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DINAMIK JANGKITAN RESPIRATORI BERSAMA KANAK-KANAK: 

BATUK KOKOL DAN RADANG PARU PARU 

ABSTRAK 

Pertusis atau batuk kokol ialah penyakit pernafasan yang dapat dicegah oleh 

vaksin yang menyerang manusia daripada semua peringkat umur, namun terdapat kes-

kes kebangkitan semula yang dilaporkan. Di peringkat global, penyakit ini sangat 

berjangkit dan memberi kesan buruk kepada bayi. Kesan batuk kokol bertambah buruk 

dengan adanya jangkitan virus seperti radang paru-paru. Oleh itu, pendekatan 

pemodelan matematik sangat mustahak untuk mengkaji tingkah laku penyakit ini dan 

seterusnya mencadangkan strategi kawalan. Dapat dilihat juga, kekurangan kajian dan 

literatur model matematik mengenai dinamik jangkitan pertusis dan radang paru paru 

telah memberi motivasi dalam kajian ini. Oleh itu, kajian ini bertujuan untuk 

mendapatkan persamaan model menggunakan sistem persamaan terbitan biasa tak 

linear untuk memahani dinamik penularan dan kawalan penyakit ini pada populasi 

bayi. Model ini seterusnya akan digunakan untuk menilai strategi intervensi untuk 

pengendalian penyakit. Model pertama yang dibangunkan adalah model umum yang 

menggambarkan dinamik penularan pertusis yang menggabungkan ruang imuniti 

berasal daripada ibu. Tingkah laku dinamik model asas dianalisis secara analitik dan 

berangka. Simulasi berangka akan dijalankan menggunakan perisian Mathematica, 

Maple, dan MATLAB. Nombor pembiakan asas bagi model yang dibangunkan 

seterusnya diperoleh dan tingkah lakunya juga dianalisis dengan pelbagai parameter. 

Keputusan berangka, ianya menunjukkan bahawa apabila parameter memalap 

meningkat, frekuensi apabila populasi mencapai kestabilan menjadi berbeza-beza. 

Walau bagaimanapun, populasi yang dijangkiti tidak pupus walaupun pada 
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keseimbangan. Sebagai tambahan, model ini juga ditambah baik untuk memasukkan 

pelbagai strategi pengendalian untuk memberikan penyelesaian bagi kebangkitan 

penyakit ini. Hasil dapatan kajian menunjukkan bahawa strategi yang menggabungkan 

pencegahan, vaksinasi, dan rawatan dalam memerangi penyebaran penyakit lebih 

efektif untuk memerangi penularan penyakit. Model kedua seterusnya 

mempertimbangkan dinamik penularan jangkitan bersama, iaitu gabungan batuk kokol 

dan radang paru-paru serta mengambil kira kekebalan sementara bagi bayi yang 

dijangkiti. Model kedua ini juga dianalisis secara kualitatif dan berangka serta 

ditambah baik dengan memasukkan lima strategi kawalan. Skema kawalan optimum 

akan diterapkan bagi penentuan keadaan yang diperlukan untuk  kawalan penyakit atau 

pembasmian optimum. Analisis kepekaan yang dijalankan juga akan menunjukkan 

parameter model yang paling sensitif terhadap strategi penularan serta kawalan 

penyakit yang diperlukan. Hasil dapatan kajian ini menunjukkan bahawa, aspek 

pencegahan (pengasingan dan kebersihan), vaksinasi beserta beberapa kawalan 

tertentu dapat mengekang penularan penyakit batuk kokol dan radang paru-paru dalam 

kalangan masyarakat khususnya kalangan bayi. Hal ini penting kerana jika penyakit 

tidak dikawal, ia akan memberi kesan kepada penularan jangkitan lain serta memberi 

beban kepada perkhidmatan kesihatan sedia ada. Kajian ini seterusnya dapat memberi 

input untuk menambah baik polisi kesihatan sedia ada dalam memerangi penyakit ini 

dan menjadikan masyarakat kita bebas daripada wabak batuk kokol serta radang paru-

paru. 
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DYNAMICS OF CO-INFECTIOUS CHILDHOOD RESPIRATORY 

DISEASES: PERTUSSIS AND PNEUMONIA  

ABSTRACT 

Pertussis is a vaccine-preventable respiratory disease that affects humans of all 

age groups, yet there are reported cases of resurgence. The disease is highly contagious 

and has posed detrimental effects on the lives of infants globally. The impact of 

pertussis worsened with the presence of viral infections such as pneumonia. Therefore, 

it is imperative to study the behavior of these diseases and suggest control strategies 

using a mathematical modeling approach. The study area and literature of 

mathematical models on pertussis and pneumonia co-infection dynamics is rather 

scanty. Therefore, this study is aimed at obtaining model equations using a system of 

nonlinear ordinary differential equations for a better understanding of the transmission 

dynamics and control of these diseases in the infant population. Further, the models 

are used to evaluate the intervention strategies for disease control. The first model is 

the general model describing the transmission dynamics of pertussis which 

incorporates a maternally derived immunity compartment. The dynamical behavior of 

the basic model is analyzed analytically and numerically. Numerical simulations were 

carried out using mathematical software. The basic reproduction number of the model 

is obtained and its behavior is analyzed by varying parameters. Numerically, the 

simulations indicate that when the waning parameter is increased, the frequency at 

which the population attains stability varies. However, the infected population does 

not go extinct even at equilibrium. In addition, the model is extended to incorporate 

various control strategies to proffer solutions to the resurgence of this vaccine-

preventable disease. The findings revealed that the strategy which adopts using both 



xx 

 

prevention, vaccination, and treatment in the fight against the spread of disease is more 

effective. The second model considers transmission dynamics of a pertussis-

pneumonia co-infection, taking into account the temporary immunity of infected 

infants. The model is analyzed qualitatively and numerically. Subsequently, the model 

is extended to incorporate five control strategies. The optimal control schemes to 

establish the necessary conditions for the optimality of the disease eradication or 

control are applied. Sensitivity analysis carried out on all parameters of the model 

revealed the most sensitive to the disease transmission and control strategies needed. 

It is revealed that a successful prevention effort (isolation and hygiene) against the co-

infection of the two diseases with vaccination and treatment will help control the 

spread of the disease. 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

There have been major advances in understanding the epidemiology of 

infectious diseases. However, studies have showed that an approximated 2 million 

children die from the disease in developing countries (Otieno et al., 2013). The 

emerging infectious diseases have become a critical burden on global economies 

because it constitutes most of the health issues globally. Conversely, emergence of 

these infectious diseases is due to socioeconomic, environmental, and ecological 

factors (Barreto et al., 2006). Globally, it is reported that there is the emergence of 

around 335 infectious diseases between 1940 and 2004 (Morens et al., 2004; Jones et 

al., 2008; Raslan et al., 2017), and these diseases in the regions have been a residue to 

untimely death. However, these diseases were estimated on the average to double the 

incidences (e.g., tuberculosis and HIV/AIDS) among others, maternal and perinatal 

conditions, as well as nutritional deficiencies (Cruz, 2007; Jones et al., 2008). 

The World Health Organization (WHO, 2015) estimated that about one-third 

of the annual deaths rate worldwide are attributed to diseases spread by infections. 

However, an acute respiratory tract infections such as pertussis, severe acute 

respiratory syndrome (SARS), pneumonia, gastrointestinal infections, and malaria 

cause mostly the illness and mortality worldwide (Church, 2004; Raslan et al., 2010). 

In a nutshell, the low-income individuals are the most at risk for developing these 

respiratory diseases (Cruz, 2007). 

This thesis deals with the mathematical modeling of childhood infectious 

disease; pertussis and pneumonia to be precise, where the dynamics of the disease 
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transmission is observed. The pertussis model is first studied by improving existing 

SIR model of pertussis to include the maternally derived immunity compartment (M), 

thus improved to suit the underlying purpose of the infant population. Further, the 

research is then extended to obtaining the optimal control of the developed 

mathematical model and thus choosing the appropriate control strategy to curtail or 

manage the spread/re-emergence of these diseases. In this chapter, an overview of 

respiratory disease is presented with emphasis on pertussis and pneumonia. Further, 

the research objectives, methodology, and structure of this thesis are outlined in this 

chapter. 

1.2 Respiratory Diseases 

In the respiratory diseases, there are advances in techniques and methods 

detected in sequencing microorganism in human system from the disease pattern as 

well as the environmental factors in the host-subject (Everard, 2016). The microbiome 

of humans consists of the microbiota (i.e., all organisms including bacteria, viruses, 

and fungi) existing in the body and the habitat they reside. These microbiomes which 

reside in the lungs and guts are very complex concerning the types and quantities of 

microbe present (Seetharam and Glass, 2019; Pichon et al., 2017). The sequencing 

technique revealed that the microbiome of the lungs is a diverse system that varies 

from the anterior nares to the distal airways, with different combinations of diverse 

species (Seetharam and Glass, 2019). Research has shown that the differences could 

be due to genetics, environmental factors, mucosal characteristics, immunity, and 

microbe-microbe interactions. Evidence suggests that the microbiome is responsible 

for the behavior of immunity responses, and influences the balance between health and 

disease (Hanada et al., 2018; Seetharam and Glass, 2019). In recent development, 
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technology is used to ameliorate the understanding of the epidemiology outbreaks for 

infectious disease and the evolution of an organism. These challenges include the 

sources of dietary components or antibiotics, and through the presence of organisms 

developed in humans or their habitat (Seetharam and Glass, 2019). 

Respiratory disease is one of the most frequent causes of ill health for both 

children and adults alike worldwide (Gouveia and Fletcher, 2000). Moreso, the disease 

is a type that affects the lungs caused by excessive tobacco smoking or being exposed 

to externalities associated with air pollution such as asbestos and radon (NCI, 2018). 

These diseases include among many others; asthma, chronic obstructive pulmonary 

disease (COPD), pneumonia, pulmonary fibrosis, pertussis, and lung cancer (NCI, 

2018). 

In this study, the childhood respiratory disease pertussis and pneumonia are 

considered. These are highly infectious respiratory diseases that have been in existence 

for decades but remain a great concern in the health sector, both developed and 

developing countries (Johnston et al., 1998; Pesco et al., 2014; Pesco et al., 2015; 

Tilahun et al., 2017; Tilahun et al., 2018; Domenech de Cellès et al., 2019). 

1.2.1 Pertussis 

Pertussis is an acute respiratory illness that exhibits cyclical outbreaks in the 

last century. It is a highly contagious respiratory disease that can affect individuals of 

any age (Edwards, 2005)1. However, infants less than one-year-old bear the largest 

disease burden (Fabricius et al., 2018). The patients mostly experienced complications 

such as seizures, apnea, encephalopathy, pneumonia, dietary problems, or even death. 

On the other hand, complications in adults’ patients result in chronic cough, sleep 

 
1 Note: in this study, it is observed that pertussis which is associated with coughing spasm and 

vomiting is also known as a 100-day cough.  
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disturbances, and restriction of activities (Kline et al., 2013; Edwards, 2005). Figure 

1.1 shows a diagram of the transmission of pertussis-causing bacteria. In the last two 

decades, there has been inflation in the incidence of the disease worldwide, with 

around 16 million cases occurring per year with approximately 200,000 deaths 

(Fabricius et al., 2018). 

 

Figure 1.1Diagram on the transmission of pertussis causing bacteria (Guiso, 2015) 

The disease is carried by a Gram-negative bacterium known as the Bordetella 

pertussis. The bacteria travel via respiratory droplets infecting human hosts (Mattoo 

et al., 2005; Koenig et al., 2019). Pertussis is preventable through immunization. The 

introduction of pertussis vaccines in the 1940s and coverage of children led to a 95% 

decrease in the disease. Unimmunized infants or partially immunized infants and 

young children are at high risk of developing severe pertussis and associated 

complications. The resurgence of pertussis is occurring throughout the world despite 

high rates of vaccination coverage (Warfel et al., 2012). It is observed that the 

complexity of this resurgence is a phenomenon that results from the number of cases 

and use of acellular pertussis vaccine (aPV) (Esposito et al., 2019). Figure 1.2 shows 

the overall burden of whooping cough across the world in 2015. 
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Figure 1.2 The overall burden of pertussis reported cases 2015 (Chartsbin, 2015) 

1.2.2 Pertussis Challenge and Prevention 

The immunity to pertussis that is acquired either from vaccination or natural 

infection is not permanent. Thus, the need for a more effective strategy on how to 

further prevent the pertussis endemic. Globally, the wide use of vaccine coverage of 

pertussis-containing vaccine which includes diphtheria-tetanus-whole-cell-pertussis 

(DTwP) and diphtheria-tetanus-acellular-pertussis (DTaP) is quite commendable in 

the high-income countries, however, pertussis incidence has still maintained its 

endemicity (Kilgore et al., 2016). This increasing incidence affects both young infants 

and also older age categories. However, there are different aPVs available, but which 

of them confers the most significant effect and prolonged protection is yet to be 

determined (Esposito et al., 2019). 

The strategy on the use of vaccination to pregnant women with pertussis-

containing vaccines has been in existence for several countries towards curtailing the 

effect of pertussis disease (Maertens et al., 2020). This strategy is to protect neonates 

with pertussis-specific maternal antibodies from mother to fetus before they are 
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vaccinated. Data on the implementation and safety of maternal immunization are 

reassuring (Barger-Kamate et al., 2016; Maertens et al., 2020). 

1.2.3 Pneumonia 

In pneumonia, an acute infection which disrupt the established microbiome 

may contribute to the development of bacterial pneumonia or asthma (Kim et al., 

2018). Most viral infections account for 45-75% of childhood community-acquired 

pneumonia. Furthermore, the morbidity in children and mortality considering the age 

is greatly pronounced in children under the age of five years old and are a leading 

cause of paediatric hospital admissions, particularly in developing countries 

(Seetharam and Glass, 2019). It contributes to over 2 million deaths among children. 

While deaths in developed countries are rare, it, however, remains a major cause of 

hospital admissions for both acute and chronic morbidity (Thomas and Spencer, 2011). 

Pneumonia is a respiratory disease whose main characteristic is the inflammatory 

condition of the lungs (Thomas and Spencer, 2011; Aston, 2017). The disease is 

triggered by micro-organisms which include, viruses, bacteria, and fungi (Otieno et 

al., 2013), thus pneumonia is described based on how the infection is contracted. The 

two most common type of pneumonia which are life threatening are the bacterial 

pneumonia (triggered by bacteria) and viral pneumonia (triggered by viruses) (WHO, 

2022). Although, differentiating between bacterial and viral pneumonia has been quite 

difficult, as no single test or combination of tests is sufficiently reliable for routine 

clinical use (Thomas and Spencer, 2011; Aston, 2017; WHO, 2022), the bacterial 

pneumonia is the most common cause of community acquired pneumonia. A 

bacterium known as Streptococcus pneumonia is however noticed to be the leading 

cause of pneumonia among the mentioned micro-organisms (Otieno et al., 2013; 

WHO, 2022). It could be contracted resulting from gasping of small droplets from 
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cough and sneezes that contain the pathogenic micro-organisms from an infected 

individual, and also when the micro-organisms which are present in the mouth, throat, 

or nose unwittingly enters the lungs (Lawi et al., 2013; Otieno et al., 2013; Tilahun, 

2018). The bacterial pneumonia can be treated with antibiotics unlike the viral 

pneumonia which can be treated using antiviral drugs (WHO, 2022). 

 

Figure 1.3 The main symptoms of infectious pneumonia (Häggström, 2014) 

Some of the most observed symptoms of pneumonia include cough, respiratory 

distress, difficulty in breathing, chest pain, persistent fever, muscle ache, loss of 

appetite, and lethargy (Rasmussen et al., 2005; Thomas and Spencer, 2011; Lawi et 

al., 2013; Aston, 2017;). The symptom of pneumonia is shown in Figure 1.3, where 

the presenting features range from the symptoms experienced within various parts of 

the body, i.e.; headaches, loss of appetite are experienced in the upper part of the body; 

cough, chest pain, respiratory distress are experienced within the (lungs) lower part 

and so on (Häggström, 2014; Ticona et al., 2021). Strategies for the prevention of 

pneumonia include; vaccination of high-risk individuals, environmental measures, and 

appropriate treatment of other health problems (Thomas and Spencer, 2011; Aston, 

2017). 
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1.2.4 Co-infection Interactions in Humans 

Different infectious agents may infect or colonize (Griffiths et al., 2011) as co-

infection involves a number of pathogens and could have contingent effects on the co-

infected host. There are innumerable types of pathogens that tend to infect humans. 

Among them are viruses, fungal parasites, bacteria, helminths and protozoa, which 

often co-exist in individuals. Improved comprehension of co-infection dynamics and 

prevalence is greatly needed particularly because co-infecting pathogens can interact 

either directly with one another or indirectly through the host resources or immune 

system (Clay et al., 2020; Cox, 2001; Glidden et al., 2021; Griffiths et al., 2011). In 

comparison to the infections by single pathogen species, the interaction in the 

coinfected hosts is likely to change the clinical progression as well as transmission, 

and the control of multiple infectious diseases (Birger et al., 2015; Griffiths et al., 

2011; Pinky and Dobrovolny, 2016). However, a simultaneous infection can occur 

even when there is no interaction between two agents, as in the case of infection by 

ocular strains of chlamydia and nasopharyngeal colonization by pneumonia. The 

dynamics of co-infection are vital because some antimicrobials used in treating one 

infection may affect the treatment of the other infection (Griffiths et al., 2011). 

1.3 Mathematical Modeling with Optimal Control and Control Strategy 

In real-world phenomena, mathematical modeling is one of the powerful tools 

to describe the dynamical behavior of different diseases (Khan et al., 2017). It gives a 

better understanding of the transmission of the disease. Mathematical models are 

studied either through the deterministic or stochastic modeling approach. The 

deterministic modeling approach integrates physical concepts that tend to allow the 

exact calculation of future events without the involvement of randomness (Renard et 
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al., 2013). On the other hand, the stochastic modeling approach which possesses some 

inherent randomness can handle uncertainties of biological processes, especially when 

the population is small or early stages of an epidemic (Renard et al., 2013; Martins, 

2019). Note that, deterministic and stochastic models should not be seen as opposing 

strategies, but rather as complementary approaches (Britton, 2010; Martins, 2019). In 

this research, the deterministic modeling approach is used, because deterministic 

models are straightforward. Moreover, a good number of researches conducted on 

epidemiological infectious diseases used the deterministic approach (Tilahun et al., 

2018; Otieno et al., 2013; Khan et al., 2017). Mathematical models infused in 

epidemiological research are incredible in studying the dynamics of disease control 

and finding the threshold parameters (Otieno et al., 2013). However, theories of 

mathematical control provide the background which delineates the design of a control 

system and its analysis. The theories are used to study the disease behavior in an 

attempt to achieve the desired objective and determine if the disease would persist or 

not. Studying the mathematical model of infectious disease offers an information into 

the disease behavior and also adequate control measures while the epidemiological 

data and economic costing of controlling the infectious disease provide necessary 

elements in evaluating the relevance of intervention programs (Hugo et al., 2017). The 

optimal control theory will be used to model the elimination/eradication or possibly 

reduce the transmission of the co-infectious disease in children. The optimal control 

problem will be deduced and Pontryagin’s Maximum Principle is applied. The control 

strategy is thereby defined based on the local sensitivity analysis deduced from the 

optimal control model and attention is focused on the appropriate control variable. 
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1.4 Motivation 

The study is been motivated by the fact that there is a gap in the contemporary 

literature contingent on pertussis (whooping cough) in infants. The general approach 

in explaining the epidemic of whooping cough has been unsuccessful (Nguyen and 

Rohani, 2007; Saso et al., 2021), thus the need to further investigate the dynamics of 

pertussis disease. Similarly, research on why the waning of vaccine immunity occurs 

is very scanty noting that with waning of vaccine immunity, infants are at higher risk 

of contracting life-threatening diseases (Hu et al., 2014; Thisyakorn et al., 2019), this 

has led to about 16 million cases of mortality worldwide. Furthermore, complications 

of pertussis if not properly managed in infants can lead to pneumonia, which increases 

the chances of death. Conversely, the nexus between the severity of emerging cases of 

pertussis have been linked to its co-infection with pneumonia or other respiratory 

diseases (such as influenza) which the literature had overlooked (Muloiwa, 2020), 

therefore an investigation on the co-infection of pertussis with pneumonia is a 

relatively important study. 

In addition, considering the motivation highlighted above, even with the use of 

vaccination as a control measure, the resurgence of pertussis is yet alarming as 

observed by Campbell et al., (2015) and Esposito et al., (2019). Therefore, a 

deterministic model is developed in this thesis to study step-by-step the transmission 

dynamics of the disease. The novelty of this study stalks on the introduction of the 

maternally-derived immunity into the susceptible-infected-recovered (SIR) model as 

maternally-derived immunity-SIR (MSIR), and a response to the reality checks and 

objectives of the study. 
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1.5 Problem Statement 

The respiratory diseases; pertussis and pneumonia, have posed a detrimental effect 

on the lives of infants. Thus, this study focuses on the problems associated with the 

negative impact of the disease which is relatively diverse as presented in the earlier 

sections of this chapter. The questions are then: 

1. What is the effect of maternally derived immunity infants on the dynamics of the 

model for the infant population? 

2. How does the co-dynamics of the pertussis model by dual infection with 

pneumonia affect the infant population? 

3. What are the effects of control measures for these diseases? 

4. What is the cost implication of such control? 

1.6 Research Objectives 

Accordingly, in relation to the problem statement, the objectives of the research 

are: 

1. To improve on an SIR pertussis mathematical model to fit the infant population 

and analyze the model for a better understanding of its dynamics. 

2. To develop and study a deterministic mathematical model of co-infectious disease 

transmission (pertussis and pneumonia). 

3. To analyze the numerical simulations of both models considering the maternally-

derived immunity infants.  

4. To develop an optimal control in the infant population and suggest a more suitable 

control strategy to eliminate or further reduce the transmission of the disease. 
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1.7 Scope of Study 

The study intended to measure the dynamics of pertussis disease and also its co-

infection with pneumonia disease. The scope of this study is limited to only infants 

that are susceptible to pertussis contingent, and are prone to other childhood 

respiratory diseases such as pneumonia. Considering these infants with maternally 

derived immunity, we utilized the nonlinear differential equations to explore the 

dynamics of these diseases. However, the validation process is a very significant part 

of the model development process when the model development phases are completed 

using real data. This study does not consider validation of the model because the data 

used were obtained from existing literature and not specific to a particular region, thus 

inadequate access to real data. 

1.8 Methodology 

An extensive investigation of nonlinear problems requires tools that provide 

quantitative and theoretical information on nonlinear behavior. In this research work, 

the mathematical formulation of the differential equations is developed using a 

deterministic modeling approach. The dynamical analysis of the compartmental MSIR 

model is studied. The MSIR model comprises of the maternally-derived immune (M), 

susceptible (S), infected (I), and recovered (R) classes respectively. Qualitative 

properties of the models ranging from the basic properties of the models, the equilibria, 

condition of stability, and existence of optimal control profiles with various inferences 

of these properties are presented. The equilibrium state of both infection-free and 

endemic states of the models is obtained. Thereafter basic reproduction number which 

is a threshold quantity is obtained using the next generation method. The local stability 

analysis of the model is obtained using both Jacobian and Routh-Hurwitz methods. 
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Furthermore, the global stability behavior of the models for both the pertussis-only 

model and co-infection model is determined using a suitable Lyapunov function 

method. This in turn gives more explanation on the behavior of the nonlinear systems. 

With the help of Pontryagin’s Maximum Principle, the optimal control problem of the 

system is deduced by calculating a piecewise continuous control and the related state 

variables to maximize the objective functional. Thereafter, the best control strategy is 

observed and applied. Numerical simulations are carried out on the system of 

differential equations using computer-friendly software packages which include 

Mathematica, Maple, and MATLAB for qualitative results. 

1.9 Outline of Thesis 

The thesis is structured into eight chapters with the inclusion of this preliminary 

chapter. Chapter 1 which is the introduction provides an extensive discussion on the 

research background where basic knowledge of respiratory diseases is discussed. The 

motivation of the research, problem statement, research objectives, and the 

methodology of the research are all discussed in this chapter. Chapter 2 contains the 

basic mathematical concepts where some of the mathematical tools used in the thesis 

are discussed. Chapter 3 presents the review of the mathematical dynamics of 

pertussis, pneumonia, and co-infectious diseases. In Chapter 4, the dynamics of the 

pertussis model with maternally derived immunity are studied. This is where the 

equilibrium state, stability analysis for local and global stability, as well as the analysis 

of the basic reproduction number of the nonlinear model are determined. The effect of 

optimal control strategy on the pertussis model is investigated in Chapter 5 to verify 

which control strategy is best for curtailing or eradicating the endemicity of the 

disease. Chapter 6 presents the dynamics of pertussis and pneumonia co-infectious 
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diseases. This chapter gives a detailed analysis of the interaction and behavior of the 

co-infectious diseases. The effect of control strategies on co-infectious diseases is 

studied in Chapter 7. Finally, in Chapter 8, the conclusion of the research and 

suggestions on possible future work are highlighted. Figure 1.4 gives a schematic 

representation of the flow chart of the study. 
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Figure 1.4  Study flow chart 

 



16 

 

CHAPTER 2 

MATHEMATICAL BACKGROUND 

2.1 Introduction 

The mathematical background in this chapter will serve as a foundation for the 

main work that will be reported later. Dynamical systems developed during the 

mathematical model formulation are critically analyzed. These models are mostly 

designed using either ordinary differential equations (ODEs), partial differential 

equations (PDEs), delay differential equations (DDEs), or stochastic equations (Di 

Liddo, 2016). Especially, in this thesis, the study focuses on the system of nonlinear 

ODEs. Several mathematical concepts, definitions, and theories are discussed in this 

chapter which is required for the proper understanding of the dynamics of the models 

considered in this thesis. The first section begins with highlights on linear and 

nonlinear systems of a differential equation, and autonomous and nonautonomous 

differential equations. Thereafter, the general concept of a dynamical system is 

presented. Subsequent sections delineate various approaches (equilibrium point, 

stability, Jacobian, etc.) used in exploring the dynamical behavior of the system.  

2.2 Basic Notation 

In this section, the definition of some basic terms is given which include; linear and 

nonlinear systems of ODEs and then autonomous and nonautonomous differential 

equations.  
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2.2.1 Linear and Nonlinear Systems of Ordinary Differential Equations 

A basic classification of differential equations is whether they are linear or nonlinear. 

Consider the linear system of ODEs 
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where Ate  is an m n  matrix defined by its Taylors series (Perko, 2001). Consider 

also the nonlinear system of differential equation 
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where f is a given function such that, : nf E →  and E  is an open subset of n . 

With certain conditions on ,f  the nonlinear system (2.2) has a unique solution through 

each point 0x E  defined on a maximal interval of existence ( , )a b  . However, it 

is not feasible to solve the nonlinear system, because so much of its qualitative 

information about the local behavior of the solution is needed (Perko, 2001). 
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In general, an nth-order ODE can be expressed as; 

, , ,..., 0
n
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dy d y
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dx dx

 
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 
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where, f  is a linear function of the variables , , ,..., n nx y dy dx d y dx . An nth-order 

ODE is linear if it can be written in the form 
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with 0 ( ),..., ( ), ( )na x a x g x  are functions of x . Any equation that is not of the form 

(2.3) is a nonlinear ODE (Boyce and DiPrima, 2001; Allen, 2007; Roberts, 2010; 

Teschl, 2012). For illustration, an example is given for both linear and nonlinear ODEs 

respectively, 

2
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2 ( ) ( )

d y dy
y t x t

dt dt
− + =  (linear), 

2

2
sin( ) sin

d y
t y t

dt
+ + =  (nonlinear). 

Most physical phenomena cannot simply be represented adequately by linear 

equations, thus to study these phenomena, it is essential to deal with nonlinear 

equations. Nevertheless, the process of approximating a nonlinear equation by a linear 

one is called linearization and it is a valuable way to deal with nonlinear equations 

(Boyce and DiPrima, 2001). 

2.2.2 Autonomous and Nonautonomous Differential Equations 

A system of differential equations that does not explicitly depend on time t  is referred 

to as an autonomous differential equation. That is, the independent variable does not 

appear explicitly. An example is seen in the form 
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( , ),

( , ),

dx
F x y

dt

dy
G x y

dt

=

=

            ( )2.4  

where it is assumed that the functions F  and G  are continuous and have partial 

derivatives in some domain D  of the planexy − . Observe that the functions F and 

G  do not depend on the independent variable t , but on the dependent variables x  and 

.y  Given the system (2.1), if one or more of the elements of the coefficient matrix A  

is a function of the independent variable t , then the system becomes nonautonomous. 

For example, when (2.4) is written in the form  

( , , ),

( , , ),

dx
F t x y

dt

dy
G t x y

dt

=

=

 

then the system becomes a nonautonomous system of the differential equation (Boyce 

and DiPrima, 2001; Allen, 2007). These system of differential equations can be used 

in real life to describe important fields ranging from ecology e.g., mathematical models 

such as population expansion; medicine e.g., disease spread and calculate movements 

of items like the simple pendulum. They also exhibit useful properties: i.e., even when 

its exact solution cannot be found, a lot about their behavior can be predicted by 

looking at the equilibrium solutions and their stability to the phase plane and many 

more. (Boyce and DiPrima, 2001). 

2.3 Dynamical Systems 

A dynamical system is that aspect of mathematics, devoted to the study of systems 

governed by a consistent set of laws over time, such as difference and differential 

equations. It gives a functional description of the solution of a physical problem or a 
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mathematical model describing the physical system (Perko, 2001). The emphasis of 

the dynamical system is the understanding of geometrical properties of trajectories and 

long-time behavior. Dynamical systems can model a wide range of behavior such as 

disease spread in a population, the process that regulates electronic circuits, and 

heartbeats (Arizona, 2019). In general, dynamical systems are initial-value problems 

governed by difference and differential equations. A dynamical system is given in a 

compact form  

( ).
dx

F x
dt

=             ( )2.5  

In the subsequent subsection, equilibrium points, stability, and various techniques used 

to determine the stability of differential equations are discussed. 

2.3.1 Equilibrium, Stability, and Linearization of Autonomous Systems 

The study of equilibria plays an important role in ODEs and their application. An 

equilibrium point must however satisfy certain stability criteria for the system to be 

physically significant. Mathematical models which are also known as dynamical 

systems can be expressed in the form (2.5) where, 
nx  is a vector of the state 

variable of the system, and F  a nonlinear function. (Perko, 2001). 

Definition 2.1: Equilibrium point  

The state of equilibrium also referred to as critical point, fixed point, steady-state is 

the state of keeping the system still in the absence of external interference. If there is 

a point 
*x , for any time t  greater than 0t  such that 

*
*

0( , ) 0, [ , )
dx

F x t t t
dt

= =    . 
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Then it is referred to as an equilibrium point. Thus, a model written in the form (2.5) 

for any point 
*x  such that *( ) 0F x =  is an equilibrium point (Allen, 2007; Kong, 

2014). 

 

It is often important to know when a solution is stable, i.e., whether it persists 

essentially on the infinite interval [0, )  under small changes in its initial state. An 

equilibrium point 
*x  is  

• Stable if 0,  ( ) 0       such that * *(0) (0) ,  0x x x x t −   −    , 

otherwise unstable 

• Asymptotically stable if it is stable and   can be chosen so that 

* *(0) lim ( )
t

x x x t x
→

−   = . 

2.3.2 Local Stability Analysis of Equilibrium Points 

In mathematical modeling, it is noteworthy to distinguish the behavior of a dynamical 

system close to an equilibrium point. Knowing whether or not future advancements of 

the system will remain close to the equilibrium point if initial conditions are close to 

the equilibrium is important. The local stability analysis is carried out to understand 

this behavior. Further, there are various approaches used in analyzing the stability of 

given system differential equations. In this thesis, for instance, the Lyapunov indirect 

method, Routh-Hurwitz criteria and Jacobian method are employed. These attempts 

establish the properties of equilibrium points by studying the behavior of the linearized 

system at that point. 

2.3.2(a)   Stability in the Sense of Lyapunov 

Given an ODE  
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dx

G x x
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where   is an open connected subset of 
n

 and G  is a locally Lipschitz continuous 

map from  to n . Let ( )tG x  be that solution of (2.6) satisfying ( ) ,  .tG x x x=    

An equilibrium point is a state *x   satisfying *( ) 0G x = . Corresponding to all 

equilibrium point 
*x , it has a steady-state solution * *( )G x x=  of (2.6). 

Equation (2.6) is locally stable at *x , if for all 0  , there exists a positive real 

number   such that for all x  with 
* ,x x −   the solution ( )tG x  is defined for all 

0t   and satisfies 
*( )tG x x −   for all 0t  . When the system (2.6) is not 

Lyapunov stable at *x (i.e. starts and stays near 
*x ), then *x  is an unstable equilibrium 

for the system (2.6) (Iggidr, 2004; Li et al., 2018). Similarly, an equilibrium point *x  

in (2.6) is locally asymptotically stable if it is locally stable and all the solutions 

established around *x tends towards *x  as t → . That is  0   such that  

* *lim ( )
t

x x x t x
→

−   =  

2.3.2(b)   The Routh-Hurwitz Criteria  

In studying the dynamics of a nonlinear system of a differential equation, the Routh-

Hurwitz criteria are used to establish the asymptotic stability of an equilibrium point 

(Allen, 2007). These criteria can be used conveniently to analyze the stability of low-

order systems. The computational complexity grows significantly with the increase of 

the order (Allen, 2007). Thus, it may be preferable to use other criteria such as the 

Nyquist stability criterion (Sun et al., 2018). The Routh-Hurwitz criteria provide the 

necessary and sufficient conditions for all roots of the characteristic polynomial to 

contain negative real parts, thus, necessitating asymptotic stability.  
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Theorem 2.1: Routh-Hurwitz criteria (Allen, 2007; Wu and Hu, 2021) 

Consider the polynomial, 

1

1 1( ) ...n n

n nP a a a   −

−= + + + + ,        ( )2.7  

where the coefficients ia  are real constants and 1,...,i n= , defining n-Hurwitz 

matrices using the coefficient ia  of the characteristic polynomial: 

1 1( ),H a=  

1

2

3 2

1a
H

a a

 
=  
 

, 

1

3 3 2 1

5 4 3

1 0a

H a a a

a a a

 
 

=  
 
 

, 

1

3 2 1

4

5 4 3 2

7 6 5 4

1 0 0

0

a

a a a
H

a a a a

a a a a

 
 
 =
 
 
 

, 

1

3 2 1

5 5 4 3 2 1

7 6 5 4 3

9 8 7 6 5

1 0 0 0

1 0

a

a a a

H a a a a a

a a a a a

a a a a a

 
 
 
 =
 
 
 
 

, 

and  

1

3 2 1

5 4 3 2

2 1 2 2 2 3 2 4

1 0 0 ... 0

1 ... 0

... 0

. . . . ... .

. . . . ... .

. . . . ... .

...

n

n n n n n

a

a a a

a a a a

H

a a a a a− − − −

 
 
 
 
 

=  
 
 
 
 
 

, 
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where, 0ja =  if j n . All roots of the polynomial ( )P   are negative or have 

negative real part if and only if the determinants of all Hurwitz matrices are positive, 

i.e., det 0,   1,2,...,jH j n = .  

 

For example, when 2n = , the Routh-Hurwitz criteria simplify to 1 1det 0H a=   and  

1

2 1 2

2

1
det det 0,

0

a
H a a

a

 
= =  

 
 

or 1 0a   and 2 0a  . Similarly, for the polynomials of degree 3,  4n =  and 5  the 

Routh-Hurwitz criteria are summarized as follows: 

1 3 1 2 33: 0,  0 and n a a a a a=    , 

2 2

1 3 4 1 2 3 3 1 44 : 0,  0,  0 and n a a a a a a a a a=     +

 

2 2

1 2 3 3 1 4

2 2 2 2

1 4 5 1 2 3 3 1 4 5 1 2 3 1 5

5 : 0,  1,...,5,  ,  and

( - )( a ) ( ) .

in a i a a a a a a

a a a a a a a a a a a a a a

=  =  +

− −  − +

 

2.3.2(c)   The Jacobian  

In nonlinear systems, it is typical not to have an analytical solution. Thus, systems of 

such nature are mostly linearized around their steady state (Allen, 2007). The 

analytical solution of such an approximate linear system approaches the behavior of 

the original system closely, provided it remains around an equilibrium point. The 

Jacobian is a method that can be used to linearly approximate a nonlinear system 

around the fixed point such that the linear stability holds (Allen, 2007). Consider a 

general system of two differential equations in (2.4) with an equilibrium point at 

* *( , )x y , satisfying 
* *( , ) 0F x y =  and 

* *( , ) 0G x y = . The local stability of the 

equilibrium for the system (2.4) is determined by the eigenvalues of the Jacobian 

matrix. The linearized system about the equilibrium 
* *( , )x y  is given by (Allen, 2007) 


