
A SIMULATED ANNEALING-BASED

HYPER-HEURISTIC FOR THE

FLEXIBLE JOB SHOP

SCHEDULING PROBLEM

KELVIN LIM CHING WEI

UNIVERSITI SAINS MALAYSIA

2023

A SIMULATED ANNEALING-BASED

HYPER-HEURISTIC FOR THE

FLEXIBLE JOB SHOP

SCHEDULING PROBLEM

by

KELVIN LIM CHING WEI

Thesis submitted in fulfilment of the requirements

for the degree of

Master of Science

March 2023

ii

ACKNOWLEDGEMENT

First and foremost, I would like to thank my supervisor, Associate Professor

Dr. Wong Li Pei for his guidance and encouragement throughout this journey of

research. Without Dr. Wong’s strong advice and criticism, this research will never be

executed smoothly. Apart from that, I also appreciate Dr. Wong’s time that he has set

aside to review my work and numerous one-on-one discussions about the research

especially given his busy schedule. I would also like to thank my co-supervisor,

Associate Professor Ir. Dr. Chin Jeng Feng for giving me the opportunity to work under

his research grant which asserts financial security during the period of my study.

Besides that, Dr. Chin has also provided me tonnes of valuable advice from the

perspective of the engineering domain.

I am deeply grateful to my parents (Mr. Lim Seng Yew and Mdm. Ewe Cheng

Kim) for being supportive and understanding during my study. I am glad that I was

not left alone as my parents have accompanied me through the ups and downs

especially when the movement control order is declared. With their love and

continuous mental support, I am able to focus on my study with a peace of mind despite

the change in the mode of study which none of us have ever experienced it before.

Finally, I would also like to express my gratitude to my research peers (Dr.

Choong Shin Siang, Dr. Chuah How Siang, Mr. Fung Chey, Ms. Phang Yuen Chi, Mr.

Thevendran A/L Marimuthu, Ms. Tye Yi Wei, Mr. Zhao Chunsheng, Mr. Yong Wei

Lun, Mr. Andre Chua Rin Seng and Mr. Beh Boon Seng) for being kind in sharing

their knowledge and thoughts with me throughout this research journey.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENT ...ii

TABLE OF CONTENTS ... iii

LIST OF TABLES .. vi

LIST OF FIGURES ... viii

LIST OF SYMBOLS .. ix

LIST OF ABBREVIATIONS .. xi

LIST OF APPENDICES .. xiv

ABSTRAK .. xv

ABSTRACT ..xvii

CHAPTER 1 INTRODUCTION ... 1

1.1 Job Shop Scheduling Problem (JSP) .. 1

1.2 Flexible Job Shop Scheduling Problem (FJSP) .. 2

1.3 Hyper-heuristic as a Solution for Production Scheduling 5

1.4 Problem Statements and Research Questions .. 8

1.5 Research Objectives ... 10

1.6 Research Scope .. 11

1.7 Research Contributions .. 13

1.8 Thesis Outline .. 15

CHAPTER 2 LITERATURE REVIEW ... 17

2.1 Flexible Job Shop Scheduling Problem (FJSP) .. 17

2.1.1 Approaches in Handling the FJSP ... 18

2.1.2 Optimisation Objectives ... 19

2.1.3 Constraints ... 23

2.1.4 Quality of Information ... 24

iv

2.2 Exact Algorithms .. 26

2.3 Approximation Algorithms .. 29

2.3.1 Heuristics ... 30

2.3.2 Metaheuristics .. 33

2.3.2(a) Bio-inspired Metaheuristic .. 33

2.3.2(b) Non-bio-inspired Metaheuristic 36

2.3.3 Hyper-heuristics ... 40

2.3.3(a) Generation Hyper-heuristics .. 41

2.3.3(b) Selection Hyper-heuristics ... 46

2.4 Summary and Research Gap Analysis ... 49

CHAPTER 3 METHODOLOGY .. 51

3.1 Problem Analysis ... 53

3.2 Model Design & Development .. 54

3.3 Model Evaluation ... 55

3.3.1 Benchmark Dataset .. 56

3.3.2 Design of Experiments ... 58

3.3.3 Evaluation Plan .. 59

3.4 Summary .. 60

CHAPTER 4 PROPOSED ALGORITHM ... 61

4.1 Simulated Annealing-based Hyper-heuristic (SA-HH) 62

4.2 Heuristic Scheme (HS) ... 64

4.2.1 Problem State Features... 65

4.2.2 Machine Assignment Rule – Job Sequencing Rule Pair (MAR-

JSR Pair) .. 68

4.3 Initialisation .. 71

4.4 HS Perturbation .. 73

4.5 HS Acceptance ... 76

v

4.5.1 Score Matrix ... 77

4.6 Temperature Update ... 77

4.7 SA-HH Based on HS Without Problem State Features (SA-HHNO-PSF) 78

4.8 Summary .. 79

CHAPTER 5 EXPERIMENTS, RESULTS & DISCUSSION 81

5.1 Experimental Settings .. 81

5.2 Parameter Tuning ... 83

5.3 Experimental Results and Comparison Studies ... 85

5.3.1 Intra-comparison Study between the SA-HHNO-PSF and the

SA-HHPSF on Static and Deterministic FJSP 85

5.3.2 Inter-comparison Study between the SA-HHNO-PSF, the

SA-HHPSF and the Benchmark Algorithms on Static and

Deterministic FJSP .. 89

5.3.3 Intra-comparison Study between the SA-HHNO-PSF and the

SA-HHPSF on Static and Stochastic FJSP 94

5.4 Discussion .. 97

5.4.1 Nature of Algorithms ... 97

5.4.2 Parameter Settings.. 98

5.4.3 Complexities of Dataset ... 99

5.5 Summary .. 100

CHAPTER 6 CONCLUSION .. 101

6.1 Research Summary ... 101

6.2 Research Limitations .. 106

6.3 Future Work ... 107

REFERENCES ... 110

APPENDICES

LIST OF PUBLICATIONS

vi

LIST OF TABLES

Page

Table 1.1 A 2 × 3 JSP instance .. 2

Table 1.2 A 2 × 3 FJSP instance .. 4

Table 2.1 Optimisation objectives considered in existing FJSP literature 20

Table 3.1 Complexity of FJSP instances introduced by Brandimarte (1993) 57

Table 4.1 Problem state features .. 67

Table 4.2 Machine assignment rules .. 69

Table 4.3 Job sequencing rules .. 69

Table 4.4 Rewarding criteria for MAR-JSR pairs in the score matrix 77

Table 5.1 Design of experiments.. 82

Table 5.2 Suggested configurations for the parameter tuning 84

Table 5.3 Configurations for SA-HHNO-PSF and SA-HHPSF after parameter

tuning ... 84

Table 5.4 Results of sign test between SA-HHNO-PSF and SA-HHPSF on static

and deterministic FJSP ... 86

Table 5.5 Benchmark algorithms ... 89

Table 5.6 Experimental configuration of the benchmark algorithms................. 90

Table 5.7 Performance comparison of the SA-HHNO-PSF, the SA-HHPSF and

the benchmark algorithms in terms of best Cmax on static and

deterministic FJSP .. 91

Table 5.8 Results of sign test between SA-HHNO-PSF and SA-HHPSF on static

and stochastic FJSP .. 95

Table A.1 Results achieved through 34 = 81 suggested configurations for the

SA-HHPSF ... 121

Table A.2 Modal values of each parameter for SA-HHPSF 124

vii

Table A.3 Results achieved through 33 = 27 suggested configurations for the

SA-HHNO-PSF .. 126

Table A.4 Modal values of each parameter for SA-HHNO-PSF 127

Table B.1 Results on Experiment I for SA-HHPSF .. 129

Table B.2 Results on Experiment I for SA-HHNO-PSF 130

Table B.3 Results on Experiment II for SA-HHPSF .. 131

Table B.4 Results on Experiment II for SA-HHNO-PSF...................................... 132

Table B.5 Results on Experiment III for SA-HHPSF ... 133

Table B.6 Results on Experiment III for SA-HHNO-PSF 134

viii

LIST OF FIGURES

Page

Figure 1.1 Taxonomy of hyper-heuristics ... 5

Figure 1.2 Generic selection hyper-heuristic framework (Burke et al., 2010) 7

Figure 3.1 Research framework... 52

Figure 3.2 Components of SA-HH .. 55

Figure 4.1 HS with nG heuristic blocks (Adapted from Garza-Santisteban,

Sanchez-Pamanes, et al. (2019)) .. 65

Figure 4.2 Perturbate a problem state feature value .. 74

Figure 4.3 Add a new heuristic block .. 75

Figure 4.4 Remove an existing heuristic block ... 75

Figure 5.1 An example of FJSP schedule obtained by SA-HHPSF for MK06 88

Figure 5.2 Percentile rank of algorithms on instances with low complexity 92

Figure 5.3 Percentile rank of algorithms on instances with medium

complexity .. 92

Figure 5.4 Percentile rank of algorithms on instances with high complexity 93

Figure 5.5 An example of FJSP schedule obtained by SA-HHPSF for MK02

considering stochastic job arrivals ... 96

Figure 6.1 Summary of the research .. 105

ix

LIST OF SYMBOLS

a Action in a heuristic block

B Set of alternative machines

Cmax Makespan

d Euclidean distance

f Problem state feature

g` Index of heuristic block in a heuristic scheme

h Index of problem state feature in a heuristic scheme

i Index of jobs

J Set of jobs

j Jobs, J = {j1, j2, …, jx}

k Index of machines

M Set of machines

m Machines, M = {m1, m2, …, my}

O Set of operations

Oi Set of operations of the i-th job, Oi = {oi,1, oi,2, …, oi,z}

oi,l The l-th operation of i-th job

P Selection probability of heuristic (i.e. MAR-JSR pair)

pi,l The processing time of the l-th operation of i-th job

pU Total processing time of all scheduled operations

pV Total processing time of all pending operations

pT Total processing time of all actions

Q Number of MARs

q Index of MAR

R Number of JSRs

R Index of JSR

rh Value of the h-th problem state feature

S Score matrix

T Average makespan

u Number of fitness evaluations

x Number of jobs

y Number of machines

x

z Number of operations

μ Mean

σ Standard deviation

θ Temperature

xi

LIST OF ABBREVIATIONS

ABC Artificial Bee Colony

ACGP Adaptive Charting Genetic Programming

ASGP Genetic Programming with Adaptive Surrogates

BS-HH Backtracking Search based Hyper-heuristic

CC Cooperative Co-evolution

CCGP Genetic Programming with Cooperative Co-evolution

CCGPc Cooperative Co-evolution Genetic Programming with Subtree

Selection by Crossover

CCGPcm Cooperative Co-evolution Genetic Programming with Subtree

Selection by Crossover and Mutation

CCGPm Cooperative Co-evolution Genetic Programming with Subtree

Selection by Mutation

CCGP-FC Genetic Programming with Cooperative Co-evolution and Feature

Construction

CCGP-SM Surrogate-assisted Genetic Programming with Cooperative Co-

evolution

CRO Chemical Reaction Optimisation

DEHH Differential Evolution based Hyper-heuristic

FJSP Flexible Job Shop Scheduling Problem

GA Genetic Algorithm

GEP Gene Expression Programming

GLNSA Global-local Neighbourhood Search Algorithm

GP Genetic Programming

GPHH Genetic Programming Hyper-heuristic

GSGP Genetic Programming with Generation-range-based Surrogates

GWO Grey Wolf Optimisation

HA Heuristic Algorithm

HS Heuristic Scheme

HS* Global Best Heuristic Scheme

HS′ Neighbour Heuristic Scheme

xii

HSDE Hybrid Self-adaptive Differential Evolution Algorithm with Heuristic

Strategies

HTGA Hybrid Taguchi-genetic Algorithm

IGIT Iterated Greedy Insertion Technique

IGIRT Iterated Greedy Insertion Randomised Technique

IMA Improved Memetic Algorithm

IMGP Genetic Programming with Re-initialisation Strategy

IM2GP Genetic Programming with Re-initialisation and Adaptive Strategy by

Mutation

JSP Job Shop Scheduling Problem

JSR Job Sequencing Rule

LLH Low-level Heuristic

MACROG Multi-agent Model based on Chemical Reaction Optimisation with

Greedy Algorithm

MAR Machine Assignment Rule

MBB Multi-objective Parallel Branch-and-bound algorithm for Shared

Memory Architectures

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming

MTGP Multi-tree Genetic Programming

MUGP Genetic Programming with Adaptive Strategy by Mutation

NiSuFS Niching-genetic Programming Feature Selection Framework

NSGA-II Non-sorted Genetic Algorithm II

P-FJSP Flexible Job Shop Scheduling Problem with Partial Flexibility

PSF Problem State Features

SA Simulated Annealing

SA(MO)2H Self-adaptive Multi-operator and Multi-objective Hyper-heuristic

SA-HH Simulated Annealing-based Hyper-heuristic

SA-HHNO-PSF Simulated Annealing-based Hyper-heuristic based on Heuristic

Scheme without Problem State Features

SA-HHPSF Simulated Annealing-based Hyper-heuristic based on Heuristic

Scheme with Problem State Features

SARSA State–Action–Reward–State–Action

SBH Shifting Bottleneck Heuristic

xiii

SBH-LS Hybrid of Shifting Bottleneck Heuristic and Local Search

SBH-VNS Hybrid of Shifting Bottleneck Heuristic and Variable Neighbourhood

Search

SLGA Self-Learning Genetic Algorithm

T-FJSP Flexible Job Shop Scheduling Problem with Total Flexibility

TS Tabu Search

xiv

LIST OF APPENDICES

APPENDIX A: Parameter Tuning Results for the SA-HH

APPENDIX B: Complete Experimental Results

xv

HIPER-HEURISTIK BERDASARKAN SIMULASI PENYEPUHLINDAPAN

UNTUK PENJADUALAN TUBUHAN KERJA FLEKSIBEL

ABSTRAK

Penjadualan tubuhan kerja fleksibel (FJSP) ialah suatu masalah

pengoptimuman yang biasa ditemui dalam industri. Penggunaan mesin selari

membolehkan sesuatu operasi diproses menggunakan salah satu mesin daripada

sekelompok mesin alternatif. Ini seterusnya mencetuskan dua sub-masalah, iaitu

masalah penugasan mesin dan masalah penjujukan kerja. Satu kaedah yang mudah

untuk menyelesaikan FJSP adalah dengan mengaplikasikan sepasang peraturan

penugasan mesin (MAR) dan peraturan penjujukan kerja (JSR), iaitu pasangan

MAR-JSR. Akan tetapi, prestasi setiap pasangan MAR-JSR bersandar kepada ciri-ciri

sesuatu masalah. Tambahan pula, dalam sesuatu pelaksanaan algoritma, pasangan

MAR-JSR menunjukkan prestasi yang berbeza pada keadaan masalah yang berlainan.

Dengan adanya pelbagai pilihatur MAR-JSR, pemilihan satu pasangan MAR-JSR

yang sesuai untuk FJSP sememangnya satu cabaran. Hasil yang positif berkenaan

pengunaan hiper-heuristik berdasarkan simulasi penyepuhlindapan (SA-HH) dalam

menyelesaikan masalah penjadualan yang serupa telah dilaporkan dalam kajian lepas.

Oleh itu, penyelidikan ini mencadangkan SA-HH untuk membentuk suatu skema

heuristik (HS) yang terdiri daripada pasangan MAR-JSR dalam menyelesaikan FJSP.

SA-HH juga menggabungkan satu set ciri-ciri keadaan masalah untuk memudahkan

aplikasi pasangan-pasangan MAR-JSR dalam HS berdasarkan keadaan semasa FJSP.

Penyelidikan ini mengkaji dua varian SA-HH, iaitu SA-HH berdasarkan HS dengan

ciri-ciri keadaan masalah (SA-HHPSF) dan tanpa ciri-ciri keadaan masalah

(SA-HHNO-PSF). Keputusan eksperimen berdasarkan set data penanda aras

xvi

menunjukkan bahawa prestasi SA-HHPSF lebih baik daripada SA-HHNO-PSF dari segi

purata tempoh masa mula kerja sehingga tamat dan keputusan ini disokong oleh ujian

tanda. Dari segi tempoh masa mula kerja sehingga tamat yang terbaik, SA-HHPSF juga

mengatasi ataupun setanding lebih daripada 75% algoritma penanda aras dalam 8

daripada 10 masalah.

xvii

A SIMULATED ANNEALING-BASED HYPER-HEURISTIC FOR THE

FLEXIBLE JOB SHOP SCHEDULING PROBLEM

ABSTRACT

Flexible job shop scheduling problem (FJSP) is a common optimisation

problem in the industry. The use of parallel machines allows an operation to be

executed on a machine assigned from a set of alternative machines, raising a

combination of machine assignment and job sequencing sub-problems. A

straightforward technique to solve the FJSP is to apply a pair of machine assignment

rule (MAR) and job sequencing rule (JSR), i.e. a MAR-JSR pair. However, the

performance of each MAR-JSR pair is problem-dependent. In addition, within an

algorithm execution, the MAR-JSR pair performs differently at different problem

states. Given a wide range of MAR-JSR permutations, selecting a suitable MAR-JSR

pair for a FJSP becomes a challenge. Positive outcomes on the application of simulated

annealing-based hyper-heuristic (SA-HH) in addressing similar scheduling problem

has been reported in the literature. Hence, this research proposes the SA-HH to

produce a heuristic scheme (HS) made up of MAR-JSR pairs to solve the FJSP. The

proposed SA-HH also incorporates a set of problem state features to facilitate the

application of MAR-JSR pairs in the HS according to the state of the FJSP. This

research investigates two variants of SA-HH, i.e. SA-HH based on the HS with

problem state features (SA-HHPSF) and without problem state features (SA-HHNO-PSF).

The experimental results based on the benchmark dataset disclosed that SA-HHPSF

outperforms SA-HHNO-PSF on the average makespan as supported by the sign test.

SA-HHPSF also outperforms or on par with more than 75% of the benchmark

algorithms on 8 out of 10 instances in terms of the best makespan.

1

CHAPTER 1

INTRODUCTION

Production scheduling is a process to plan and order the execution of a batch

of jobs. The goal is to determine a schedule that specifies the execution order of jobs

and the respective time of execution. An effective production scheduling is essential

in ensuring the success of operating a production facility (Grobler, 2019). Therefore,

production scheduling becomes a critical activity in the manufacturing cycle to

determine an efficient schedule that optimises the objectives (e.g. makespan

minimisation and flow time minimisation) subjected to a set of constraints (e.g. no pre-

emption and job precedence).

The complexity of production scheduling increases following the growing

requirements in the industry, e.g. the use of parallel machines and the consideration of

stochastic job arrivals. This leads to a variety of problem formulations, namely in the

order of increasing complexity: single machine scheduling, flow shop scheduling and

job shop scheduling.

1.1 Job Shop Scheduling Problem (JSP)

A job shop scheduling problem (JSP) is defined such that a schedule is needed

for a batch of x jobs J = {j1, j2, …, jx} on a set of y machines M = {m1, m2, …, my}.

Each job comprises of a predefined sequence of z operations such that the set of

operations for the i-th job is denoted as Oi = {oi,1, oi,2, …, oi,z} and oi,l refers to the l-th

operation of i-th job. A JSP instance can be denoted in a standard notation known as

x × y . Table 1.1 illustrates a simple 2 × 3 JSP instance with two jobs and three

2

machines. The values of each cell are written in the notation of (mi,l, pi,l
) where mi,l

refers to the machine allocated for oi,l and pi,l refers to the processing time of oi,l.

Table 1.1 A 2 × 3 JSP instance

Job

Operation

(Machine, Processing Time)

oi,1 oi,2 oi,3

j1 (3, 8) (1, 3) (2, 6)

j2 (3, 1) (2, 5) (1, 10)

Based on Table 1.1, j1 should be executed in the order of m3 for 8 units of time,

m1 for 3 units of time and m2 for 6 units of time. Meanwhile, j2 should be executed in

the order of m3 for 1 units of time, m2 for 5 units of time and m1 for 10 units of time.

In a job shop, each machine can execute only one operation at a time without pre-

emption, e.g., j2 has to be placed in a queue while m3 is executing o1,1 of j1. In addition,

the execution of each job is subjected to the precedence constraint. For instance, the

execution of o1,2 could only begin upon completing o1,1.

A scheduling conflict occurs when two jobs compete over one another for the

same resource. At this point, a decision is needed to determine the job to be prioritised

for execution. For instance, j1 and j2 will compete for m3 for the execution of its first

operation. Such conflict may occur throughout the scheduling process which

eventually raises the JSP.

1.2 Flexible Job Shop Scheduling Problem (FJSP)

A job shop is said to be flexible when one or more operations of a job can be

executed by on a machine selected from a set of identical parallel machines

3

(Waschneck et al., 2017). An industrial example of a flexible job shop can be seen in

an aero-engine blade manufacturing plant as described by Zhou, Yang & Zheng

(2019b) in a case study where several copies of machines are used to minimise

bottlenecks caused by a complicated setup which could takes up to hours compared to

its processing time which could be completed within minutes.

Unlike the JSP which focuses solely on the sequencing of jobs, the presence of

parallel machines in a flexible job shop creates an additional sub-problem where each

operation has to be properly assigned to a suitable machine. This introduces the

flexible job shop scheduling problem (FJSP). The FJSP can be further decomposed

into the machine assignment and job sequencing sub-problem (Zhou, Yang & Huang,

2020). The machine assignment sub-problem allocates a machine from a given set of

alternative machines to each operation of a job. Subsequently, the job sequencing sub-

problem orders the execution sequence of the operations allocated to the respective

machine. The FJSP has received significant attention among researchers with

numerous applications (Xie et al., 2019). This inspires the FJSP to be made the focus

of investigation of this research.

In the FJSP, a schedule is needed for a batch of x jobs J = {j1, j2, …, jx} and a

set of y machines M = {m1, m2, …, my}. Each job consists of a set of operations

Oi = {oi,1, oi,2, …, oi,z} where each operation can be processed on exactly one machine

selected from a set of parallel machines B(oi,l) ⊆ M, |B| ≥ 1. An example of 2 × 3

FJSP instance is described in Table 1.2. The values of each cell denote pi,l,k which refer

to the processing time of oi,l using machine mk.

4

Table 1.2 A 2 × 3 FJSP instance

Job Operation
Processing Time (units of time)

m1 m2 m3

j1

o1,1 − 2 3

o1,2 3 1 −

o1,3 5 6 −

j2

o2,1 − 8 −

o2,2 3 − 5

o2,3 10 8 6

When an operation can be executed on a set of alternative machines, the

machine assignment sub-problem is raised. For example, o1,1 can be assigned to either

m2 or m3 according to Table 1.2. A decision is needed to determine a suitable machine

for the execution of the affected operation. Subsequently, when two or more operations

compete for the same resource, the job sequencing sub-problem is raised. Assuming

that m2 was assigned to o1,1 in the earlier step, o1,1 and o2,1 will eventually compete for

m2. To resolve the scheduling conflict, the job with the highest priority is prioritised.

The complete schedule generation process for a FJSP will be elaborated in Section 4.3.

While the FJSP consists of two decision levels within a single scheduling

problem, it is said to have a greater complexity than JSP (Nouiri et al., 2018).

Moreover, the FJSP is NP-hard (Lunardi & Voos, 2018). Generally, solving a

combinatorial optimisation problem involves a search process of an optimal solution

from a finite set of solutions (Choong, Wong & Lim, 2019). To effectively search for

a solution, an algorithm could be designed for a combinatorial optimisation problem

such as the FJSP.

5

1.3 Hyper-heuristic as a Solution for Production Scheduling

Hyper-heuristic is a high-level approach which explores a search space of

heuristic components or known low-level heuristics to solve computationally difficult

problems (Burke et al., 2010; Drake et al., 2020). Specifically, hyper-heuristic is a

method that operates on a heuristic search space instead of a solution space (Burke et

al., 2013). In other words, the hyper-heuristic determines a low-level heuristic (LLH)

at each point of decision to solve a problem iteratively, rather than searching for a

solution which solved the problem directly. In the context of production scheduling,

the LLHs may refer to a set of dispatching rules which support decision making in case

of a scheduling conflict.

Hyper-heuristic can be classified into generation hyper-heuristic (i.e. heuristic

to generate heuristic) and selection hyper-heuristic (i.e. heuristic to select heuristic)

(Burke et al., 2010; Drake et al., 2020). A general taxonomy on the classes of hyper-

heuristic is presented in Figure 1.1.

Figure 1.1 Taxonomy of hyper-heuristics

Generation

Hyper-heuristic

Constructive

Hyper-heuristic

Hyper-heuristic

Perturbative

Hyper-heuristic

Selection

Hyper-heuristic

Constructive

Hyper-heuristic

Perturbative

Hyper-heuristic

6

Generation hyper-heuristic derives new heuristics from a set of heuristic

components. The set of heuristic components consists of the function set and the

terminal set. The function set is usually made up of mathematical operators such as ‘+’

(addition), ‘−’ (subtraction), ‘max’ (maximum) and ‘min’ (minimum). In the context

of the FJSP, the terminal set consists of the shop features such as processing time and

the number of remaining operations (Zhou, Yang & Zheng, 2019a).

Selection hyper-heuristic involves a process of selecting a suitable LLH from

a set of common LLHs. A generic framework for the selection hyper-heuristic is

visualised in Figure 1.2. The low-level represents the problem domain which consists

of the problem representation, evaluation function(s), an initial solution and a set of

LLHs which forms the LLH search space. Meanwhile, the high-level represents the

hyper-heuristic consists of two major processes, i.e. the LLH selection and the move

acceptance. The LLH selection step consists of a selection methodology which selects

a suitable LLH from the LLH search space. The selected LLH is applied to produce a

solution to an instance of a problem. The move acceptance step will determine whether

to accept the solution.

The low- and high-levels are separated from one another by a domain barrier

layer. The domain barrier avoids problem-specific information from flowing into the

hyper-heuristic (Kalender et al., 2013), allowing the hyper-heuristic to be domain-

independent so that the hyper-heuristic can be applied on problems from other domains

without a major structural change (Kheiri & Keedwell, 2015).

7

Figure 1.2 Generic selection hyper-heuristic framework (Burke et al., 2010)

Given the availability of a wide range of LLHs in the production scheduling

domain, hyper-heuristic could be a potential solution to FJSP. The commonly available

LLHs, such as the “shortest processing time” rule and “first come first serve” rule, can

be applied directly to perform the scheduling tasks in FJSP due to its simplicity and

ability to provide a swift response. However, the performance of these LLHs is domain

dependent. Therefore, there is no single universal heuristic which can be applied

effectively across all problem instances (Nguyen et al., 2015). In other words,

heuristics that perform well in an instance may not necessarily perform well in another

instance (Garza-Santisteban, Sanchez-Pamanes, et al., 2019). To overcome the

drawback, hyper-heuristic serves as a promising solution in the search of a good-

LLH1 LLH2 LLHn …

High-Level

LLH Selection
Move

Acceptance

Low-Level

Apply the selected LLH

Feedback

Domain Barrier

Collection of Domain-independent Information

(e.g. changes in evaluation function, the number of LLHs in the search space)

Problem Representation,

Evaluation Function,

Initial Solution

8

performing LLH that corresponds to the problem characteristic. This motivates the

study of a hyper-heuristic in addressing the FJSP.

1.4 Problem Statements and Research Questions

Heuristic is commonly applied to solve the FJSP following its simplicity and

low computational burden. However, it is known that the performance of heuristics

varies from one instance to another. To accurately determine a good performing

heuristic from a variety of heuristics without adequate domain knowledge is not an

easy task. This exerts a greater challenge while solving the FJSP as it can be further

modelled into the machine assignment and the job sequencing sub-problems. The sub-

problems are addressed by the machine assignment rules (MAR) and the job

sequencing rules (JSR) respectively (Zhou, Yang & Zheng, 2019a). A MAR allocates

a machine from a set of alternative machines to an operation, whereas a JSR performs

arrangement on the order of execution for the operations allocated to a given machine.

Both MAR and JSR should exist in pairs as they will be applied one after another when

the FJSP is being solved. They are collectively known as a MAR-JSR pair.

Given a variety of MARs and JSRs, there are various formations of problem-

dependent MAR-JSR pairs. Selecting a MAR-JSR pair randomly from the list to solve

a FJSP instance is less practical because there are chances that a less suitable

MAR-JSR pair is being selected, resulting in a poor schedule. Moreover, while solving

the same instance, the problem characteristic changes as the schedule is being

generated. Based on the common practice, a fixed heuristic is determined and applied

throughout the scheduling process. For instance, a MAR-JSR pair is selected at the

beginning and the same MAR-JSR pair is used throughout the scheduling process.

9

However, the performance of the selected MAR-JSR pair may be affected by the

change in problem characteristic over time. Considering the problem-specific nature

of heuristics, it is proposed that several MAR-JSR pairs be identified and compiled

into a heuristic scheme. This allows the selected MAR-JSR pairs to co-operate so that

a better schedule can be achieved. Nevertheless, the identification of good-performing

MAR-JSR pairs for a specific FJSP instance without a good grasp on the problem

remains as an issue, especially when a variety of MARs and JSRs is available for

selection. This initiates the first research question, i.e.:

How to create a heuristic scheme which made up combinations of machine assignment

rule (MAR) and job sequencing rule (JSR), i.e. MAR-JSR pairs?

Since a heuristic scheme consists of several MAR-JSR pairs, a MAR-JSR pair

from the heuristic scheme must be identified to perform scheduling tasks at each

decision point. Determining a MAR-JSR pair randomly from the heuristic scheme

might still result in a poor FJSP schedule because the choice is not made based on

proper reasoning. As the performances of the MARs and the JSRs are problem-

specific, the choice of MAR-JSR pair should correspond to the FJSP state. The

problem states can be represented by a set of features, which could refer to the progress

of the schedule (e.g. the number of completed jobs) or the progress of the remaining

schedule (e.g. the remaining of processing times) (Garza-Santisteban, Cruz-Duarte, et

al., 2019). A representation on the heuristic scheme alongside a set of problem state

features were presented by Garza-Santisteban, Sanchez-Pamanes, et al. (2019) in

addressing the JSP. Unlike the JSP where the operations are allocated to a fixed

machine, the FJSP which involves an additional machine assignment sub-problem

raises uncertainties to the problem states because the processing time of a particular

operation remains unknown before the machine assignment sub-problem is solved.

10

This exerts greater challenge in determining the FJSP state and identifying a suitable

MAR-JSR pair to perform the scheduling tasks. This leads to the second research

question, i.e.:

How can the MAR-JSR pairs in the heuristic scheme be applied at the right state of

FJSP?

1.5 Research Objectives

Based on the problem statements and research questions, the following

research objectives are defined:

1. To develop a hyper-heuristic in creating a heuristic scheme made up of pairs

of machine assignment rule (MAR) and job sequencing rule (JSR) for the

flexible job shop scheduling problem (FJSP).

2. To adapt a set of problem state features to categorise states of a problem to

facilitate the application of machine assignment rule (MAR) and job

sequencing rule (JSR) for the flexible job shop scheduling problem (FJSP).

Among the motivations of this research is to study the potential of a hyper-

heuristic in identifying good-performing MAR-JSR pairs to be included in a heuristic

scheme to solve FJSP. While the MARs and the JSRs are manually defined heuristics

which are applicable to FJSP directly, a selection hyper-heuristic can be employed to

perform selection on the MARs and JSRs. For this purpose, this research aims to

develop a selection hyper-heuristic, i.e. simulated annealing-based hyper-heuristic

(SA-HH) in creating a heuristic scheme made up of MAR-JSR pairs for FJSP.

The motivation of proposing the SA-HH to solve FJSP is twofold. Firstly, the

simplicity of the SA-HH as a single-point selection hyper-heuristic which maintains

11

only a single candidate solution throughout the execution simplifies the initialisation

process and eases manipulation on the search process. Secondly, the SA-HH adopts an

acceptance strategy which probabilistically accepts a poor move to allow the algorithm

to escape from the local optimum.

The second objective aims to adapt a set of problem state features introduced

by Garza-Santisteban, Sanchez-Pamanes, et al. (2019) and Garza-Santisteban, Cruz-

Duarte, et al. (2019) to manipulate the MAR-JSR pairs in a heuristic scheme. Instead

of randomly selecting a MAR-JSR pair from the heuristic scheme, the problem state

features could serve as a guide on the selection. This allows the MAR-JSR pairs to be

applied with respect to the problem state which is deemed more accurate as the

performance of MAR-JSR pairs is problem-specific. Therefore, leveraging the

problem state features in the heuristic scheme serve as an advantage in improving the

performance of SA-HH.

1.6 Research Scope

Production scheduling covers a wide range of scheduling problems ranging

from single machine scheduling, flow shop scheduling to job shop scheduling. The

main focus of this research is to propose an algorithm to solve the FJSP. The FJSP can

be further categorised in terms of the flexibility of the flexible job shop, i.e. the FJSP

with partial flexibility (P-FJSP) and the FJSP with total flexibility (T-FJSP) (Nouiri et

al., 2018). In the P-FJSP, each operation of the job can only be executed on a machine

assigned from a subset of machines from the production facility. Meanwhile, in the

T-FJSP, each operation of the job can be assigned to any machine in the production

facility. This research evaluates the proposed algorithm based on a dataset published

12

by Brandimarte (1993) which consists of only P-FJSP instances and thus, the research

is limited to the P-FJSP.

From the perspective of information evolution, the formulation of the FJSP

considered in this research is a static FJSP whereby all the job and machine-related

information received at the initial state of scheduling are not subjected to dynamic

changes. From the perspective of information quality, both deterministic and

stochastic FJSP are being investigated. In the deterministic FJSP, all information is

known in advance, whereas information in the stochastic FJSP is subjected to

uncertainties. The scope of this research is limited to static and deterministic FJSP via

the benchmark dataset by Brandimarte (1993). Meanwhile, the research also focuses

on static FJSP considering stochastic job arrival times with slight modifications made

to the benchmark dataset to include stochastic job arrival times for each job. Dynamic

problems are not considered in this research.

The FJSP considered in this research is a single objective optimisation

problem. Optimisation objectives such as the minimisation of flow time, tardiness,

machine workload have been investigated in the literature of FJSP. Nevertheless, the

most commonly considered objective function in the literature of FJSP is the

minimisation of makespan (Chaudhry & Khan, 2016). This refers to the minimisation

of the completion time of the final completed job. As such, the minimisation of

makespan is considered as the sole optimisation objective in this research.

Among the categories of hyper-heuristic, i.e. generation hyper-heuristic and

selection hyper-heuristic, this research focuses on the exploration of a selection hyper-

heuristic. The LLHs evolved by genetic programming-based generation hyper-

heuristics tend to be more competitive the manually defined LLHs in more complex

13

scheduling problems (Zhou, Yang & Zheng, 2019a). However, due to the nature of

genetic programming, the evolved LLHs are in a form of complex tree structure. As a

result, evaluating a LLH with a complex structure can be computationally expensive

(Nguyen & Zhang, 2017). Therefore, the commonly defined LLHs which involves a

simpler implementation are reconsidered. However, the performance of LLHs is

sensitive to problem states. Selection hyper-heuristic which is able to select a suitable

LLH for a particular instance emerges as a potential solution to this end.

Based on Figure 1.1, selection hyper-heuristic can be further classified based

on the nature of the LLHs, i.e. constructive selection hyper-heuristic and perturbative

selection hyper-heuristic (Burke et al., 2010; Drake et al., 2020). Constructive hyper-

heuristic begins with an empty solution and iteratively extends the partial solution until

a complete solution is obtained, whereas perturbative hyper-heuristic improves a

complete solution by performing modification on one or more components of the

solution until a termination criterion is satisfied. In the context of the FJSP, the

heuristics refer to the MARs and JSRs which are examples of constructive hyper-

heuristic. Therefore, the scope of this research is limited to constructive selection

hyper-heuristic.

1.7 Research Contributions

To achieve the first research objective, the SA-HH is proposed to identify good

MAR-JSR pairs. From the literature, the SA-HH introduced by Garza-Santisteban,

Sanchez-Pamanes, et al. (2019) has been identified as a base reference for this

research. The proposed SA-HH by Garza-Santisteban, Sanchez-Pamanes, et al. (2019)

has been experimented on the JSP, and yet to be experimented on the FJSP. The first

14

contribution of this research focuses on extending the ability of the SA-HH to solve

the FJSP which is of a greater complexity than the JSP. To address the FJSP, both the

MAR and the JSR are needed to solve the machine assignment sub-problem and the

job sequencing sub-problem respectively, resulting in a MAR-JSR pair. At each point

of scheduling, the MAR-JSR pair is applied one after another, i.e. the application of

MAR followed by the application of JSR. This differs from the JSP where only the

JSR is involved under the absence of the machine assignment sub-problem. The

modified SA-HH is expected to include the selection of MAR-JSR pairs instead of

individual JSRs. Moreover, the inclusion of MARs increases the size of the search

space as MAR-JSR pairs are formed. An additional component, i.e. the scoring

mechanism is added to guide the search towards good performing MAR-JSR pairs by

rewarding them based on the acceptance outcome. As a result, MAR-JSR pairs with a

higher score will have a higher probability of being selected. The enhanced SA-HH

will be compared with the benchmark algorithms based on the benchmark dataset by

Brandimarte (1993) for the static FJSP.

 The second objective of this research emphasises on the need of a

representation of the FJSP state to guide the application of MAR-JSR pairs in the

heuristic scheme. In a study conducted by Garza-Santisteban, Sanchez-Pamanes, et al.

(2019) and Garza-Santisteban, Cruz-Duarte, et al. (2019), a set of problem state

features have been introduced to solve JSP instances. This second contribution of this

research adapts the problem state features to handle the additional machine assignment

sub-problem in FJSP. Unlike the JSP where the processing time for each operation is

known, the presence of parallel machines in FJSP complicates the problem by

asserting an uncertainty on each operation’s actual processing time. This is because

the processing time of an operation varies from one machine to another. Therefore, the

15

actual processing time for the specific operation remains uncertain until the machine

assignment sub-problem is solved. Hence, the problem state features which involve

the processing time feature are adapted by taking the uncertain processing time into

consideration. This research intends to assess the role of problem state features in the

heuristic scheme. Two variants of SA-HH are created for the comparison study, i.e.

the SA-HH based on the heuristic scheme with problem state features (SA-HHPSF) and

the other without (SA-HHNO-PSF). The performance of both variants of SA-HH are

compared based on the benchmark dataset by Brandimarte (1993) for the static FJSP.

The research also intends to evaluate the SA-HH on the static FJSP considering

stochastic job arrivals. To simulate the stochastic event, the benchmark dataset by

Brandimarte (1993) is modified to include the arrival time information for each job.

1.8 Thesis Outline

This thesis consists of six chapters. It begins with this introduction chapter (i.e.

Chapter 1) that presents an overview of the entire research. It highlights the research

background, problem statements, research questions, research objectives, research

scope and research contributions.

Chapter 2 features a review of literatures related to the study. The review

includes a discussion on various formulations of production scheduling problem and

an analysis on various applications of exact and approximation algorithms.

Chapter 3 introduces the research methodology. This research is conducted

according to a four-phase methodological procedure, i.e. problem analysis, model

design & development and model evaluation.

16

Chapter 4 describes the proposed method, i.e. Simulated Annealing-based

Hyper-heuristic (SA-HH) in solving FJSP. The chapter begins with an introduction

followed by a detailed explanation on each component of the proposed algorithm.

Firstly, the heuristic scheme which is made of problem state features and MAR-JSR

pairs is introduced. Subsequently, the major phases of the SA-HH are elaborated, i.e.

initialisation, HS perturbation, HS acceptance and temperature update. To assess the

role of problem state features in the SA-HH, two variants of SA-HH are introduced,

i.e. SA-HH based on HS with problem state features (SA-HHPSF) and SA-HH based

on HS without problem state features (SA-HHNO-PSF).

Chapter 5 presents the experimental results. Firstly, results from the tuning of

SA-HH parameters is presented and discussed. Subsequently, experimental results on

the intra-comparison study between SA-HHNO-PSF and SA-HHPSF on static and

deterministic FJSP are presented. Subsequently, an inter-comparison study with

benchmark algorithms on static and deterministic FJSP was conducted and the

respective experimental results are presented. This is followed by the presentation and

discussion of experimental results from an intra-comparison study between

SA-HHNO-PSF and SA-HHPSF on static and stochastic FJSP.

The thesis is summarised in Chapter 6 with a summary of key findings obtained

from this research. Subsequently, the limitation of this research is highlighted. Finally,

several research directions which could possibly extended from the findings of this

research are suggested.

17

CHAPTER 2

LITERATURE REVIEW

This chapter presents a review of related work to this research. It begins with

Section 2.1 where a review on the flexible job shop scheduling problem (FJSP) is

presented. From the literature, it is observed that FJSP can be solved in either the

hierarchical approach or the integrated approach. At the same time, following the

growing requirements in the industry, various formulations of FJSP have been

introduced from the perspective of optimisation objectives and constraints. These

approaches and formulations will be reviewed in this section.

Over the years, production scheduling problems have been studied extensively

by researchers. In the literature review, a total of 41 papers published between the year

2008 and the year 2022 have been selected from the SCOPUS and the Web of Science

database using the keyword “flexible job shop.” The papers are categorised according

to the type of approach in solving the FJSP, i.e. exact and approximation algorithms

which are reviewed in Section 2.2 and Section 2.3 respectively.

2.1 Flexible Job Shop Scheduling Problem (FJSP)

The JSP is among the most researched combinatorial optimisation problem

following its wide application in the manufacturing domain (Hart & Sim, 2016). The

JSP is raised when a schedule is needed for a batch for jobs to be executed on the

machines in the manufacturing environment. The uniqueness of JSP is that each job

follows a unique processing route, and the operations in a single job should be

executed in a predefined order.

18

Following the introduction of the high-mix low-volume production in the

industry, parallel machines are employed to handle production lines involving a large

product mix. This extends the JSP into the FJSP. Unlike the JSP where each operation

is assigned to a fixed machine, the presence of parallel machines provides a set of

alternative machines to each operation. This requires the operation to be executed in

either one of the machines within the set of alternative machines, creating the machine

assignment sub-problem. Therefore, alongside the existing job sequencing sub-

problem, the FJSP can be further modelled into two sub-problems, i.e. the machine

assignment sub-problem and the job sequencing sub-problem (Zhou, Yang & Huang,

2020). The machine assignment sub-problem involves the assignment of operations to

a suitable machine, whereas the job sequencing sub-problem occurs at the machine

queue of each machine with the identification of a job to be prioritised for execution.

2.1.1 Approaches in Handling the FJSP

From the literature, the machine assignment and job sequencing sub-problems

of FJSP can be handled using either the hierarchical approach or the integrated

approach (Fattahi, Jolai & Arkat, 2009). Specifically, the hierarchical approach solves

the two sub-problems one after another, whereas the integrated approach solves the

two sub-problems simultaneously.

An example of solving the FJSP in a hierarchical approach was presented by

Zhang, Mei & Zhang (2019b). The authors solved the FJSP using a routing rule and a

sequencing rule. The routing rule is first applied to assign a machine to an operation.

If the queue in front of the machine is not empty, the sequencing rule is then applied

to select an operation to be executed on the machine. A similar approach was presented

19

by Zhou, Yang & Zheng (2019a) where both rules are now phrased as the machine

assignment rule (MAR) and the job sequencing rule (JSR). Each rule is applied at the

relevant decision points to make the necessary decisions, i.e. the MAR for the machine

assignment sub-problem and the JSR for the job sequencing sub-problem.

Nouiri et al. (2018) presented an integrated approach to solve the FJSP. Instead

of employing a rule for each sub-problem, the particle swarm optimisation algorithm

is used to solve both machine assignment and job sequencing sub-problems

simultaneously. Likewise, Buddala & Mahapatra (2019) also introduced an integrated

approach to solve the FJSP using the teaching-learning-based optimisation method.

From the examples, the two sub-problems of FJSP are solved as a single problem

instead of solving them one after another.

The integrated approach is beneficial because less computational resources are

needed since both sub-problems of FJSP can be solved simultaneously (Buddala &

Mahapatra, 2019). On the other hand, the hierarchical approach is inspired by the spirit

of divide and conquer where the problem complexity can be reduced (Zhou, Yang &

Huang, 2020). This results in a simpler implementation as opposed to the integrated

approach. While each approach exhibits its own advantage, both approaches are said

to be equally feasible in solving FJSP.

2.1.2 Optimisation Objectives

FJSP is a combinatorial optimisation problem where various types of

optimisation objectives could be studied. Table 2.1 presents an overview on the

optimisation objectives considered in the existing FJSP literature.

20

Table 2.1 Optimisation objectives considered in existing FJSP literature

Author & Reference
Proposed

Method

Optimisation Objective(s) Considered

M
a

k
es

p
a

n

F
lo

w
 T

im
e

T
a

rd
in

e
ss

M
a

ch
in

e

W
o

rk
lo

a
d

Others

Basán et al. (2019) MILP

No. of processing units at

each workstation

Bekkar, Belalem &

Beldjilali (2019)

IGIT, IGIRT

Chang, Tsai & Liu,

(2014)

Improved

GA

Chang et al. (2015) HTGA

Chen et al. (2020) SLGA

Defersha, Obimuyiwa

& Yimer (2022)

SA

F. Zhang et al. (2020a) MUGP,

IMGP,

IM2GP

F. Zhang et al. (2020b) CCGPc,

CCGPm,

CCGPcm

Ferreira et al. (2020) ABC

Gao et al. (2015) Heuristic

ensembles
* * *

G. Zhang et al. (2020) IMA

Jiang & Zhang (2018) GWO

Kress & Müller (2019) CP

Li, Wang & Peng

(2022)

HSDE

Delivery delay

Lin et al. (2017) DEHH

Lin (2019) BS-HH

Luo, Lin & Xu (2020) Selection

HH

Mahmud et al. (2022) SA(MO)2HH

Supply chain cost &

environmental

sustainability reward

21

Table 2.1 Optimisation objectives considered in existing FJSP literature (ctd.)

Author & Reference
Proposed

Method

Optimisation Objective(s) Considered

M
a

k
es

p
a

n

F
lo

w
 T

im
e

T
a

rd
in

e
ss

M
a

ch
in

e

W
o

rk
lo

a
d

Others

Marzouki, Belkahla

Driss & Ghédira (2017)

MACROG

Meng et al. (2019) MILP Energy consumption

Meng et al. (2020) CP

Nguyen, Zhang & Tan

(2018)

ACGP

Nie et al. (2013) GEP * * *

Ozturk, Bahadir &

Teymourifar (2019)

GEP

Serna et al. (2021) GLNSA

Shahgholi Zadeh,

Katebi & Doniavi

(2019)

ABC-based

Heuristic

Sobeyko & Mönch

(2016)

SBH-LS,

SBH-VNS

Soto et al. (2020) MBB

Tay & Ho (2008) GP

Teymourifar et al.

(2020)

GEP

Xiang & Liu (2019) Branch-and-

bound

Yska, Mei & Zhang

(2018a)

CCGP-FC

Yska, Mei & Zhang

(2018b)

CCGP
* * *

Zakaria, BahaaElDin &

Hadhoud (2019)

NiSuFC
 * *

Zhang, Mei & Zhang

(2018a)

MTGP

Zhang, Mei & Zhang

(2018b)

ASGP,

GSGP

22

Table 2.1 Optimisation objectives considered in existing FJSP literature (ctd.)

Author & Reference
Proposed

Method

Optimisation Objective(s) Considered

M
a

k
es

p
a

n

F
lo

w
 T

im
e

T
a

rd
in

e
ss

M
a

ch
in

e

W
o

rk
lo

a
d

Others

Zhang, Mei & Zhang

(2019a)

Two stage

GPHH

Zhou & Yang (2019) CCGP

Zhou, Yang & Zheng

(2019a)

GEP
 * *

Zhou, Yang & Huang

(2020)

CCGP-SM

Ziaee (2014) HA

Note: Works marked with an asterisk (*) denotes that despite multiple optimisation objectives are being

considered in the research, the optimisation objectives are optimised independently.

From the literature, makespan is the most considered optimisation objective

(Chaudhry & Khan, 2016). This is in line with compilation of data shown in Table 2.1

where out of the 41 papers reviewed, 24 of them considered makespan as the

optimisation objective. Based on Table 2.1, most researchers have studied FJSP as a

single objective optimisation problem. Besides that, FJSP could be studied as a multi-

objective optimisation problem. There are two ways to handle a multi-objective

optimisation problem, i.e. by combining the objectives into a single objective using a

weighted sum or by the Pareto-based approach where a set of solutions is obtained

(Zhang, Mei & Zhang, 2019b).

23

2.1.3 Constraints

From another aspect, feasible solutions of an optimisation problem are

subjected to a set of constraints. According to Chaudhry & Khan (2016) and Xie et al.

(2019), a general formulation of FJSP consists of the following constraints:

(i) All machines are idle at time unit 0.

(ii) All jobs are only available after the release date.

(iii) Each operation can only be executed on exactly one machine at any one time.

(iv) Each machine can only execute exactly one operation at any one time.

(v) No pre-emption is allowed.

(vi) Precedence constraint is only applicable among operations of the same job

where for each job, the sequence of which the operations are executed is

predefined.

Following the real-world requirements, additional constraints can be included

in the formulation of FJSP. Bekkar, Belalem & Beldjilali (2019) incorporated the

transportation time constraint into the formulation of FJSP. In this research, the

transportation time of jobs between machines is considered as a separate parameter.

This is as opposed to the general formulation of FJSP where the transportation time is

assumed to be included in the processing time (Chaudhry & Khan, 2016).

On the other hand, Teymourifar et al. (2020) introduced the limited buffer

constraint into the formulation of FJSP. In the general formulation of FJSP, the

machine buffers are assumed to be infinite. In other words, a partially finished good

may remain in the buffer space of the machine after the execution is completed,

whereas the machine continues to execute the subsequent operation in the queue.

However, due to the limited buffer spaces and inadequate transportation capacity, a

24

partially finished good may be required to remain on the machine after the execution

is completed (Teymourifar et al., 2020). Since the machine is occupied, the execution

of the subsequent operation is delayed.

 Li, Wang & Peng (2022) considered a FJSP with the job priority and

outsourcing operations constraint. Under the job priority constraint, each job is

assigned with a priority index where the execution priority is given to the job with the

highest priority. The outsourcing operations constraint is raised when several

operations of the job require execution assistance from an external production facility.

Therefore, the constraint specifies the available time slots of the external production

facility so that both schedules of the main production facility and the outsourcing

production facility can be synchronised to produce a feasible schedule. In summary,

the consideration of these additional constraints increases the complexity of the FJSP.

2.1.4 Quality of Information

A scheduling problem can be formulated based on assumptions on the quality

of information provided. The quality of information, i.e. deterministic or stochastic

indicates the degree of uncertainty of the given data (Pillac et al., 2013). The problem

is said to be deterministic if no random variables are considered, whereas the problem

is said to be stochastic if at least one problem component is associated with a random

variable. Although the taxonomy introduced by Pillac et al. (2013) was applied in the

classification of vehicle routing problems, Gnanavelbabu, Caldeira & Vaidyanathan

(2021) formulated the FJSP in a similar fashion. The deterministic variant of the FJSP

is described with all the information are known with certainty. The stochastic variant

