (1.6.8) and (1.6.9).

For k = 0, By(¢,) = 1. Hence B¢ = 1 for all 2. By (1.6.9),

(1.6.13) Bt =pt- —3!?

for £ > 1. Repeated application of (1.6.13) gives

pi=p - D

3|‘)'2
_(=1)¢
Y

for any £ > 1, by (1.6.8).

Hence (1.6.12) holds for k£ = 1. Suppose (1.6.12) holds for k¥ < s and for all £ > 1.
Using (1.6.9), and noting that 8} = 1, we have

(1.6.14) — gi-1 Zﬁ _ pi-t

v=0
3
e
= BB,
v=1

for any integer j > 1. Summing (1.6.14) for j from 2 to £ leads to

: s ¢
(1.6.15) BL-pr =35> pizip!

v=1 j—2

1
= Z 2,3.. —-v (9u(+ 1))I‘)2u

v=1 j=2
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Applying the inductive hypothesis to the summand on the right of (1.6.15) leads

to

(1.6.16)

¢ ) _ J=1l/_q\s
N G B )

= 14l (25 + 1)122¢

- GOy OG-y
[Z @y=(s- 1)

+ polynomial in (5 — 1) of degree < s—1

= (4')(%1_)'- Z{(J 1)*~! + polynomial in (j — 1) of degree < s —1}.

j=2

By Lemma 1.5.2, the leading term in Z(] - 1)*"tis T It follows from (1.6.16)
=2

that
e (1) 1 88 ,
Bs = @ G- s — + polynomial in ¢ of degree < &
( 1)3 S . .
= W + polynomial in £ of degree < s. a

Lemma 1.6.3. For any o € IN,

(1.6.17) Mag(bn i) = (=1)7(20)!83h% + O(n°*1R27*?), as nh? — 0.

Proof. Using (1.6.5), (1.6.6) and (1.6.7), we have

(1619Mzo(bn) = (-1° Y- (%7 ) (-1 Y Buslm 307
k=0

=0 N7

=13 (%) 1 X prte - gy

Jj=0 k=0
-4

= 1)02i<2]”>( (S 4 f: ﬁ;:(a-j)“h%).

j=0 k=0 k=o+1

Since

20 (2%
Z(_l)J (j )j"=0, for v=0,...,20 -1,



and

(- - (%) % = 2o,

J_

it follows from (1.6.18) that

(1.6.19)

Maolbaa) = (17821 + (17 (%) (-1 3 pito —ia

J=0 k=a+1

(==}
By (1.6.12), for k € IN, A = O(n*) as n — 0. Since 5. BF(c — j)**Ar%* is
k=o+1
convergent for sufficiently small nh?, for j =0, ...,20, and n € IN, it follows that

Z BR(o — 7)?* 2 = O((nh?)?*!) as nh? — 0. Hence (1.6.17) follows from
k=o+1

(1.6.19). O
Proof. [Proof of Theorem 1.2.2]

Suppose n is fixed and s < n. By (1.6.17) we have

lim 2o Mag(bas) = (~1)°(25)163.
The result follows immediately from Theorem 1.3.1. O
Proof. [Proof of Theorem 1.2.3]

It follows from (1.6.17) and (1.6.12) that
M23(bn k) ( ) (zs)lﬂnhza + O(n3+1h2,+2)

= (—1)3(23)!{ ((—4!)):3; + a polynomial in n

of degree < s}hz’ + O(n**t1p2e+2),
Hence
1 _ (2s)!
lim Ad&,( n k) (4!)’8!,

nh—0 (nh2)"
and Theorem 1.2.3 follows immediately from Theorem 1.3.1. O
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Chapter 2

Asymptotic Formulas for Convolution Operators

as the Degree of the Kernels tends to infinity

In the previous chapter, the asymptotic estimates for the singular integral of
Riemann-Lebesgue R, were taken as nh — 0 \;fith n fixed as well as nh — 0 with
n — oo. In the case of the de la Vallée Poussin-Schoenberg operators, Ty, x, the
asymptotic estimate was taken as mh — 0 with m fixed. In this chapter, we shall
derive the asymptotic formulas for R, as nh — 3 # 0 with n — oo and for T, &
as mh — a € (0,7] with m — co. The result for R, follows from the lemmas in
Chapter 1. However, for T, k, a new approach is required to obtain a more precise
estimate for the trigonometric moments of the trigqnometric B-spline kernels.
Here we shall derive an asymptotic recursive formula for the moments using the
recurrence relation of trigonometric B-splines. We shall use the recursive formula

to obtain the asymptotic estimate for T},  as mh — « € (0, 7.

2.1. THE MAIN THEOREMS

Theorem 2.1.1. For f € Car with derivatives up to order 2s ezist at z € (—7, 7),

(2.1.1) lim ns{Rn(f;a:) — sz—:las,u(bn,k)f(i’ﬂ(x)} — (:)sm

I !
by = 4! s!

where the limit is taken as n — oo and nh — > 0.

The corresponding result for the de la Vallée Poussin-Schoenberg is

Theorem 2.1.2. For f € Cy, with derivatives up to order 2s ezist at x € (—7, ),

s!

s—1 3 £(2s) .
(2.1.2) lim m’{Tm»k(f;z)‘;)aa,v(fm.k)f(z")(x)} - (1_% cot %) f77(=)

mh—a

24



