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PENYELESAIAN BERANGKA BAGI PERSAMAAN PEMBEZAAN

PECAHAN MASA SUB-RESAPAN DUA DIMENSI

ABSTRAK

Dalam beberapa dekad kebelakangan ini, persamaan pembezaan pecahan (per-

samaan pembezaan yang melibatkan peringkat rambang) telah menjana kepopularitian

dalam bidang sains dan kejuruteraan. Ini kerana persamaan sedemikian dapat memo-

delkan dengan baik permasalahan khususnya dalam bidang mekanik bendalir, fizik,

sains biologi, kimia, hidrologi dan kewangan kerana ia boleh mewakili sistem dengan

memori dengan baik. Walau bagaimanapun, kebanyakan persamaan pembezaan pe

cahan tidak dapat diselesaikan dengan teknik analitikal tepat. Dengan itu, anggaran ka-

edah analitikal dan berangka diperlukan dalam menyelesaikan persamaan pembezaan

pecahan ini. Objektif utama tesis ini adalah untuk membangunkan, menganalisis dan

menggunakan kaedah berangka berdasarkan kaedah beza terhingga untuk menyelesik-

an persamaan pembezaan separa pecahan masa dua dimensi. Kaedah beza terhingga

seperti beza terhingga tersirat, beza terhingga jelas dan kaedah Crank-Nicolson bagi

penyelesaian persamaan pembezaan pecahan masa sub-resapan tak homogen dua di

mensi dibangunkan. Di samping itu, kaedah padat tersirat, kaedah padat yang jelas dan

kaedah padat Crank-Nicolson bagi persamaan pembezaan pecahan masa sub-resapan

juga disiasat. Skema beza tersirat juga diubahsuai dan digunakan untuk persamaan

pembezaan pecahan masa sub-resapan ganjil melibatkan dua kali pembezaan pecahan

masa dan masalah Rayleigh-Stokes bagi pemanasan cecair gred kedua dalam pembe-

xii

zaan pecahan. Selanjutnya, untuk membuktikan keberkesanan bagi cadangan skema



tersirat yang diubahsuai tersebut, teknik ini akan diaplikasi pada persamaan diubahsu-

ai pecahan sub-resapan ganjil peringkat pembolehubah dan masalah Rayleigh-Stokes

bagi pemanasan cecair gred kedua dalam pembezaan pecahan peringkat pembolehu

bah. Kestabilan dan penumpuan bagi skema-skema yang dicadangkan akan dianalisis

melalui kaedah kestabilan von-Neumann. Eksperimen berangka dijalankan dan kepu-

tusan eksperimen ini menunjukkan skema-skema yang dicadangkan itu menunjukkan

prestasi yang sangat baik.

xiii



NUMERICAL SOLUTIONS FOR TWO DIMENSIONAL

TLME-FRACTIONAL DIFFERENTIAL SUB-DIFFUSION EQUATION

ABSTRACT

In the past several decades, fractional differential equations (differential equa

tion involving arbitrary order derivatives) have acquired much popularity in the area

of science and engineering. This is because such equations can better model certain

problems of fluid mechanics, physics, biological science, chemistry, hydrology and

finance, amongst others, due to the fact that it can better represent system with mem

ory. However, most fractional differential equations cannot be solved by exact ana

lytical techniques. Thus, approximate analytical and numerical methods are required

in the solution of such fractional differential equations. The main objectives of this

thesis is to develop, analyze and apply numerical methods based on the finite differ

ence approximations for solving the two-dimensional time fractional partial differen

tial equation. Finite difference methods such as implicit finite difference, explicit finite

difference and Crank-Nicolson methods for the solution of two-dimensional time frac

tional inhomogeneous sub-diffusion equation are constructed. In addition, compact

implicit, compact explicit and compact Crank-Nicolson methods for time fractional

sub-diffusion equation are also investigated. An implicit difference scheme is also

modified and applied to modified fractional anomalous sub-diffusion equation involv

ing two times fractional derivatives and Rayleigh-Stokes problem for a heated general

ized second grade fluid with fractional derivative. Further, to establish the effectiveness

of the proposed modified implicit scheme, the scheme is applied to modified fractional

xiv



variable order anomalous sub-diffusion equation and Rayleigh-Stokes problem for a

heated generalized second grade fluid with variable order fractional derivative. The

stability and convergence of the proposed numerical schemes are analyzed by the von-

Neumann stability method. Numerical experiments are conducted, which shows that

the finite difference schemes are easy to implement and the results indicate good per

formance of the proposed schemes.
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CHAPTER 1

INTRODUCTION

Real life phenomena are modelled in different ways depending on the phenomena

at hand. Some of these phenomena can be modelled by partial differential equations

and some by ordinary differential equations. Recently fractional partial differential

equation have been developed from classical partial differential equation by replac

ing the fractional derivative of order a (in the Riemann-Liouville or Caputo sense) to

model phenomena which are not adequately modelled by partial differential equations

(Zhuang and Liu, 2007). The focus of this thesis is the study of numerical methods to

find the solution of fractional differential equations.

The concept of fractional calculus is as old as classical calculus (integer order inte-

century the discussion between L’Hospital and Leibniz was believed to be the first dis

cussion about fractional calculus. Many famous mathematicians worked on this and

made contributions, a list of mathematicians includes Laplace, Fourier, Abel, Lion

ville, Riemann, Giinwald, Letnikov, Heaviside, Levy, Riesz and Erdelyi (Yang, 2010).

of fractional order integrals and derivatives plays an important role in the solution of

certain chemical problems. These chemical problems relate to Fick’s law of diffusion.

Since then there have been many interesting applications of non integer order integrals

and derivative operators and rapid theoretical development.

Many researchers have written books on fractional calculus and applications. These

1

grals and derivatives). According to Miller and Ross (1993), at the end of seventeenth

More recent attention in this field started in 1968 when it was realized that the use



include Oldham and Spanier (1974), Samko et al. (1993), and Miller and Ross (1993).

The most famous book in the field of fractional calculus is Podlubny (1999) which

explain the fundamental theory of fractional calculus, applications and their solution.

The book of Zaslavsky (2005), Kilbas et al. (2006), Sabatier et al. (2007), and numer

ical techniques for fractional ordinary differential and FPDEs have been discussed in

Li and Zeng (2015).

Fractional differential equations provide a powerful tool for the description of memory

and hereditary properties of different substances (Khan and Faraz, 2011). There has

been increased research studies conducted on fractional differential equations over the

last two decades or so with the tempo rising over the last few years. A cursory exam

ination of relevant databases can easily verify this. For example in 2015 there were

1090 publications in scopus, 1216 in 2016, 1516 in 2017, and 1639 in 2018.

One particular fractional differential equation which has attracted much interest due to

numerous important applications is the fractional diffusion equations (FDE). It has the

form

0D“n(x,r) = Aw(x,r), (1.1)

where D represent the differential operator, 0 and t are intervals of integration, A is

the Laplace operator and a is positive real number. If a 1, we have anomalous

super diffusion or super diffusion for short. This is the case when the diffusion is

enhanced due to active transport process (Caspi et al., 2000). If 0 < a 1, then we

have anomalous sub-diffusion or sub-diffusion for short. This is the case when we have

crowded system situation or increasing in the concentration of particles (Weiss et al.,

2004). If a = 1, then the classical diffusion is obtained (Henry and Weame, 2000;

2



Mainardi and Pagnini, 2007);

oDf«(x,t) = Aw(x,r). (1.2)

The advantage of the FDE is that it can better represent super diffusion and sub

diffusion than the classical diffusion equation.

For instance, in hydrology the trapping interval times of contaminants in groundwater

and in biology, the diffusion of proteins across the cell membranes can be explained by

sub-diffusion behaviour more accurately than the classical diffusion. A super-diffusive

process is a process in which the mean-squared displacement grows faster than in

normal-diffusion (Klafter and Sokolov, 2005). During a continuous time random walk

process, the range of jumps and the duration between two consecutive jumps are as

sumed by different probability density functions which leads to different fractional

models such as fractional heat, kinetic, advection-dispersion, Fokker-Plank, Riesz ki

netic models (Angulo et al., 2000; Povstenko, 2014; Zaslavsky, 2002; Ciesielski and

Leszczynski, 2005; Liu et al., 2004). Some researchers have explained that derivatives

and integrals of fractional order are more appropriate for modelling the memory and

hereditary properties of different materials and process by anomalous diffusion (Yang,

2010). Fractional derivative have been applied to many problems in physics (Barkai

et al., 2000), finance (Sabatelli et al., 2002), materials (Diethelm and Freed, 1999) and

control theory (Podlubny, 1999).

Fractional differential equations are not easy to solve by analytical methods and thus

numerical techniques are often used. Amongst numerical approximation techniques,

finite difference methods are established and are often used due to its simplicity and

ease of implementation (Mattheij et al., 2005).

3



1.1 Motivation

Fractional differential equations (FDEs) are derived from classical differential equa

tions and can, in certain situations, describe physical phenomena more accurately than

the integer order counterparts (Gong et al., 2015). Many problems in different fields of

science related to time or space or space-time fractional derivatives can be modelled by

fractional differential equations (FDEs). The significant problem that is considered in

this thesis is the solution of FPDEs. The shape of area of integration, the complicated

boundary or initial conditions of differential equations and the nonlinear terms often

make analytical solutions of FPDEs difficult or impossible. Thus, we should have a

large number of numerical methods available to deal with various FPDEs describing

various situations. Further, the methods should be reasonably straight forward and ef

fective. This gives one motivation to develop more numerical methods to solve FDEs.

Specifically, in solving the time-fractional sub-diffusion, modified sub-diffusion and

Rayleigh-Stokes (constant and variable-order) problems. Furthermore, most problems

that have been considered are one dimensional, and there are relatively few studies

about numerical methods suitable for two dimensional problems. Herein lies another

motivation. The final motivation is the fact that the existing numerical methods do

not often make use of the Grunwald-Letnikov formula and the discretized Riemann-

Liouville fractional formula. The advantage of these formulaes is that they are simple

to apply numerically as compared to the more frequently used Caputo formula.

The purpose of this research then is to develop effective finite difference methods

(FDMs), compact finite difference methods (CFDMs) and modified implicit difference

method (MIDM) to obtain reasonably accurate approximate solutions of 2D FDEs.

4



This research will be beneficial in the mathematical modeling of various phenomena

that can be modeled by 2D fractional differential equations.

1.2 Research Objectives

The objectives of this research are as follows:

1. To develop implicit, explicit and Crank-Nicolson numerical methods for the solu

tion of the 2D time-fractional sub-diffusion equations.

fractional sub-diffusion equations.

3. To modify an implicit numerical scheme and apply on the 2D time-fractional modi-

eralized second grade fluid (RSP-HGSGF) with fractional derivative, and compare the

results with previous studies.

4. To apply the modified implicit difference scheme on the 2D fractional variable order

modified sub-diffusion equation (MSDE) and fractional variable order RSP-HGSGF,

and compare the results with previous studies.

5. To investigate the stability and convergence of the methods discussed above.

1.3 Methodology

The methodology used in this study are as follows:

1. Discretize the 2D FDE by Riemann-Liouville derivative fractional formula and

Griinwald-Letnikov fractional formula.

2. The finite difference approximations will be carried out for 2D TFSDE, TFMSDE,

RSP-HGSGF with fractional derivative, variable order TFMSDE and variable order

5

fied sub-diffusion equation (TFMSDE) and Rayleigh-Stokes problem for a heated gen-

2. To develop compact formulation for the above methods to solve the 2D time-



fractional RSP-HGSGF.

3. Investigate the stability and convergence of the methods using von-Neumann (Fourier)

analysis.

4. Conduct and discuss numerical experiments by using the PC with 2.93 GHz Core 2

Duo, 2 Gb of RAM, Window 7 Professional and Maple 15 software, for the proposed

schemes.

1.4 Organization of the Thesis

Description of the chapters contained in this thesis are as follows:

Chapter 2 contains the basic concepts and background of fractional calculus with def

initions and properties. The review of literature of numerical methods for the solution

of TFSDE, TFMSDE and RSP-HGSGF with fractional derivative are also part of this

chapter. Chapter 3 contains some discussion of fundamental numerical methods for

solving TFSDE, such as implicit, explicit and Crank-Nicolson methods, as well as

stability and convergence analysis. Numerical results are also included in this chap

ter. Chapter 4 discusses the solution of TFSDE by using compact numerical methods

such as: compact implicit, compact explicit and compact Crank-Nicolson methods.

It also contains analysis and numerical experiments. Chapter 5 contains the solution

of TFMSDE and RSP-HGSGF by modified difference scheme (MEDS). In Chapter 6,

we extend MEDS to variable order fractional MSDE and RSP-HGSGF. Analysis and

numerical experiments are also included in the same chapter. Chapter 7 presents the

conclusion and discusses some related future work.

6



CHAPTER 2

BASIC CONCEPTS AND LITERATURE REVIEW

2.1 Introduction

In this chapter, we discuss preliminary concepts and give a detailed background

of fractional derivatives. Fractional (partial and ordinary) differential equations (FDE)

are used as tools to describe real life phenomena in nature and their solution are of im

portance in science and engineering. Here, we also review existing numerical methods

for 2D-TFSDE, TFMSDE and RSP-HGSGF with fractional derivative.

2.2 Classifications of Partial Differential Equations

Partial differential equations can be defined as rate of change of dependent variable

(usually denoted u) with respect to two or more independent variables (usually denoted

by x,y,z, ...r) is known as PDE. The highest derivative in the equation is called order

of the equation.

Consider the generalized form of PDE for two variables, x, y (Smith, 1985),

AzZXr “I" Bllxy + Cliyy + DZZX + Elly + Fu — G. (2.1)

The above equation will be linear if A, B, C,D,E,F and G are constants or functions of

independent variables x,y. If A, B, C, D, E, F are function of u then equation (2.1) will

be nonlinear. The type of second order PDE (2.1) can be determined by the discrimi

nant formula as

7



(2.2)

The classification of PDEs can be written as (Lynch, 2004),

if, B2 — 4AC < 0, elliptic; for example, Poisson equation

if, B2 — 4AC = 0, parabolic; Ut - U.XX = 0,for example, diffusion equation

if, B2 — 4AC > 0, hyperbolic; for example, Wave equation Hit ~ Uxx = 0.

2.3 Fractional Calculus

Fractional calculus is a powerful tool for modeling complex system. The concept

of fractional order derivative is the main idea of fractional calculus. Many researchers

have defined fractional order integrals and derivatives by different ways.

2.3.1 Fractional Integrals

In the literature, a fractional order, y > 0 integral is denoted by the notations aDt 7

(limits) of the integral operator from a to t and these are generally called the terminals

of the fractional integral (Podlubny, 1999). In the literature, there are many definitions

of fractional order integration as follows:

2.3.1(a) Definition of Fractional Integral

There are many types of fractional integrals such as Hadamard, Weyl, Chen, local

fractional Yang Cossar etc (Oliveira and Machado, 2014). But one of the important

ones is Riemann-Liouville fractional integral, because it can be easily converted into

8
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or and for variable order, replace y by y(x,y,r). Here, a and t are the intervals



discretized form.

The left side of Riemann-Liouville integral can be written as (Yang, 2010);

(2.3)

The right side of Riemann-Liouville integral is;

(2.4)

The equations (2.3) and (2.4) will become the variable order fractional integral by using

y(x,r) in place of y. Some properties of Riemann-Liouville integral are as follows;

(Diethelm, 2010)

z°/(<) =/('),
Z“/7W = /“+/7('),

2.3.2 Fractional Derivatives

The non-integer order derivative describes the derivative of fractional order. There

(2.5)

Equation (2.5) shows notations used for fractional derivatives operator, the mostly used

notation is aDt- Here a and t are the limits of integration. For left and right sided

9

t>a.

r(r+i)
T(a + y+ 1)
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are many notations in the literature represent the fractional order derivatives, such as

ta+f

m =« £>7(0 =« 4’7(0 = ^/(0 ■
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this thesis, we are using the notation for fractional order derivatives.

2.3.2(a) Definitions of Fractional Derivatives

The generalized form of the left side of Riemann-Liouville fractional derivative is

written as; (Heymans and Podlubny, 2006; Meerschaert and Tadjeran, 2006)

(2.6)a.

The right side of Riemann-Liouville fractional derivative is;

(2.7)t

The left side of Griinwald-Letnikov derivative (Meerschaert and Tadjeran, 2006) is;

(2.8)

The right side of Griinwald-Letnikov derivative is;

(2.9)

where n_,n+ are positive integers, and the coefficient function gk can be defined by

10
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The left side of Caputo fractional derivative is (Yang et al., 2015)

(2.10)a.

The right side of Caputo fractional derivative is

(2.11)

Properties of Caputo fractional derivative are as follows;

Marchaud derivative is given by (Yang et al., 2015);

(2.12)

The Liouville fractional derivative is obtained as (Oliveira and Machado, 2014);

£>7W = (2.13)

The Riesz fractional derivative is (Yang, 2010);

f^dv^.D7tf^ =

(2.14)
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The fractional modified Riemann-Liouville derivative is (Jumarie, 2006);

o,7(0 = (2.15)

Some properties of fractional modified Riemann-Liouville derivative are as follows

(Jumarie, 2006, 2009):.

t

t

2.3.2(b) Relationship of Fractional Derivatives

In the literature, there are many definitions of fractional derivatives, but three of

them are more important. The three fractional derivatives are Riemann-Liouville, Ca

puto and Griinwald-Letnikov. This is due to the definitions of the fractional derivatives

itself that can be converted easily into discretized form for the numerical methods; (see

for instance, Zhuang and Liu (2006); Chen et al. (2013); Al-Shibani and Ismail (2015)

)•

The relation between Caputo and Riemann-Liouville fractional derivative can be de

rived as (Lin and Jiang, 2011; Hackbusch, 2012);

(2.16)
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where c means Caputo fractional derivative and RL means Riemann-Lionville.

The two fractional derivatives in equations (2.6) and (2.10) are equivalent if and only

if ±e initial condition /(x,y,0) is zero.

The time-fractional Griinwald-Letnikov formula is defined by (Zhai et al., 2014).

(2.17)+

The Caputo and Griinwald-Letnikov fractional derivative are equivalent if the initial

conditions are /(x,y,0) = 0. From the definitions in equations (2.16) and (2.17), it is

clear that all three fractional derivatives are equivalent if the initial conditions are zero.

2.4 Finite Difference Method

The FDMs are numerical methods which are efficient and universally applicable

lution and the main idea of finite difference methods is to replace the derivatives in

the differential equation by finite difference approximations. Solving the resulting al

gebraic equations will result in the approximate solutions of the original differential

equation.

Let the approximate solution of the continuous function «(x,y,r) at the grid point

Taylor series play a great role to formulate and de

rive the approximation for the derivatives. The Taylor series expansion approximating

the derivatives at the grid point with respect to x are is as follows:

13

1
r(i-r)r(i-r)

u(xi,yj,tk) be denoted by u‘

for solving differential equations. Numerical methods compute the approximate so-
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“x(x,y,t)

and

k
ux(x,y,t)

‘J

In equation (2.18), Ax is a space step size assumed to be sufficiently small. By neglect

ing the fourth and higher terms, we can write (Atkinson and Han, 2005)

k k
nx(x,y,t) (2.20)• 5

(2.21)

Similarly from equation (2.19), we can get

k k

i,j ‘J (2.22)

Now by subtracting (2.19) from (2.18), we get

kk

‘Jhj ‘J (2.23)
+ <9(Ax)2.

The truncated terms, (9 (Av) are known as truncation error or discretization error be-

tinuous function. The error is inversely proportional to the number of space step size,
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(Av)
3!

(Av)
3!

(Av)
2!

(Av)
1!

(Av)
5!

2
— U

3
-U

'■x.xx{x,y,t")

cause finite numbers of discrete terms are used to approximate the derivative of con-

«x(r,y,r)
4
~■ uxxxxx

2
~ ll.xxxHx{x,y,t)

k Z-
ui+l,j = ui,j +

k
+

‘J

k
+

‘J

k +
‘J

k

i,j

k
(x,y,t) . ....,

— Llk
UiJ

k
(x,y,t) ...,

‘j

3!«xr(r,y,r)
LLk

= U‘+IJ
i,j (Av)

k + ...
i,j

(2.19)

,k .
A'+O(Av).

(Av)

(Av)2
3!

(Av)

(Ar)

k kU — U i+lj 1-l.y 

2 (Ax)2
Uk, i ■ — Uk . •

__ Ut+Lj
2 (Ax)

Jc k.
ui-u = uiJ-

(Av)2
2!

k + ....
‘J

(2.18)

W/’;+O(zkx).

3!

(Av) .
-ypHxr(x,y,r)



O(Ax). The error can be minimized but it is unavoidable. Dropping O(Ax) from the

equations (2.21), (2.22) and (2.23), we get the approximate discretized form as

k
“xfyW') (2.24)

ij

k
(2.25)

ij

and the central difference approximation for the first order derivative,

k
“x(x,y,t) (2.26)

ij

The equations (2.24), (2.25) and (2.26) represent forward difference, backward differ

ence and central difference approximations respectively, for the first order derivative.

The central difference approximation is more accurate because the truncation errors

have a higher order. Now, to approximate the second order derivative, by adding equa

tions (2.18) and (2.19), the central difference approximation is obtained:

k
Uxx(x,y,t)

ij
(2.27)

to y; uy(x,y,t)

k
(2.28)

i,j
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_______ ‘J '

(Av)2
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_________‘j ‘

(Ax)2

-uk
i-l.j

2 (Av)

uy(x,y,t)

Ux(x,y,f)

k

i J

uk
•+ij

Similarly, the following difference formulas for the first order derivative with respect
k

can be obtained:
ij

Forward difference formula ;

uk
i+l.j

uk
i+lj

uk
i+\.j

<+. -«:

(Ay)

(Av)

-uk.
____

(Av) ’

^+C>(Ax2).



Backward difference formula ;

k
(2.29)

i,j

Central difference formula ;

k
(2.30)

i,j

Central difference formula for the second order derivative ;

k
(2.31)

‘J

2.5 Truncation Error and Consistency

The truncation error, 7}". is the value by which the exact solution of the PDEs is not

able to satisfy the approximate equation. Here, n refers to time level. Let /^"(f/) = 0

represents approximate equation of the PDE at mesh point (z,j,n), with the exact so-

If the local truncation error, T-lj approaches zero as the sizes of the mesh point (zkr, Ay, Ar)

approaches zero, the approximate equation is said to be consistent (Smith, 1985).

2.6 Convergence

A scheme is said to be convergent if the difference between the numerical solution

at a fixed point in the domain of interest tends to zero uniformly as the space and the
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time discretizations tends to zero.

mate solution of PDE constructed by finite difference scheme (FDS). The constructed

the steps size Ax, Ay and Ar approaches zero (Fletcher, 1988). The difference between

the approximate solution u^j and the exact solution £/(x,y,r) is known as the solution

error, which is represented by e"j as in the following:

2.7 Stability

A numerical scheme is said to be stable if the error solution ( the difference be

tween exact and approximate solution) remains bounded as the number of steps tends

necessary and sufficient for convergence (Irudayaraj and Jun, 2008). Proving that the

numerical solution is convergent will not only validate that the discrete form of the

equations represents a faithful representation of the continuum ones, but also the so

lution will be bounded at all times (Rezzolla, 2011). There are many methods to find

the stability, but the mostly used for investigating the stability are the von-Neumann

method and matrix method due to their easy implementation. In the thesis we will

be analyzing the stability by von Neumann method (Fourier series analysis) for the

TFSDE, TFMSDE, RSP-HGSGF with fractional derivative, variable order TFMSDE

and fractional variable order RSP-FGSGF.
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Suppose u(x,y,r) denote the exact solution of a PDE and u“j is the computed approxi-

to infinity. According to Lax Equivalence theorem, consistency and stability are both

scheme is said to be convergent if an approximate solution, unij



2.8 Von Neumann Method

Von Neumann method for stability analysis was introduced by John von Neumann

in the mid-twentieth century (Olver, 2008). It is not easy to find the stability directly

from the definition. Thus, an easy way is to use tools from the Fourier series to find

the stability of the finite difference schemes.

2.9 Literature Review

This literature review is organized based on the types of equation. First, the two-

dimensional TFSDE will be considered. Secondly, the literature studied is related to

the fractional order (fixed and variable order) TFMSDE and finally the RSP-HGSGF

with fractional (fixed and variable order) derivative. Sufficient information regarding

the FDM used for solving equations presented in the thesis will be briefly explained in

the upcoming sub-topics.

2.9.1 Finite Difference Methods for Solving Time Fractional sub-Diffusion Equa

tion (TFSDE)

The PDEs involving the fractional differential operators in space and/or time are

seen to be a general form of the classical partial differential equations. Various finite

difference schemes such as explicit, implicit and Crank-Nicolson have been developed

to solve two-dimensional TFSDE (Langlands and Henry, 2005).

Recently, a lot of interest has been shown in solving the 2D TFSDE given in the form

of;

0Dfa u (x, y, t) = Auxx (x, y, t) + Buyy + f(x,y,f), (2.32)
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with the following initial and boundary conditions

«(x,0,r) =S3Cv), =<g4(x,r), (2.33)

where 0 < a < 1 is the order of the time fractional derivative.

Zhuang and Liu (2007) solved equation (2.32) by an implicit difference method and

used the Caputo definition to approximate the time derivative of fractional order. The

stability and convergence were analyzed by mathematical induction and it was proved

that the implicit difference scheme was unconditionally stable and convergent. Chen

et al. (2010) developed the implicit and explicit difference scheme for the solutions of

the 2D-TFSDEs. They used the link between the Riemann-Liouville and Griinwald-

Letnikov fractional derivatives for Riemann-Liouville derivative. For the second order

space derivatives, they used the central difference approximations. The Fourier se

ries method was used for the stability and convergence analysis. Further more, they

discussed the solvability and the multivariate extrapolation method was used to im

prove the accuracy of the method. Chen et al. (2012) developed the same schemes

(the implicit and explicit) for the solution of the 2D variable-order TFSDE. The stabil

ity, convergence and solvability are discussed by using Fourier analysis method. They

plicit difference scheme was conditionally stable. Zhang and Sun (2011) constructed

two new alternating direction implicit schemes based on L[ approximation and back

ward Euler method by adding two small different terms. These two schemes are dif-

19

w(0,y,r) =(?i(y,r), u(l,y,r) =<?2(y^),

w(x,y,0) =g(x,y),

proved that the implicit difference scheme is unconditionally stable whereas the ex-



ferent from the general alternating direction implicit schemes used for the solution

proved for the proposed schemes. Cui (2012) studied the compact finite difference

scheme with the operator splitting technique to solve TFSDE. They discretized the

time fractional derivative by the Griinwald-Letnikov definition and the second order

space derivatives by the compact difference scheme to obtain fully discrete implicit

scheme. The method was found to be unconditionally stable by Fourier method. Later,

Cui (2013) constructed the compact alternating direction implicit schemes for TFSDE.

Therein replace the Caputo derivative have approximated by L[ approximation and

the second order space derivative approximated by compact difference approximation.

The stability was analyzed by Fourier method and convergence was proved by energy

sidered the 2D TFSDE. The Caputo derivatives has been used for the time-fractional

derivatives. Furthermore, they discussed the explicit error estimation for the two meth

ods in the discrete maximum norm. They showed that the two methods had a similar

order as their truncation errors with respect to the discrete maximum norm. Gong et al.

(2014) then proposed the parallel algorithm for 2D TFSDE with implicit difference

method. The solution of the method is discussed and the numerical results proved

that the parallel algorithm converges more efficiently to the exact solution. Gao et al.

(2015) followed the approach of Nasir et al. (2013) for ID and 2D TFSDE utilizing

the finite difference method based on superconvergence at some fixed points of the

fractional derivative. Furthermore, first order Grunwald Letnikov formula has been

used for the time fractional derivative and obtained the effective numerical schemes.

The second order and fourth order compact schemes are constructed for the second
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method. Using the earlier approaches of Zhang and Sun (2011), Wang (2013) con-

of TFSDE. The solvability, unconditional stability and Hl norm convergence were



order space derivative. The unconditional stability and convergence of the schemes

was investigated by discrete energy method. Wang and Wang (2016b) developed mod

ified compact alternating direction implicit method to solve 2D TFSDE with time frac

tional Riemann-Liouville derivative of order (1 — a), where a lies between 0 and 1.

The Riemann-Liouville fractional derivative was discretized by L\ approximation and

the second order space derivatives are discretized by fourth order compact difference

method. The unconditional stability, solvability and convergence are analyzed of the

proposed scheme and they upgraded temporal accuracy by using Richardson extrap

olation algorithm. Zhai and Feng (2016) studied three compact alternating direction

implicit methods based on superconvergence approximation for the solution of 2D

TFSDE. The two schemes were unconditionally stable with second order of accuracy

merical examples proved the theoretical results and also made comparison among the

proposed methods. Chen and Li (2016) suggested a novel compact alternating direc

tion implicit method for the solution of two space direction TFSDE and TFMSDE with

linear forcing term. They constructed the scheme based on modified L\ approximation

in time and compact difference approximation for second order space derivatives. The

stability and convergence have been discussed and the numerical examples have shown

that the proposed scheme is more feasible and accurate.

2.9.2 Finite Difference Methods for Solving Time Fractional Modified sub-Diffusion

Equation (TFMSDE)

The fractional modified sub-diffusion equation has been proposed to describe the

procedure that became less anomalous as the time progresses by the addition of sec-
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in time and fourth order of accuracy in space by the Fourier analysis method. The nu-



ondary time derivative of fractional order acting on linear second order diffusion oper

ator (Chechkin et al., 2003; Sokolov et al., 2004; Sokolov and Klafter, 2005);

(2.34)

where laying between 0 and 1. For variable order, it depends on independent

variables as (a(x,y,r),/3(x,y,r)), A and B are the positive constants. The quantity u

represents the concentration or probability density function for the particles suspended

in the liquid on a bounded domain. Many researchers have solved TFMSDE by differ

ent numerical methods.

Langlands (2006) solved the modified equation (2.34) on an infinite domain in the

form of an infinite series of Fox functions. Most fractional differential equation cannot

be solved by an analytical method, thus many authors, such as Liu et al. (2009) has

constructed a new implicit difference method, which provided feasible and effective

tools for the solution of TFMSDE. The stability and convergence were analyzed by

a new energy method. Then Zhang et al. (2012) presented finite difference and finite

element methods for the solution of TFMSDE. Firstly, they analyze the time semi

discrete scheme and then for the full discrete scheme. The time fractional derivative is

discretized by L\ approximation and finite element method for the second order space

ical examples to demonstrate the effectiveness of schemes. Abbaszadeh and Mohebbi

(2013) then proposed the compact difference scheme for the solution of 2D-TFMSDE

with nonlinear source term. The high order compact difference scheme has an advan

tage of higher accuracy. By Fourier analysis, the proposed scheme is unconditionally
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unconditionally stable and convergent. In their conclusion, they discussed the numer-

derivative. They investigated that the semi-discrete and fully discrete schemes are
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stable and convergent and produce high accuracy solutions. Chen (2013) developed

implicit difference scheme for 2D variable order TFMSDE. By Fourier series analysis,

they investigated the stability, convergence and solvability of the proposed method to-

a compact locally one-dimensional (LOD) finite difference method for the solution of

2D TFMSDE with time fractional Riemann-Liouville derivatives. They investigated

the unconditional stability and convergence, and also increased the temporal accuracy

by Richardson extrapolation algorithm. The numerical results demonstrated the effec

tiveness of the compact LOD method and the extrapolation algorithm. Dehghan et al.

(2016) introduced an efficient numerical method for the ID and 2D TFMSDE. The

introduced method is based on finite difference method for time and Legendre spectral

element method for space to obtain a semi-discrete and fully discrete approximation,

respectively. The time discrete method is unconditionally stable and convergent.

2.9.3 Finite Difference Methods for Solving Rayleigh-Stokes Problem for a Heated

Generalized Second Grade Fluid (RSP-HGSGF) with Fractional Derivative

The RSP-HGSGF with fractional and variable order fractional derivative has re

ceived much attention due to their numerous practical application such as Tan and

Masuoka (2005a), Tan and Masuoka (2005b), and Wu (2009). Chen et al. (2008) have

considered the implicit and explicit difference methods for RSP-HGSGF with frac

tional derivative. The stability and convergence are discussed using the new method of

Fourier analysis. The solvability of the implicit difference method is also discussed. Fi

nally, the theoretical results is tested by numerical examples. Later, Chen et al. (2013)

developed the same theoretical analysis for 2D variable order RSP-HGSGF and proved
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gether with the temporal accuracy of the method. Wang and Wang (2016a) developed



that the numerical results are in agreement with the theoretical analysis. Mohebbi

et al. (2013) constructed the comparison of two numerical methods, high order scheme

and radial basis functions meshless method for the solution of 2D-RSP-HGSGF with

fractional derivative. In the high order difference scheme, the space derivative is dis

cretized with fourth order compact scheme and Riemann-Liouville fractional deriva

tive is discretized by Griinwald-Letnikov formula. The radial basis functions method

have taken the integration for both sides of the equation to discretize the time fractional

vergence have been investigated for high order scheme using Fourier method and for

radial basis functions, energy method is applied. Bazhlekova et al. (2015) have stud

ied the analysis in semi-discrete and fully discrete formulation. A space semi-discrete

Galerkin scheme using continuous piecewise linear finite elements, and optimal with

respect to initial data regularity error estimates for the finite element approximations

are derived.

2.10 Summary

In this chapter, the classification of partial differential equation, definitions of frac

tional integrals and derivatives are discussed. The properties and relationships of some

fractional derivatives were also studied. This is followed by an explanation on the fi

nite difference method with stability and convergence. Finally, the literature on finite

difference method for solving 2D TFSDE, TFMSDE and RSP-HGSGF with fractional

(constant and variable order) derivative are reviewed. In the next chapter, studies on the

finite difference methods and their theoretical analysis will be discussed and explained

on some examples.
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derivative and for the space derivative using Kansa’s method. The stability and con-


