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TERBITAN SINTETIK BERASAKAN TEOBROMINA SEBAGAI 

PERENCAT BERPOTENSI TERHADAP PROTEASE SERINA VIRUS 

DENGGI II 

ABSTRAK 

Denggi merupakan penyakit viral RNA yang tersebar di seluruh daerah 

perbandaran tropika dan subtropika. Sehingga Jun 2022, terdapat lebih daripada 

17,497 kes jangkitan denggi telah dilaporkan di Malaysia sejak awal tahun ini, yang 

dianggap peningkatan sebanyak 57.6% berbanding enam bulan pertama 2021. 

Sehingga kini, tiada rawatan berlesen penuh untuk pengurusan jangkitan denggi. Virus 

denggi (DENV) menggunakan protease NS2B/NS3 untuk membelah poliprotein 

sepanjang replikasi dan kitaran hayat virus. Oleh itu, perencatan protease virus boleh 

menyekat replikasi DENV. Sebelum ini, beberapa data yang tidak diterbitkan oleh 

kumpulan kami menunjukkan bahawa Theobroma cacao menghalang aktiviti protease 

DENV2. Theobromine ialah alkaloid semulajadi, yang biasa ditemui dalam T. cacao. 

Theobromine mempunyai perancah kimia purin yang menyerupai 19 antivirus terkenal 

yang sama ada tersedia secara komersial atau di bawah penyiasatan klinikal, termasuk 

asiklovir. Beberapa kajian telah melaporkan sintesis theobromine dan derivatifnya, 

tetapi sehingga kini tiada yang berkaitan sebagai agen antivirus.. Dalam kajian ini, 

sekumpulan 137 molekul hibrid berasaskan teobromina telah direka bentuk dengan 

menggabungkan teobromina (pada kedudukan °1; amina sekunder) dengan entiti kimia 

dan sebatian-sebatian lain yang boleh didapati secara komersial. Konjugat yang direka 

bentuk telah dikaji secara in-siliko untuk pengikatan dan interaksinya di tapak 

pengikatan pemangkin NS2B/NS3pro menggunakan dok molekul dan dinamik 

molekul. Molekul-molekul yang menunjukkan pengikatan dan interaksi yang tertinggi 
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telah disintesis, dicirikan, dan diuji secara in-vitro untuk aktiviti perencatan dan jenis 

perencatan terhadap protease. Hasil kajian menunjukkan bahawa konjugasi 

teobromina dengan moeiti kimia lain melalui amina sekundernya telah meningkatkan 

pengikatan afiniti, kestabilan, dan interaksi teobromina pada tapak pemangkin 

protease secara signifikan. Pemprofilan ADMET menunjukkan bahawa kesemua 

molekul yang direka dijangkakan selamat, bukan hepatotoksik, pengikat non-CYP2D6 

dan pengikat protein non-plasma. Pengiraan tenaga MM-PB(GB)SA menunjukkan 

bahawa sebatian C30a dan C78f mempunyai tenaga bebas pengikatan terendah iaitu -

30.13 dan -37.14 kcal.mol-1, manakala teobromina pada -0.90 kcal.mol-1. Seterusnya, 

tiga belas sebatian telah disintesis menggunakan tindak balas berbilang langkah dan 

dicirikan menggunakan DSC, FT-IR, LC-MS, dan 1H & 13C NMR. Penemuan kajian 

dinamik molekul adalah bersetuju dengan keputusan in-vitro, di mana C30a merencat 

protease dengan IC50 sebanyak 90.19 µM secara kompetitif. Namun, C78f mampu 

menghalang protease virus dengan IC50 sebanyak 22.54 µM tetapi dengan cara yang 

tidak kompetitif. Manakala, IC50 teobromina tidak dapat ditentukan kerana ia hanya 

menunjukkan 19.46% perencatan terhadap protease pada 500 µM. Kesimpulannya, 

konjugasi teobromina dengan moeiti kimia lain melalui penghubung amida boleh 

meningkatkan aktivitinya terhadap DENV NS2B/NS3 protease in-siliko dan in-vitro. 

Jenis moeiti kimia yang juga dikonjugasi mempengaruhi keseluruhan aktiviti molekul 

yang direka bentuk dan jenis perencatan yang ditunjukkannya. 

 
  



 

xxvii 

THEOBROMINE-BASED SYNTHETIC DERIVATIVES AS POTENTIAL 

INHIBITORS OF DENGUE VIRUS II SERINE PROTEASE 

ABSTRACT 

Dengue is an RNA viral disease that is spread across tropical and subtropical 

urbanised districts. Up to June 2022, more than 17,497 cases of dengue infections have 

been reported in Malaysia since the beginning of the year, which is considered an 

increment of 57.6% compared to the first six months of 2021. Moreover, up to date, 

there is no licensed drug treatment for the management of dengue infections. Dengue 

virus (DENV) uses the NS2B/NS3 protease to cleave its polyprotein throughout the 

virus’s replication and life cycle. Hence, inhibiting the viral protease can suppress the 

replication of DENV. Previously, some unpublished data by our group showed that 

Theobroma cacao inhibited the DENV2 protease. Theobromine is a naturally 

occurring alkaloid commonly found in Theobroma cacao. Theobromine has a purine 

chemical scaffold which resembles that of 19 famous antivirals, which are either 

commercially available or under clinical investigations, including acyclovir. 

Moreover, only a few studies have reported the synthesis of theobromine and its 

derivatives, but to date, none have been related to antiviral agents. In this study, a 

group of 137 theobromine-based hybrid molecules were designed by conjugating 

theobromine (at position °1; the secondary amine) with other commercially available 

chemical entities and compounds. The designed conjugates were studied in-silico, for 

their binding affinities and interactions at the catalytic binding site of NS2B/NS3pro 

using molecular docking and molecular dynamics. The top-ranked designed molecules 

were synthesised, characterised, and in-vitro tested for their inhibitory activities and 

type of inhibition towards the protease. Results show that conjugating theobromine 
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with other chemical moieties through its secondary amine has significantly enhanced 

the binding affinity, stability, and interactions of theobromine at the catalytic site of 

the protease. ADMET profiling showed that all the designed molecules are predicted 

to be safe, non-hepatotoxic, non-CYP2D6 binders, and non-plasma protein binders. 

MM-PB(GB)SA energy calculations showed that compounds C30a and C78f 

possessed the lowest free energies of binding of -30.13 and -37.14 kcal.mol-1, whereas 

theobromine was found at -0.90 kcal.mol-1. Next, thirteen compounds were 

synthesised using a multistep reaction and characterised using DSC, FT-IR, LC-MS, 

and 1H & 13C NMR. The findings of the molecular dynamics study were in agreement 

with the in-vitro results, where C30a inhibited the protease with an IC50 of 90.19 µM 

in a competitive manner. Interestingly, C78f was able to inhibit the viral protease with 

an IC50 of 22.54 µM, but in a non-competitive manner. In comparison, the IC50 of 

theobromine could not be determined as it showed only 19.46% inhibition towards the 

protease at 500 µM. To conclude, conjugating theobromine with other chemical 

moieties through an amide linker can significantly improve its activity towards DENV 

NS2B/NS3 protease in-silico and in-vitro. The conjugated chemical moiety type also 

influenced the overall activity of the designed molecule and the type of inhibition it 

exhibits. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background 

Dengue is a mosquito-borne viral disease caused by the dengue virus (DENV) 

(Harapan et al., 2020). It is a tropical and sub-tropical communicable disease. DENV 

is a member of the Flavivirus genus, derived from the Latin word “flavus”, meaning 

yellow, in accordance to jaundice caused by the yellow fever virus (Kuhn et al., 2002). 

Members of the Flaviviridae family, including DENV, consist of a single enveloped 

positive RNA strand (Simmonds et al., 2017; Fishburn et al., 2022). DENV has five 

distinct serotypes (DENV1 through DENV5), with DENV2 being the most prevalent 

among the other serotypes in Malaysia and Southeast Asia (Lee et al., 2007). Those 

serotypes are classified according to their biological and immunological criteria 

(Mustafa et al., 2015), and they share approximately 65% of their genomes (Sasmono 

et al., 2015). A DENV serotype can be identified through the detection of its RNA 

genome using reverse-transcription polymerase chain reaction (RT-PCR) (Tian et al., 

2022) or by its non-structural protein 1 (NS1) antigen (Prommool et al., 2021). DENV 

is considered a prototype to recognise and study the Flavivirus genus structure and 

replication cycle (Lescar et al., 2018). DENV genome is around 11 kb in length and 

has a long open reading frame (ORF). This ORF encodes a polyprotein that lies 

between two untranslated regions (UTR); the 5’-UTR and the 3’-UTR (Zeng et al., 

2018). 

Globally, it is estimated that there are about 284-528 million cases of dengue 

infections each year, of which around 24% of these cases require hospitalisation (Bhatt 

et al., 2013). Seventy per cent (70%) of the reported dengue cases and the estimated 

burden remain in Asia (Bhatt et al., 2013). In 2000, there were 505,430 dengue cases 
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reported globally to the World Health Organization (WHO). However, these numbers 

have manifested enormously in the last few years; for example, in 2019 alone, there 

were 5.2 million DENV infection cases (WHO, 2021). 

According to the Centers for Disease Control and Prevention (CDC), Malaysia 

is rated as a country with a continuous and frequent risk of dengue infections (CDC, 

2020a). In 2019, there were more than 124,777 cases and 174 mortality events in 

Malaysia (WHO, 2019). Up to June 2022, more than 17,497 cases were reported with 

ten related death cases. The latter numbers are considered an increment of 57.6% 

compared to the first six months of 2021, which had 11,100 cases and six related death 

incidents (WHO, 2022a). Figure 1.1 represents the number of reported DENV cases, 

DENV haemorrhagic fever (DHF), and the total number of related death cases between 

2000 and 2019, as published by the Department of Statistics of Malaysia (DOSM, 

2020). DENV infections create a substantial economic burden on the affected countries 

of around USD 950 million in Southeast Asian countries (Ng et al., 2022), where in 

2009/2010 Malaysia alone spent on average a total of USD 178 million (Arumugam, 

2023). 

DENV is considered an arbovirus. Arbovirus is an acronym for ARthropod-

BOrne VIRUS. This type of virus life cycle is very complex because it requires more 

than one host to complete it. This unique characteristic is the major challenge in 

monitoring the spread of arboviruses. Therefore, it is important to study their life cycle, 

prophylaxis, and treatment (Sukhralia et al., 2018). Three species of the mosquito 

genus Aedes are the main transmitting vectors. These are Aedes aegypti, Aedes 

polynesiensis, and Aedes albopictus, where A. aegypti is considered the main causative 

agent for the infection (Figure 1.2) (Malavige et al., 2004). A. aegypti first originated  
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Figure 1.1 Incidence rate of reported DENV infections, Dengue Haemorrhagic 

Fever (DHF) manifestations (per 100,000 population for both statistics), and the 

total related death cases reported between 2000 and 2019 according to the 

Department of Statistics of Malaysia (DOSM). 

 

in Africa. It is assumed that during the ages of slavery, combined with harsh 

conditions, A. aegypti was introduced into other parts of the world. That is where it 

consequently spread to tropical and subtropical districts around the globe (Kraemer et 

al., 2015). A. albopictus is a zoophilic species from Asia encompassing the Indian and 

Pacific Oceans islands. During the 1980s, it rapidly expanded its reach to Europe, the 

United States and Latin America. Nowadays, both A. aegypti and A. albopictus exist 

in nearly all Asian countries and the massive lands of the Americas (Kraemer et al., 

2015). Even though A. aegypti is considered a tropical mosquito, its distribution 

appears to be affected by climate changes in tepid regions of the globe (Jansen & 

Beebe, 2010). 
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(a) (b) 

Figure 1.2 Aedes aegypti, a dengue transmitting vector. (a) the 

male, and (b) the female. 
Adapted from (Sanjad, 2003) 
 

The mosquito vectors are anthropophilic, meaning they flourish close to human 

accommodations (Jansen & Beebe, 2010; Crawford et al., 2017). Mature females 

favourably feed on humans, whereas other vertebrate species constitute merely a minor 

fraction of their blood meals. Unlike many other mosquito species, A. aegypti is a day-

biting mosquito that feeds on numerous hosts in a single gonotrophic cycle. Females 

prefer to lay eggs in man-made or artificial containers like pot plant bases, flower 

vases, water tanks, or any other vessel usually found around or inside the houses. Eggs 

are placed on or close to the water surface in vessels. After embryonation, they can 

survive dehydration for up to one year (Jansen & Beebe, 2010). 

Infection with DENV can result in a variant of complications and symptoms. 

These complications mainly vary between asymptomatic dengue fever (DF), mild DF, 

dengue haemorrhagic fever (DHF), or dengue shock syndrome (DSS) (Khetarpal & 

Khanna, 2016). The severity of these complications generally varies according to the 

infecting serotype. In 2015, a meta-analysis reported that infection with DENV3 has 

the greatest severity as a primary infection among other serotypes in infected patients 

from Southeast Asia. However, DENV2 was found with the highest severity when it 

comes to secondary infections in Southeast Asian and non-Southeast Asian regions 
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(Soo et al., 2016). Moreover, it has been reported that DENV2 infections are 

associated with DHF and DSS (Vicente et al., 2016; Wang et al., 2020). Hence, 

DENV2 can be considered the most clinically severe serotype (Kyle & Harris, 2008). 

Secondary infections might manifest during primary infection of DENV. This 

manifestation comes as a result of a vulnerable immune system or an accessible route 

of entry for another pathogen which might be viral, bacterial, or mycotic (Manohar et 

al., 2020). 

DF usually resolves within five to seven days. It might vary between being 

asymptomatic to mild fever. Symptoms might include pyrexia, nausea, vomiting, 

cephalgia, arthralgia, myalgia, and rash (Kularatne, 2015; Khetarpal & Khanna, 2016; 

Stewart-Ibarra et al., 2018; CDC, 2020b). Children might suffer febrile seizures and 

delirium due to fever. Severe retro-orbital ache on eye movement or by applying some 

pressure to the eyeball is also usual (Kularatne, 2015). No direct or symptomatic 

treatment is usually provided (CDC, 2020b). Patients whom persist ill in spite of their 

temperature subsiding are more likely to progress to DHF (Malavige et al., 2004).  

DHF, on the other hand, is typically a result of secondary DENV infections. 

Nonetheless, it may follow primary infections on occasions, particularly in infants. 

DHF is characterised by the aforementioned symptoms of DF, in addition to epistaxis 

haemorrhage (gums bleeding, petechiae and ecchymosis, hematemesis, melaena, and 

menorrhagia in females), features of circulatory failure (hypotension, tachycardia, 

narrow pulse pressure, and poor capillary refill-time), pleural effusions, ascites, 

glomeruli injury and pericarditis (Malavige et al., 2004; Kularatne, 2015; Pagliari et 

al., 2016).  
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Additionally, DHF can be divided into three stages; febrile, leakage, and 

convalescent. The febrile stage starts with abrupt onset of intermittent pyrexia 

accompanied by rigours and facial flush. Epigastric distress, myalgia, vomiting, 

abdominal pain, sore throat, and convulsions are common. Hepatomegaly is perceived 

in nearly all patients, while splenomegaly might be perceived in some. Plasma leakage 

is usually characterised by tachycardia and hypotension. Intense plasma leakage could 

develop further signs of circulatory disturbance (Malavige et al., 2004; Malavige & 

Ogg, 2017). Insufficient or improper treatment often leads to an intense shock. In DHF, 

haemorrhage is not associated with depletion in thrombocyte count and could occur 

from any site in the patient’s body. The third stage in DHF, convalescence, is typically 

brief and uneventful. It is characterised by appetite return, bradycardia, petechial rash, 

erythema, islands of pallor, and itching (recovery rash) (Malavige et al., 2004; Muller 

et al., 2017). Other complications might manifest in worse conditions which might 

lead to DSS. These complications include but are not restricted to thrombocytopenia 

(<100×109 L-1), encephalopathy, encephalitis, hepatic failure, myocarditis, and 

disseminated intravascular coagulation (DIC) leading to immense haemorrhage 

(Malavige et al., 2004). 

1.2 Problem Statement 

Since DENV is an endemic viral infection caused by dengue virus (DENV), it 

is present in more than 120 countries around the world. The transmission of the disease 

is already high, but modern urbanisation throughout tropical regions such as Southeast 

Asia and Latin America has accelerated the spread of the disease. Each year, an 

estimated 390 million DENV infections occur around the world. Although DENV is 

responsible for up to 25,000 deaths annually worldwide (WHO, 2021), up to this day, 
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there is no treatment for dengue, and only one licensed vaccine is available in the 

market. Dengvaxia® is the only licensed vaccine approved to be used for children 9-

16 years old who are in areas at risk of DENV in 19 countries and have been DENV-

infected previously (Almas et al., 2022; WHO, 2022b). Furthermore, the enormous 

vector control efforts, which cost more than USD 178 million (in Malaysia) annually, 

were not able to stop its rapid emergence and global spread (Arumugam, 2023). 

Many researchers took the initiative across decades of hard work trying to 

discover a treatment for DENV infections. However, none of these has seen the light 

to be licensed and used clinically (Troost & Smit, 2020). Of the taken initiatives, 

peptides, crude extracts, phytochemicals, synthesised molecules, and repurposing of 

certain antivirals were reported to act on various targets of the DENV particulate, on 

certain host’s receptors to prevent the virus entry to the cells, or by improving the 

immune system of the hosts (Malabadi et al., 2011; Chew et al., 2017; Troost & Smit, 

2020; Wellekens et al., 2022). 

Among the targeted proteins in DENV is the NS2B/NS3 protease. This 

protease plays a crucial role in the virus life cycle that inhibiting it would prevent 

DENV replication and minimise symptoms and mortality rate, not to mention 

minimising the cost of health care systems (Bollati et al., 2010). Hence, this study 

investigates the potentials of certain theobromine derivatives which share a similar 

chemical scaffold with approved antiviral agents as inhibitors of the NS2B/NS3 

protease. It is hoped that this study will further contribute to the discovery and 

development of future potent NS2B/NS3 proteases, as well as anti-dengue 

therapeutics. 
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1.3 Study Objectives 

The overarching objective of this study is to develop and evaluate a series of 

novel and effective anti-DENV protease agents based on theobromine through a 

comprehensive approach. This can further be achieved as shown in the flowchart 

presented in Figure 1.3 and through the following defined goals: 

a. To design various theobromine conjugates which have higher affinities 

towards DENV protease assessed via molecular docking approach. 

b. To assess the dynamic evolution of theobromine derivatives in complex 

with NS2B/NS3pro using molecular dynamics and molecular mechanics 

energy calculations. 

c. To synthesise the best-evaluated candidates which are able to prove their 

theoretical activity against the target enzyme according to their affinity and 

the stability of the complex. 

d. To measure the in-vitro activity of the synthesised theobromine conjugates 

through their percentage of inhibition, half-maximal inhibitory 

concentration (IC50), and the mechanism of inhibition they offer towards 

the protease. 
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Figure 1.3 Flowchart of the conducted study. 

 
 



 

10 

CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Dengue Virus Structure and Replication Cycle 

DENV is a spherical enveloped virus characterised by a smooth surface and a 

diameter of around 500 Å (Burke & Monath, 2001). DENV envelope consists of an 

outer lipid bilayer which consists mainly of palmitoyloleoylphosphatidylcholine 

(POPC), dilinoleylphosphatidylcholine (DUPC), dipalmitoylphosphatidyl 

ethanolamine (DPPE), dioleoylphosphatidylserine (DOPS), palmitoylsphingomyelin 

with a choline headgroup (PPCS), palmitoylsphingomyelin with an ethanolamine 

headgroup (PPCE), and ceramide (Reddy & Sansom, 2016), and two structural 

proteins; the membrane (M) and the envelope (E) (Kuhn et al., 2002). The lipid bilayer 

is derived from the host during the virion assembly inside the infected cell’s cytoplasm 

(Reddy & Sansom, 2016). The M and E proteins are embedded in the lipid bilayer with 

stoichiometric amounts; 180 M and 180 E (Zhang et al., 2003). The envelope 

glycoprotein (E) lies as dimers at the surface of the virion and is responsible for binding 

and fusion with the host cell’s receptor. On the other hand, the M protein is mainly 

responsible for the conformational changes of the E protein during the process of 

maturation of the virion and the smooth appearance (Nasar et al., 2020). 

The most common receptors which DENV utilises to internalise inside the cells 

belong to the dendritic cells that include the human mannose-binding receptor (MR) 

(Miller et al., 2008), the dendritic cell-specific intercellular adhesion molecule-3-

grabbing non-integrin (DC-SIGN; CD209) (Wu et al., 2000), T-cell immunoglobulin 

and mucin-domain containing-3 and -4 (TIM3 and TIM4), langerins receptors, and the 

Fc portion of immunoglobulin (Ig)G (FcγR) (Boonnak et al., 2008; Begum et al., 

2019). 
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Underneath the DENV envelope comes the capsid, which consists of the 

structural capsid protein (C) arranged asymmetrically and not as ordered as the earlier 

proteins (Uno & Ross, 2018). Its main function is to form a nucleocapsid that embraces 

the viral ribonucleic acid (RNA) (Figure 2.1) (Christopher et al., 2003; Nasar et al., 

2020). 

 

Figure 2.1 An illustration of dengue virus structure showing the lipid bilayer, 

the structural proteins, and the positive RNA strand. 
Illustration was made using Adobe Illustrator. 

 

Flavivirus positive RNA genome is a 5’-capped RNA ((+)ssRNA). Upon 

infection, the virus gets internalised via receptor-bound endocytosis, creating an 

endosome within the cytoplasm of the host cell (Heinz & Allison, 2000). The acidic 

environment of the endosome disrupts the E protein leading to fusion with the 

endosome (Mukhopadhyay et al., 2005). Once the nucleocapsid is released into the 

cytoplasm, it dissociates, leaving the RNA, which would serve as a messenger-RNA 

(mRNA). The ORF migrates to the rough endoplasmic reticulum and is translated into 

a large polyprotein. This polyprotein is cleaved co- and post-translationally into ten 

proteins (Welsch et al., 2009). This cleavage is hosted by two proteases; the host furin-

type (or any other Golgi-localized proteases) and the viral serine protease embedded 

in the N-terminal domain of non-structural protein 3 (NS3pro), which requires non-
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structural protein 2b (NS2B) for its activity (Bollati et al., 2010). Upon cleavage, the 

N-terminus of the polyprotein yields the three structural proteins; E, membrane 

precursor (prM), and C, while the rest encodes seven non-structural (NS) proteins; 

NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5 (Figure 2.2) (Welsch et al., 2009; 

Bollati et al., 2010). DENV proteins’ functions are summarised in Table 2.1. 

The replication process begins when a complementary negative strand of the 

RNA ((-)ssRNA) that is created to serve as a template for the replication of the positive 

strand via an enzymatic process by NS5, NS3, other viral NS proteins, and some host 

factors. Upon replication, the newly created positive RNA strands participate in 

translating more viral proteins, or they form new nucleocapsids as they associate with 

C proteins. The newly formed nucleocapsids remain at the lumen of the endoplasmic 

reticulum, where they acquire their lipid bilayer in association with the structural 

proteins; E and prM. Next, proteolysis of prM takes place in the trans-Golgi network, 

which triggers rearrangement and dimerisation of E. These mature viral particles are 

released via an exocytosis mechanism to infect other cells and repeat the cycle (Figure 

2.2) (Mukhopadhyay et al., 2005; Murugesan & Manoharan, 2020). 
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Table 2.1 Dengue virus translated proteins and their functions. 

Protein Function Ref. 
Structural 

E a. Recognition and binding to the host cell. 
b. Involved in uncoating of virus by 
enabling fusion of viral and endosomal 
membranes. 
c. Neutralises antibodies. 

(Modis et al., 2004) 

prM/M prM: a. Drives the assembly of viruses. 
b. Acts as a chaperone for the folding of the 
E. 
M: forms ion channels. 

(Premkumar et al., 
2005; Zhang et al., 
2012) 

C a. RNA binding. 
b. Nucleocapsid formation. 

(Christopher et al., 
2003; Byk & 
Gamarnik, 2016) 

Non-structural 

NS1 a. Viral RNA replication. 
b. Can be used as a marker for early 
diagnosis. 
c. It activates macrophages, platelets, and 
mononuclear peripheral cells. 
d. Inhibits cellular autophagy during 
infection. 

(Flamand et al., 
1999; Kassim et 
al., 2011; 
Modhiran et al., 
2015) 

NS2A Viral replication and assembly. (Xie et al., 2013) 

NS2B Acts as a NS3-protease co-factor. (Falgout et al., 
1991) 

NS3 a. Serine protease cleaves viral polyprotein. 
b. Acts as an adenosine triphosphatase 
(ATPase), RNA triphosphatase (RTPase), 
and RNA helicase. 

(Xu et al., 2005; 
Luo et al., 2008b) 

NS4A a. Promotes membrane rearrangement. 
b. Inhibits cellular autophagy during 
infection. 

(Stern et al., 2013; 
Echavarria-
Consuegra et al., 
2019) 

   

NS4B a. Acts as a negative modulator of the NS3 
helicase function. 
b. Blocks IFN-α/β-induced signal 
transduction and helps virus to escape 
host’s innate immune response. 

(Nemésio et al., 
2012) 

NS5 a. Methyl transferase domain (MTase). 
b. RNA-dependent RNA polymerase 
(RdRp). 

(Yap Thai et al., 
2007; Liu et al., 
2010) 
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Figure 2.2 Flavivirus life cycle and the cleavage of the translated polyprotein 

into the structural (C; capsid, M; membrane, and E; envelope) and the non-structural 

proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). 
Illustration was made using Adobe Illustrator based on (Welsch et al., 2009). 
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2.2 DENV NS2B/NS3pro 

As aforementioned in Table 2.1, NS3 protein is a multifunctional protein that 

can act as a trypsin-like serine protease, ATPase, RTPase, and RNA helicase (Xu et 

al., 2005; Luo et al., 2008b). The N-terminus of NS3 (residues 1-180) is considered 

the protease domain, while the rest of the protein (residues 180-618; the C-terminus) 

functions as the RNA helicase. Like any other trypsin-like serine protease, NS3pro has 

a catalytic triad made of His51, Asp75, and Ser135 (Figure 2.3) (Bazan & Fletterick, 

1989; Erbel et al., 2006). NS3pro was proven to require a co-factor, NS2B, for its 

functionality (Yusof et al., 2000; Leung et al., 2001), where NS2B provides structural 

stability for NS3pro and permits protein folding for a successful proteolytic activity 

(Leung et al., 2001). NS2B has a hydrophilic central region, which behaves as a 

chaperone to stabilise the hydrophobic termini of NS3pro by surrounding it like a belt 

(Figure 2.3) (Tomar et al., 2017). Both domains, the NS3pro and NS2B, are connected 

through a Gly4-Ser-Gly4 linker (Leung et al., 2001; Luo et al., 2008a). This NS2B/NS3 

is responsible for the cleavage of multiple proteins at the junctions of C-prM, NS2A-

NS2B, NS2B-NS3, NS3-NS4A, and NS4B-NS5 (Tomar et al., 2017). Thus, making it 

a crucial enzyme complex for the proteolysis and cleavage activities of the translated 

polyprotein during the virus life cycle. Another part of the catalytic triad is the 

oxyanion hole. The oxyanion hole is a positively charged pocket formed by the NH 

groups of Gly133, Thr134, and Ser135 (Figure 2.4) (Hedstrom, 2002; Noble et al., 

2012). The role of the oxyanion hole is discussed further in the catalysis mechanism 

part (see Section 2.3). 
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Figure 2.3 A ribbon representation of DENV2 NS2B/NS3pro showing the 

NS3pro domain in blue, the NS2B co-factor in red, and the catalytic triad amino 

acid residues; His51, Asp75, and Ser135, as green-coloured carbons sticks and balls. 
Illustration was made using BIOVIA Discovery Studio. 

 

 

Figure 2.4 A ball and stick 3D representation of the catalytic triad amino acid 

residues; His51, Asp75, and Ser135 (green-coloured backbone atoms) and the 

oxyanion hole (red mesh sphere) formed by Gly133, Thr134 (cyan-coloured 

backbone atoms), and Ser135 residues. 
Illustration was made using BIOVIA Discovery Studio. 
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2.3 Catalytic Mechanism of NS2B/NS3pro 

DENV NS2B/NS3pro is a trypsin-like serine protease complex that is well-

studied and understood for its catalytic mechanism (Kraut, 1977; Warshel et al., 1989; 

Hedstrom, 2002; Radisky et al., 2006; Di Cera, 2009). In the case of Flavivirus, the 

catalytic mechanism relies on three amino acid residues, the catalytic triad, which 

includes His51, Asp75, and Ser135. Each residue of the catalytic triad has a defined 

role where Ser135 interacts with the carbonyl of the substrate, His51 has the ability to 

donate and accept protons throughout the catalytic process, and Asp75 shows the 

ability to accept protons as the final step of the cleavage (Hedstrom, 2002). 

The catalysis process starts with activating Ser135 residue via a general acid. 

This activation allows Ser135 to deprotonate, giving the H+ to His51. Once Ser135 is 

activated, an acylation reaction initiates as it interacts with the carbon of the carbonyl 

group at the peptide scissile region and disrupts the resonance by allowing the carbon 

of the carbonyl to form five transitional bonds. This transition state creates a 

tetrahedral intermediate which allows the amide bond to break where the C-terminus 

of the peptide is now free to leave. The C-terminal region receives a proton from His51, 

and His51 recompensates this proton by deprotonating Asp75. In the next step, a water 

molecule protonates, allowing a diacylation reaction by giving the carbonyl’s carbon 

a hydroxyl group (-OH) and the H+ to His51 after returning the proton it took from 

Asp75. This second transition state creates another tetrahedral intermediate that 

permits the cleavage of the peptide N-terminus (Figure 2.5) (Hedstrom, 2002; Radisky 

et al., 2006). 
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Figure 2.5 The catalytic mechanism of NS2B/NS3pro, starting with the activation of serine residue which interacts with the peptide carbonyl 

creating a transition state of a tetrahedral intermediate. This allows the breakage of the peptide bond, and the C-terminus (C) of the peptide 

leaves. Next, a water molecule gets ionised and a second transition state creates another tetrahedral intermediate. Finally, the N-terminus (N) of 

the cleaved peptide leaves. 
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The oxyanion hole activates the carbonyl of the scissile peptide bond. It allows 

it to interact with the NH’s of Gly133, Thr134, and Ser135 to stabilise the oxyanion 

(O-) of the peptide carbonyl during the transition state (Hedstrom, 2002; Radisky et 

al., 2006; Noble et al., 2012). It is noteworthy that even when the catalytic triad is 

disabled, a remaining activity of the protease is still there, which was attributed to the 

oxyanion hole’s contribution (Hedstrom, 2002). 

2.4 Substrate Specificity of NS2B/NS3pro 

The binding site of Flavivirus NS2B/NS3pro enzyme is divided into five sub-

pockets (S); S1’, S1, S2, S3, and S4 (Aleshin et al., 2007). This terminology was first 

introduced by Schechter and Berger (Schechter & Berger, 1967). These sub-pockets 

are located on both sides of the catalytic region and are labelled from the N- to C-

termini. These sub-pockets correspond to the positions (P) of the amino acid residues 

of the bound substrate denoted as P1’, P1, … etc. The numbering system starts from 

the scissile bond, where that substrate amino acid is referred to as P1, and the 

corresponding sub-pocket is S1 (Schechter & Berger, 1967). Each S on the protease 

accommodates one amino acid P of the substrate (McDonald, 1985). The cleavage 

point is set to lie between S1 and S1’, and the numbering system continues from that 

point onwards (Figure 2.6). 

It has been found that DENV NS2B/NS3pro tend to prefer dibasic residues 

(Arg-Arg, Arg-Lys, and Lys-Arg) at P1 and P2 of the bound substrate in order to 

achieve the catalytic motif (Niyomrattanakit et al., 2006), while it can tolerate bulky 

residues (e.g., Trp, Phe, or Tyr) at P1’ and P2’ (Shiryaev et al., 2007b) considering 
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Figure 2.6 A schematic representation of the numbering system introduced by 

Schechter and Berger of the protease sub-pockets (S) and the corresponding 

positions (P) of the bound substrates’ amino acid residues. 
Illustration was made using PerkinElmer ChemDraw Professional. 

 

that Ser and Gly are the preferred residues at P1’ (Li et al., 2005; Niyomrattanakit et 

al., 2006; Shiryaev et al., 2007a) and Arg at P2’ (Lin et al., 2016; Lin et al., 2017). 

However, P3 and P4 were found to be largely exposed to solvent as both corresponding 

sub-pockets are small in size (Aleshin et al., 2007). Studying the substrate preferences 

of the protease sub-pockets can help in the proper designing and synthesis of the 

enzyme inhibitors. 

2.5 Mechanisms of NS2B/NS3pro Inhibition 

Serine proteases and corresponding inhibitors have been studied thoroughly for 

their impact on coagulation, digestion, inflammation, wound healing, viral replication, 

and disease manifestation (Farady & Craik, 2010; Almonte & Sweatt, 2011). 

Proteolytic inhibitors of the proteases are meant to block their activity via a 

conformational change mechanism (Almonte & Sweatt, 2011). Inhibitors can mainly 

be classified into three main categories; competitive, irreversible, and allosteric 

(Farady & Craik, 2010). 
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Competitive inhibitors act in a lock-and-key fashion where they interact with 

the sub-pockets of the protease binding site. Their interaction is competent, not as strict 

as the specified substrate, and in a non-catalytic manner. These inhibitors are built to 

mimic the peptide-substrate sequence. They bind through an extended β-sheet with the 

enzyme in a way that resembles the substrate. Their scissile bond gets hydrolysed 

slowly, but no fragments are released, and the amide bond is re-ligated (Farady & 

Craik, 2010). On the other hand, irreversible inhibitors are candidates which require 

catalysis by the binding site of the enzyme. They interact with the active site’s sub-

pockets in a substrate-like manner, utilise the proteolytic activity of the enzyme to trap, 

and inhibit the enzyme activity. Alternatively, allosteric inhibitors bind to an exo-site 

of the protein. Allosteric or exo-sites are secondary binding sites which are distinct 

from the main binding pocket, and their interaction with an inhibitor can have a critical 

effect on the enzyme activity. The inhibition mechanism of the allosteric inhibitors is 

usually through affecting the surface area of protein-protein interaction and by altering 

the main site’s sub-pockets specificity towards the substrate amino acids, thus 

inhibiting its catalytic abilities (Farady & Craik, 2010). 

Up to date, four allosteric sites have been discovered for DENV NS2B/NS3pro 

(Figure 2.7). The first allosteric site is formed by Lys73, Lys74, Leu85, Glu86, Gly87, 

Glu88, Trp89, Thr120, Ile123, Ala125, Val 147, Asnl52, Val162, Ala164, Ala166, 

Asn167, Thr168, and Glu169 residues and is located at the back of the catalytic binding 

site and can be inhibited by curcumin, dabrafenib, idelalisib, and nintedanib (Lim et 

al., 2020a; Uday et al., 2021). The second allosteric active site at DENV 

NS2B/NS3pro is located at the side of the main pocket between the 120s loop and the 

150s loop. This allosteric site has been studied with a mutation of Ala125 to Cys and 

found to be inhibited by aldrithiol, 5,5’-dithiobis-(2-nitrobenzoic acid), and 
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biarylchloromethylketone (Yildiz et al., 2013). The third active site also lies on the 

back side of the main pocket of the protease, overlapping with some shared amino 

acids with the catalytic pocket. The third allosteric site is lined mainly by Met49, 

His51, Lys73, Lys74, Asp75, Leu76, Trp83, Thr120, Gly148, Leu149, Gly151, Ile165, 

Ala166, Asn167, and is inhibited by a pyazine derivative (Yao et al., 2019). The fourth 

and final discovered allosteric site lies at the other side of the catalytic pocket and is 

constituted mostly by the NS3 residues Lys15-Asp20 in loop, and Gly21-Arg24 in β-

strand, as well as the NS2B residues Leu54-Val59. This allosteric site of DENV 

protease was found to be inhibited by myricetin (Dang et al., 2022). 

 

Figure 2.7 An illustration representing DENV NS2B/NS3pro (grey ribbon), its 

catalytic binding pocket (yellow sphere), and the four discovered allosteric sites 1-

4 (red, green, blue, and orange spheres, respectively). 
Illustration was made using BIOVIA Discovery Studio. 

 

Although the main binding pocket of DENV NS2B/NS3pro utilises the 

polyprotein precursor for its catalytic activity, studies have also shown that it can 

catalyse the commercial tetrapeptide substrate Nle-Lys-Arg-Arg (norleucine-lysine-

arginine-arginine) (Ulanday et al., 2016). Hence, an aldehyde-based (-COH) inhibitor 

(Bz-Nle-Lys(P4)-Arg(P3)-Arg(P2)-H(P1)) was designed, which contains benzoyl (Bz) as a 
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protection group (Erbel et al., 2006). It has been found that Ser135 binds covalently 

with the aldehyde-carbonyl carbon. The resulting hydroxyl group interacts with 

NS3pro at His51, which creates a tetrahedral hemiacetal. P1 residue side chain forms 

a salt-bridge with Asp129 of NS3 and a hydrogen bond with the carbonyl of Phe130. 

P2 and P3, nonetheless, stabilise the β-hairpin of NS2B in a closed conformation by 

interacting with the carbonyls of Gly82 and Met84 of NS2B, respectively. Moreover, 

P2 and P3 also interact with Gly151 and Asn152 of NS3, respectively, through a single 

backbone interaction (Noble et al., 2012). 

2.6 Dengue Prophylactic Measures 

Vector control represents a principal method in controlling vector-borne 

diseases, i.e., DENV (Wilson et al., 2020). Vector control methods of Aedes sp. 

mosquitoes can be distinguished into three approaches which include environmental, 

biological, and chemical (Buhler et al., 2019). The environmental approach to control 

the spread of DENV is through waste management, the use of water containers’ covers, 

and the elimination of breeding spots (Buhler et al., 2019). On the other hand, 

biological measures include the use of Bti (Bacillus thuringiensis israelensis), which 

produces certain toxins that can kill the larval habits of insects and fungi in water 

containers while expressing no effects on other organisms. Other reported biological 

measures include the use of copepods (Mesocyclops sp.) and larvivorous fish (Poecilia 

reticulata and Gambusia affinis), where they feed on the larvae of the mosquito before 

they turn into adults (Walton, 2007; Horstick et al., 2017). 

In contrast, chemical methods are the most commonly used measures for vector 

control (Alkuriji et al., 2020). They include sprayable insecticides and fumigation 

through the application of synthetic pyrethroids, deltamethrin, S-bioallethrin, 
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piperonyl butoxide, pyriproxyfen, and permethrin. Temephos (an organophosphate 

larvicide) and malathion (an organophosphate insecticide) are other chemical agents 

which have been used to treat water and control the larval habits of the mosquito 

(Horstick et al., 2017). 

A greener approach for controlling the DENV vector is the Wolbachia-based 

strategy (Sim et al., 2020). Wolbachia sp. is a genus of Gram-negative bacteria that is 

naturally present in some invertebrates and can prevent RNA viruses from replication. 

Hence, no offspring can develop if an infected male Aedes mosquito fertilises an 

uninfected female. On the contrary, if an uninfected male fertilises an infected female, 

the offspring will be bearing Wolbachia, and the number of laid eggs will be less. This 

way, the Wolbachia strategy can offer a safer and more economical approach to 

controlling the spread of mosquito-borne diseases (Alkuriji et al., 2020). Similarly, 

green pesticides from the plant kingdom were seen to prove their efficacy against 

Aedes sp. and their larvae. These include extracts of Ocimum americanum (family 

Lamiaceae, leaf) (Murugan et al., 2007; Gbolade & Lockwood, 2008), Jatropha 

curcas (family Euphorbiaceae, leaf) (Njom, 2022), Citrus limon (family Rutaceae, 

fruit peel) (Gomes et al., 2019), Artocarpus blancoi (family Moraceae, leaf) (Pineda-

Cortel et al., 2019), Allium sativum (family Amaryllidaceae) (Jarial, 2001), in addition 

to some essential oils from ginger, oranges, lemongrass, rosemary, and thyme, among 

many others (Waliwitiya et al., 2009; Ery Agus et al., 2016; Maia et al., 2019; 

Kurniasih et al., 2021). 

2.7 Dengue Management 

Despite the aforementioned prophylactic measures, up to date, there is no 

definite effective antiviral treatment for DENV infections. Supportive care is the 




