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PENGOPTIMUMAN DATA SATELIT OPTIK DAN RADAR DALAM 

GOOGLE EARTH ENGINE UNTUK MEMANTAU PERUBAHAN KELAPA 

SAWIT DI LEMBANGAN SUNGAI TROPIKA 

ABSTRAK 

Pemetaan ladang kelapa sawit yang tepat adalah penting untuk merancang 

alaman pengurusan pertanian terbaik. Google Earth Engine (GEE), platform 

pengkomputeran berasaskan awan, membolehkan pengguna memproses imej satelit 

pelbagai sumber dengan lebih cepat dan berkesan. Sebenarnya, adalah sukar untuk 

membezakan kelapa sawit dengan tanaman lain hanya menggunakan satelit optik 

kerana isu litupan awan di kawasan tropika. Malangnya, hanya terdapat sedikit 

pemahaman saintifik tentang bagaimana pelbagai imej satelit dalam GEE boleh 

membantu dalam pemetaan ladang kelapa sawit. Justeru, kajian ini bertujuan untuk 

menentukan kombinasi optimum sumber terbuka data satelit optik dan radar untuk 

pemetaan ladang kelapa sawit di lembangan sungai tropika menggunakan Lembangan 

Sungai Muda (MRB) dan Lembangan Sungai Johor (JRB) sebagai tapak kajian. 

Pertama, dua pengelas pembelajaran mesin yang terdapat dalam GEE, hutan rawak 

(RF) dan mesin vektor sokongan (SVM), telah dibandingkan untuk mengenal pasti 

pengelas yang paling berkesan untuk pemetaan ladang kelapa sawit. Kemudian, lapan 

kombinasi data berbeza telah dibina daripada imej satelit dan indeks seperti C-band 

Sentinel-1, L-band PALSAR2, Landsat8, Sentinel-2, topografi, Normalized Difference 

Vegetation Index (NDVI), Normalized Difference Water Index (NDWI) dan lain-lain. 

Akhir sekali, gabungan data optimum digunakan untuk mengunjurkan taburan kelapa 

sawit pada masa hadapan dengan menggunakan metod CA-Markov. Penemuan 

menunjukkan bahawa RF mempunyai prestasi lebih baik daripada SVM dalam 
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pemetaan ladang kelapa sawit di kedua-dua lembangan sungai. Ketepatan peta gunaan 

dan liputan tanah yang dihasilkan selepas mengoptimumkan imej satelit adalah antara 

93% hingga 95%, dimana Sentinel-1 dan Landsat8 manghasilkan keputusan 

pengelasan keseluruhan terbaik. Gabungan PALSAR2 dan Landsat8 menunjukkan 

pengelasan terbaik bagi ladang kelapa sawit, dengan nilai ketepatan pengeluar dan 

pengguna masing-masing sebanyak 91% dan 93%. Ketepatan pengelasan kelapa sawit 

boleh dipertingkatkan dengan menggabungkan imej radar C-band, namun keluasan 

ladang kelapa sawit adalah lebih rendah jika dibandingkan dengan imej L-band. 

Adalah penting untuk memilih kombinasi optimum untuk pemetaan kelapa sawit 

kerana empat kombinasi berasaskan radar menghasilkan kawasan kelapa sawit yang 

berbeza untuk MRB dan JRB pada 2020, masing-masing antara 6% hingga 12% dan 

1% hingga 13%. Berbeza dengan ladang kelapa sawit di JRB, yang berkembang lebih 

perlahan sejak 2020 dan mula merosot selepas 2025, ladang kelapa sawit MRB akan 

berkembang secara konsisten dari 2020 hingga 2030. Penyelidikan ini boleh menjadi 

panduan untuk menambah baik pemetaan ladang kelapa sawit kos rendah dari angkasa 

di lembangan sungai tropika. 

 

 

.  
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OPTIMIZATION OF OPTICAL AND RADAR SATELLITE DATA IN 

GOOGLE EARTH ENGINE FOR MONITORING OIL PALM CHANGES IN 

TROPICAL RIVER BASINS 

ABSTRACT 

Accurate mapping of oil palm plantations is crucial for planning agricultural 

best management practices. Google Earth Engine (GEE), a cloud-based computing 

platform, allowing users to process multi-source satellite images more quickly and 

effectively. In fact, it is difficult to distinguish oil palm from other crops using only 

optical satellites due to the issue of cloud cover in tropical regions. Unfortunately, 

there is only little scientific understanding about how various satellite images within 

GEE can be helpful for mapping oil palm plantations. Hence, this study aims to 

determine the optimal combination of open-source optical and radar satellite data for 

mapping oil palm plantations in tropical river basins using the Muda River Basin 

(MRB) and the Johor River Basin (JRB) as test sites. First, the two machine learning 

classifiers available in GEE, random forest (RF) and support vector machine (SVM), 

were compared to identify which is the most effective classifier for mapping oil palm 

plantations. Then, eight different data combinations have been constructed from the 

satellite images and indices such as C-band Sentinel-1, L-band PALSAR2, Landsat8, 

Sentinel-2, topographic, Normalized Difference Vegetation Index (NDVI), 

Normalized Difference Water Index (NDWI), etc. Lastly, the optimal data 

combination was employed to project future oil palm distribution using the CA-

Markov approach. The findings demonstrate that RF outperformed SVM in mapping 

oil palm plantations in both river basins. The accuracy of land use and land cover maps 

generated after optimizing the satellite images ranging from 93% to 95%, with 
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Sentinel-1 and Landsat8 provided the best overall classification. The combination of 

PALSAR2 and Landsat8 demonstrated the best classification for oil palm plantations, 

with the computed producer and consumer accuracy values of 91% and 93%, 

respectively. The accuracy of oil palm classification can be improved by combining 

C-band radar images, however the area of oil palm plantations is underestimated when 

compared to L-band images. It is important to select the optimal combination for oil 

palm mapping since the four radar-based combinations resulted different oil palm 

areas for MRB and JRB in 2020, ranging from 6% to 12% and 1% to 13%, respectively. 

In contrast to the oil palm plantations of JRB, which expand more slowly since 2020 

and starts to decline after 2025, the oil palm plantations of MRB will expand 

consistently from 2020 to 2030. This research could serve as a guide to improve the 

low-cost mapping of oil palm plantations from space in tropical river basins. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Research Background 

 Oil palm is one of the most rapidly growing agricultural land uses, while the 

majority of crops remain relatively steady in their production area. The oil palm is 

commonly referred as a “golden crop” due to its high-yielding, which is more than that 

of  any other oil crop (Mohd Najib et al., 2020). As among the world’s largest 

agricultural plantations, oil palm plantations have a substantial impact on ecology, 

environment, and economy (Alam et al., 2009). Driven by the high worldwide demand 

for oil palm products and the potential for future growth, if not properly monitored, 

uncontrolled oil palm activities can lead to deforestation with serious negative 

environmental impacts (Shaharum et al., 2020). Therefore, quantifying and predicting 

the dynamics and trajectory of oil palm planting areas and properly managing and 

monitoring oil palm planting activities are crucial for the development of sustainable 

oil palm management strategies. 

Malaysia has a remarkable tropical monsoon and tropical rainforest climate 

with abundant precipitation year-round. March to June and October to February are 

rainy seasons, with an average annual rainfall between 2500 mm and 5080 mm. The 

annual average temperature changes little throughout the year, ranging from 20 ℃ to 

30 ℃. These climatic characteristics are ideal for oil palm planting and growth (Corley 

& Tinker, 2008). The rapid growth of oil palm under the government's diversification 

program in the early 1960s greatly reduced Malaysia's dependence on rubber and tin 

(Awalludin et al., 2015). Oil palm cultivation in Malaysia has increased rapidly, almost 
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exponentially, during the previous three decades, according to the United Nations 

Food and Agricultural Organization.  

The palm oil industry has grown to be an important component of Malaysia's 

economic development, which as of 2012 employed about 490,000 people (Michael, 

2012). Following Indonesia, Malaysia is the second-largest producer of oil palm in the 

world. Over 5.6 million hectares of oil palm estates and more than 400 palm oil-

producing mills were present in Malaysia in 2015 (MPOB, 2020). Exports of oil palm 

products are more than $30 billion USD annually (FAO, 1997). In 2020, Malaysia 

exported about 17.40 Mt of oil palm to other countries, bringing in about US$15 billion 

(MPOB, 2020). Therefore, Malaysia makes huge profits when it exports oil palm 

products to other countries (Figure 1.1). 

 

Figure 1.1 Oil palm planted area and export revenue in Malaysia from 2015 to 

2021 (MPOB, 2020). 

Although the oil palm sector is a major contributor to Malaysia’s GDP, but the 

rapid expansion of oil palm plantations has resulted significant deforestation. The 

conversion of forest to oil palm is considered as a major threat to biodiversity in 

addition to contribute to global warming and climate change. Currently, 16.4% of 

Malaysia’s total land area is now used to cultivate oil palm (Mohd Najib et al., 2020). 
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In Malaysia, the conversion of agriculture land and the clearing of forests in Malaysia 

have contributed to an expansion of more than 50% in oil palm plantations than before 

(Koh & Wilcove, 2008). The ecosystem has been severely harmed by this expansion, 

including the loss of flora and fauna (Sheil et al., 2009).  

The expansion of oil palm plantations within a river basin could result a 

substantial impact on the availability and quality of water resources (Kang & Kanniah, 

2022; Tan et al., 2021). Accurate maps of the oil palm distribution for multiple years 

are essential to comprehend patterns in oil palm plantation expansion for agricultural 

best management practices planning (Danylo et al., 2021). Fieldwork-based traditional 

methods are characterized by labor and time inefficiencies. Using remote sensing 

technology to collect, monitor and track the changes in oil palm distribution is a more 

practical approach (Gong et al., 2012). 

In recent years, satellite remote sensing has been extensively used for mapping 

and monitoring of the distributions of oil palms (Chong et al., 2017). The effectiveness 

of oil palm classification is constrained by frequent cloud cover in the tropics, so it is 

challenging to map of oil palm distribution. Initially, mostly low-resolution (250–1000 

m) MODIS data and Landsat TM remote sensing imagery were mainly utilized to 

assess the net primary productivity (Cracknell et al., 2013; Tan et al., 2011) and age 

of oil palm plantations (McMorrow, 2001; Vadivelu et al., 2014). 

The problem of poor quality optical data caused by cloud cover may be 

efficiently resolved by combining radar images (Sarzynski et al., 2020). Synthetic 

Aperture Radar (SAR) and optical remote sensing data have been integrated in several 

studies to provide oil palm mapping with complementing characteristics (Cheng et al., 
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2016; De Alban et al., 2018; Mohd Najib et al., 2020; Sarzynski et al., 2020), showing 

that the combined imagery improves the accuracy of oil palm classification. 

Data fusion involves gathering relevant information from various data sources 

and storing it in a small number of data repositories, usually just a single one (Himeur 

et al., 2022; Lee et al., 2016). It is the process of combining many data sources to 

provide more consistent, accurate, and relevant information than that offered by any 

one data source alone. In order to obtain more accurate information, multi-source 

remote sensing image fusion has emerged a research hotspot in the field of remote 

sensing. Combinations of image information obtained by different sensors help to 

accomplish more accurate and comprehensive remote sensing earth observation 

(Zhang, 2010).  

Researchers in the geospatial data science and remote sensing domains have 

expressed tremendous interest in the development of GEE   (Tamiminia et al., 2020). 

According to a GEE research of land cover change in Singapore, the impact of 

monsoonal cycles on forest cover is greater than anthropogenic factors (Sidhu et al., 

2018). Using Landsat and GEE, Oliphant et al. (2019) mapped farmland across 

Southeast Asia and Northeast Asia. Rudiyanto et al. (2019) utilized the Sentinel-1 data 

available from the GEE platform to automatically map and monitor Southeast Asian 

rice extent, cropping patterns, and growth phases in near-real-time. In a South African 

semi-arid environment, Gxokwe et al. (2022) employed GEE to study seasonal 

wetlands changes.  

Oil palm mapping and monitoring are made easy by GEE's fast computing 

capacity and extensive multi-source data (Amani et al., 2020). Shaharum et al. (2020) 

employed GEE to perform oil palm mapping in Peninsular Malaysia, with the 
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classification accuracy of more than 80%. Similarly, Li et al. (2020b) also utilized 

GEE to analyze the temporal and spatial dynamic of the oil palm patterns as well as 

their driving forces in Malaysia between 2000 and 2018.  

The use of multi-source remote sensing images for GEE-based oil palm 

classification has attracted the attention by a few researchers. For example, Sarzynski 

et al. (2020) employed GEE to combine radar and optical imagery for creating a 

comprehensive oil palm map of Sumatra, Indonesia, whereas Poortinga et al. (2019) 

fused images from Landsat 8, Sentinel-2, and Sentinel-1 satellites to map Burmese oil 

palm accurately. By utilizing Sentinel-1 and Sentinel-2 data within the GEE platform 

Abramowitz et al. (2023) improved land cover mapping in Ghana with a focus on 

distinguishing between oil palm plantations and natural forests. 

1.2 Problem Statement 

Google Earth Engine (GEE) is a cloud-based computing platform developed 

by Google, providing massive archive of satellite and geospatial data, simple 

visualization operations, and powerful analytical capabilities. The platform offers 

satellite data from multiple sources at various scales, including Sentinel-1/2, Landsat 

TM (Thematic mapper)/OLI (Operational Land Imager), and MODIS. More than 5 

million satellite images and 200 public datasets are included in the data archive, which 

has a petabyte-level capacity (Gorelick et al., 2017). GEE-based platforms made it 

simpler to conduct large-scale and global-level analysis via the cloud computing 

platform as compared to the traditional approach, which required users to download 

and process the satellite images (Tamiminia et al., 2020). Researchers have utilized 

GEE to track changes in different environments and applications, including forest 

(Chen et al., 2017), aridity (Rembold et al., 2019), surface water (Pickens et al., 2020), 
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flood (Coltin et al., 2016; Tew et al., 2022a), crop (Dong et al., 2016) and aquaculture 

pond (Tew et al., 2022b). When creating land-use and land-cover (LULC) maps across 

wide areas or long periods, temporal aggregation is a popular technique for addressing 

data gaps and disparities in the available satellite images (Gebhardt et al., 2014; 

Verhegghen et al., 2016; Winsvold et al., 2016). The GEE platform can quickly 

process and aggregate hundreds of multi-phase satellite images. However, the 

classification accuracy may reduce from insufficient satellite images or poor cloud 

removal algorithms in GEE,  (Phan et al., 2020).  

Effective image classification algorithms are necessary to extract accurate 

information about oil palm from satellite images. Some researchers have examined the 

reliability of random forest (RF) algorithms within GEE to classify land uses  based 

on optical images for large regions (Monsalve-Tellez et al., 2022). While, another 

researchers  have explored the potential of integrating optical and SAR images to 

enhance the precision of classification (Carolita et al., 2019). In numerous studies, 

SVM has shown to execute classification tasks better than common classification 

methods (Cheng et al., 2016; Nooni et al., 2014; Toh et al., 2019). Notably, oil palm 

plantations have been successfully mapped using SVM, which effectively handles high 

dimensional data without reducing its dimensionality. On the other hand, RF offers 

high classification performance and anti-noise ability (Briem et al., 2002; Jin et al., 

2018). In fact, RF is the algorithm most commonly employed in land cover analysis as 

evidenced by a number of studies (De Alban et al., 2018; Goldblatt et al., 2018; 

Sarzynski et al., 2020). The direct use of a single algorithm limits the research of 

understanding the effectiveness of other classification algorithms (Shaharum et al., 

2020). Therefore, it is quite interesting to understand how well RF and SVM work in 

the context of mapping oil palm plantations. 
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Since the 1990s, oil palm monitoring has made use of remote sensing 

technologies (Xu et al., 2020). Large amounts of cloud cover in tropical regions limit 

the capacity of optical satellites to track the oil palm changes continuously. During a 

given timeframe, fusion products frequently provide more information than single-

band images. Therefore, image data fusion or combination technologies can be utilized 

to address or partially mitigate the spatial and temporal limitations of a single sensor. 

The fusion of MODIS and Landsat data has been extensively employed. While, data 

fusion technologies that combine optical and SAR images are also utilized for forest 

mapping and surface water detection (Poortinga et al., 2019), but attention to mapping 

oil palm plantations is still limited.  

Numerous researchers have created oil palm distribution maps by utilizing 

multi-source remote sensing data of various temporal and spatial resolutions 

(Poortinga et al., 2019; Sarzynski et al., 2020; Xu et al., 2020). The integration of 

optical images with SAR images has become more popular as a highly effective 

approach to improve the precision of oil palm mapping in tropical regions (Mohd Najib 

et al., 2020; Oon et al., 2019b; Poortinga et al., 2019; Sarzynski et al., 2020). This 

overcomes the issue of limited images due to cloud cover in tropical regions. For 

example, Cheng et al. (2016) have used Landsat and Phased Array L-band Synthetic 

Aperture (PALSAR) data to map oil palm plantations in Malaysia, focusing on 

assessing the impact of various classifiers, locations, and evaluation techniques. Mohd 

Najib et al. (2020) created an oil palm map for Malaysia using Landsat and Advanced 

Land Observation Satellite (ALOS) images. Their findings revealed that the estimated 

area of oil palm plantations was slightly larger than what was stated in the official 

statistic data. According to Oon et al. (2019b), L- band and C-band radar images 

performed better than other sensors in tropical regions, especially when it came to 
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differentiating between industrial and smallholder oil palm plantations in the peatland 

region of Peninsular Malaysia. The effects of various fusions of optical and radar 

images on the mapping of oil palms, however, have received less attention in earlier 

studies. In reality, using information from multiple satellite sensors is necessary for 

comprehensive monitoring of the distribution of oil palm plantations (Gutiérrez-Vélez 

& DeFries, 2013).  

Utilizing open-source satellite data and  the computational power of GEE has 

made it possible to acquire more accurate information on the extent of oil palm 

cultivation in developing countries (Amani et al., 2020; Gorelick et al., 2017), while 

spending less cost (Lee et al., 2016; Puttinaovarat & Horkaew, 2018; Shaharum et al., 

2020). Some researchers employed GEE to integrate images from many sources into 

a single image to create a map showing the distribution of oil palms.  For example, 

Sarzynski et al. (2020) employed GEE to fuse radar and optical images to analyze the 

spatial distribution of oil palm on the island of Sumatra. The results shown that using 

both optical and radar data together was better to using either optical data or radar data 

solely. Some researchers employ satellite images at various times to analyze the long-

term changes in oil palm in order to overcome the problem of incomplete data. Using 

the Landsat and L-Band SAR data, De Alban et al. (2018) mapped tropical landscapes 

for the classification of land cover and change detection. Several researchers combined 

multiple sources image data to gather additional information about oil palm plantations 

based on the distinctive features on the ground. For instance, Danylo et al. (2021) 

employed Sentinel-1 data to obtain the location of oil palm plantations, whereas the 

determination of oil palm plantation age was accomplished by the utilization of  

Landsat imagery. There is no single form of data can be used to classify oil palm in all 

regions, since various factors and goals can alter the accuracy of the results (Torbick 
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et al., 2016). Therefore, it is necessary to assess the optimal combination of multi-

source data to produce more accurate oil palm maps. However, there are still relatively 

few studies on identifying the optimal way to fuse optical and radar satellite data within 

the GEE platform, particularly for oil palm mapping,  

Land-use and land-cover (LULC) change is one of the main causes of the shift 

in the hydrological cycle (Tan et al., 2015). Hence, implementing integrated land and 

water resources management (ILWRM) requires a rigorous assessment of LULC 

changes (Badjana et al., 2015). It will be challenging to manage land and water 

resources sustainably if the LULC data is of poor quality (Zurqani et al., 2018). 

Therefore, high-precision LULC maps are needed in order to reliably simulate the 

influence of LULC changes on water resources in the basin. 

CA-Markov is an effective tool for simulating and detecting LULC change 

because it takes into account the spatial and temporal components (Hyandye & Martz, 

2017). The hybrid model is based on the CA architecture by utilizing the excellent 

expressive ability of the CA model and the predictive power of the Markov model. 

LULC is predicted by combining the two models, multi-standard and multi-objective 

land allocation principles (Zhou et al., 2020), producing more accurate prediction 

results.  The model has been widely used in predicting future LULC changes in the 

tropics due to the simplicity, flexibility, and capability of integrating GIS and remotely 

sensed data (Noszczyk, 2019; Rahnama, 2021),  

 The CA-Markov model was first used by Nourqolipour et al. (2011) to 

simulate oil palm changes, but the study lacked information on the environmental and 

socio-economic aspects of oil palm development. In order to simulate the expansion 

of oil palm plantations in Kuala Leng Yueh, Malaysia, Nourqolipour et al. (2015) used 



10 

constraints and nine suitability factors to construct assessment criteria that were 

integrated with CA-Markov. The results showed that the spatial expansion of oil palm 

plantations. Camara et al. (2020) used the CA-Markov model to project future changes 

in land use in the Selangor River Basin (SRB), Malaysia. The findings demonstrated 

the model was successfully in projecting LULC changes in 2024 and 2033, but the 

study only focused at a river basin that dominated by natural forests. Although it is 

possible to predict the distributions of oil palm using the CA-Markov model, but there 

is little study on past related to the future projections of oil palm distribution in tropical 

river basins, so the applicable remains unclear.  

Muda River Basin (MRB) and Johor River Basin (JRB) are important sources 

of freshwater supply in Malaysia and Singapore. Therefore, it is vital to have a 

comprehensive understanding of the impact of LULC changes, mainly the increase of 

oil palm plantations, on the climate and environment in these regions. Tan et al. (2021) 

examined the impacts of oil palm expansion on MRB water balance using improved 

European Space Agency (ESA) land cover products. Whereas, the impacts of LULC 

on the river morphology of the JRB in the southern part of Peninsular Malaysia were 

examined by Kang and Kanniah (2022) using GEE. Little study has been done on the 

identification and extraction oil palm information within these two basins, 

Nevertheless, the evaluation of the synergistic effect of several satellite image types 

inside GEE for oil palm mapping is currently limited in tropical basins, particularly in 

Malaysia.  
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1.3 Research Questions 

1. How different classification methods in GEE impact the accuracy of the oil 

palm mapping? 

2. Which combinations of multi-source remote sensing images are effective for 

mapping oil palm in tropical river basins? 

3. What are the changes of historical and future oil palm plantations in tropical 

river basins? 

1.4 Research Objectives  

The objective of this study is to develop a framework for optimizing the optical 

and radar satellite data in tropical basins, specifically for the purpose of monitoring oil 

palm plantations. This study specifically focused on two tropical basins, the MRB and 

the JRB, with the following specific objectives: 

1. To evaluate the accuracy of random forest (RF) and support vector machine 

(SVM) classifiers for mapping oil palm plantations in tropical river basins.  

2. To determine the optimal combination of multi-source optical and radar 

satellite data for mapping oil palm plantations using the GEE platform. 

3.To project future oil palm changes in in tropical river basins for the year 2030 

using the CA-Markov model.   
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1.5 Significance of the Study 

A key factor in getting accurate satellite image classification for LULC 

mapping is the selection of classifiers. Currently, SVM and RF are widely recognized 

as the two most often employed classification methods in machine learning classifiers. 

Both methods can achieve good classification accuracy in oil palm mapping. However, 

it should be considered which method can better adapt to the classification of oil palm 

in watersheds with poor image quality in tropical areas, with similar ground objects. 

This study can serve as a reference for scholars to select the best classifier for similar 

studies before carrying LUCL or oil palm classification in this regions.  

The accuracy of oil palm classification results can be influenced by several 

circumstances and purposes, making it unsuitable to rely on a single data type for all 

oil palm regions. Therefore, different combinations of multi-source remote sensing 

images help to understand the differences in the extraction of oil palm, so that the 

optimal data combination can be used to create oil palm maps for hydrological or 

agricultural yield modelling purposes. This study provides a reference for choosing a 

reasonable and rapid detection method for mapping oil palm plantations. The open 

source data of the GEE platform can be fully utilized to construct the best oil palm 

maps for the research area. With the GEE-based oil palm plantations mapping 

framework, users no longer need to download the data to a local machine for stand-

alone processing. Compared with the traditional data processing, this proposed GEE-

based framework greatly improves the operating efficiency and saves local storage 

space. The framework can also increase the precision of LULC classification and oil 

palm monitoring in tropical river basins. These findings may help researchers in other 
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tropical nations create more accurate maps of oil palm distribution, providing oil palm 

managers with more reasonable data for estate planning and management. 

While oil palm brings significant economic benefits, rapid expansion can also 

lead to adverse environmental and social impacts. Accurate LULC data serves as the 

foundation for pertinent scientific studies such as analyses of the carbon cycle, 

hydrological modeling and soil analysis. Additionally, the oil palm plantation maps 

are fundamental knowledge for local land agencies to plan future management 

strategies.  

Both MRB and JRB are important sources of water supply in Malaysia. 

Dramatic changes in LULC within the basins may largely impact on local hydrological 

components such as runoff, water availability, streamflow, groundwater flow and 

evapotranspiration. This study employs the CA-Markov model to predicted future 

LULC maps of two river basins based on the theoretical scenarios. The LULC maps 

that are reasonably predicted can be utilized as important input data for hydrological 

models and auxiliary data for future basin planning, management, and sustainable 

development. The findings are helpful for further research in the areas of ecosystem 

protection and management, sustainable land use planning, mitigation of natural 

catastrophes such as floods, and ensuring  water safety (Kang & Kanniah, 2022). 

1.6 Scope of the Study 

The main goal of this study is to better understand the capability of multi-

source remote sensing images for oil palm classification in tropical river basins, 

focusing on the MRB and the JRB. The distribution of LULC of these two basins is 

quite diverse, with rubber and rice being most distributed in the MRB, while oil palm 



14 

predominating in the JRB. Oil palm crops in these two basins has changed significantly 

during the previous two decades, resulting in the expansion of oil palm plantations 

emerging as a prominent land use category within these basins. Using two river basins 

in the north and south parts of Peninsular Malaysia with vastly different land cover 

types as research objects, the potential and applicability of the optical and SAR images 

integration can be better discovered. Basically, the scope of this study is divided into 

the following three parts: 

The first part constructed different combinations of optical and radar images 

for LULC classification of MRB and JRB in 2020 based on the multi-source data from 

the GEE platform. High-resolution images are not always freely available and difficult 

to compatible with the final user due to the different resolutions offered by different 

satellite platforms. All public data in the GEE platform is free and open to all non-

commercial application users, and the algorithm embedded in the platform can easily 

process the selected data. The GEE cloud platform is an online webpage, and users can 

run multiple webpages at one time, and conduct regional or global-scale research at 

any time and place. These data include Landsat series data, Sentinel series data, 

Advanced Land Observation Satellite 2 Phased Array L-Band Synthetic Aperture 

Radar 2, and SRTM (Shuttle Radar Topography Mission) data. Using field-collected 

data and high-definition images, the obtained classification map was verified and 

analyzed from two aspects: statistical value and visual analysis. 

The second part compared and analyzed the classification accuracy of different 

combinations and optimized the characteristic parameters of optical and radar image 

combination to enhance the discriminatory capability between oil palm and other 

potentially confounding crops (rubber). In the specific optimization process, the 
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eigenvalues of the radar image are optimized mainly according to the reflection degree 

of different objects on the image and the contribution degree to the parameters in the 

random forest classifier. Then compare and analyze the classification diagrams before 

and after optimization. Classification methods such as RF, SVM, MD, and CART are 

commonly used supervised classification methods in oil palm or LULC classification. 

This study utilized the SVM and RF classifiers available on the GEE platform and 

analyzed their capabilities in terms of classification accuracy.  

The third part analyzed the changes of LULC in the two river basins from 2000 

to 2020. This analysis primarily focuses on the change and expansion features of oil 

palm cultivation within the watershed, utilizing the optimal classification map. To 

quantify changes in LULC, the classification maps from the years 2000, 2010, and 

2020 were selected. Subsequently, the land use transition matrix was employed to 

examine the modifications and expansion patterns of oil palm cultivation over this 

two-decade period. The CA-Markov model was employed to project land use trends 

in the MRB and JRB watersheds from 2020 to 2030 under the theoretical scenario, 

especially the expansion trend of oil palm. 

1.7 Organization of the Chapters 

The thesis is divided into six chapters, with each chapter comprising various 

components. The subsequent sections provide a concise overview of the components 

within each chapter. 

Chapter 1 presents the background of the study, problem statement, research 

questions, research objectives, significance of the study, scope of the study and 

organization of the chapters.  
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Chapter 2 first introduces oil palm, including its characteristics and the 

development of oil palm in Malaysia. Then, the application of remote sensing to oil 

palm classification, mapping, and monitoring is reviewed. Some commonly used 

LULC prediction models and methods are summarized in detail, especially the CA-

Markov model. Then, the sources of multiple remote sensing data that commonly used 

for oil palm mapping are summarized. Next, the literature focuses mostly on widely 

applied data fusion approaches of multi-source remote sensing data as well as feature 

optimization. The classification methods employed for remote sensing oil palm 

mapping, popular cloud-based computing platforms, and the current state of GEE-

based oil palm research are summarized. 

The research methods and data required for this study are described in Chapter 

3, along with the geographical descriptions of two river basins.  The chapter also 

describes the data processing platform, multi-dimensional feature datasets, creation of 

multi-source data combinations, classifier selection, multi-source indices optimization, 

accuracy assessment, LULC change detection, and the CA-Markov model. 

The main findings of the study are primarily presented in Chapter 4, which also 

include the effects of various classifiers and image combinations in the two river basins. 

Then, the reliability of the LULC classification results, before and after image 

optimization, RF variable importance analysis, oil palm expansion over the past 20 

years, and projections for the years up to 2030. Chapter 5 mostly discusses the findings 

of Chapter 4. Lastly, the research overview and major conclusions are presented in 

Chapter 6, along with suggestions for future directions. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction  

Accurate land use data serve as the foundation for scientific studies such as 

analysis of carbon cycle, hydrological modelling, and assessments of soil degradation. 

Additionally, these data are crucial for local land management agencies in the planning 

and managing LULC. Likewise, LULC change is also negatively affecting the Earth’s 

surface in a variety of ways, including terrestrial ecosystems, water balance, 

biodiversity, and climate (Salazar et al., 2015; Sterling et al., 2012). Hence, this chapter 

reviews and discusses the theoretical and other findings that serve as the foundation 

for this study. Moreover, the relevant technology and procedures for oil palm 

monitoring in tropical river basins are comprehensively reviewed. 

2.2 Oil Palm 

Oil palm is a single-leaf perennial plant belonging to the oil palm genus and 

palm family (Hai, 2002). Palm oil, one of the world’s three major vegetable oils, stands 

out as a very prolific crop within the vegetable oil industry. Oil palm is commonly 

referred to as the “King of Oil in the World” because it produces an average of 3.5 

tons of palm oil per hectare annually (Li et al., 2015), which is 2-3 times that of 

coconuts and 7-8 times that of peanuts (Sheil et al., 2009). Additionally, it is also the 

type pf vegetation oil that is produced, consumed and traded the most globally.  

The worldwide planted area of oil palm has increased significantly over the 

past several decades, rising from 3.6 million hectares in 1961 to 28 million hectares in 

2020 (FAOSTAT, 2020), making it one of the fastest-growing tropical crops. While 
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oil palm production is crucial for  local and regional economies, including rural 

development, it has also had negative social and environmental effects, particularly in 

Southeast Asia (Sheil et al., 2009). These negative effects include accelerated 

deforestation and related detriments to biodiversity and ecosystem services (Lee et al., 

2016). 

2.2.1 Oil Palm Properties  

Oil palm is originated from western Africa, initially expanded from Sierra 

Leone, Liberia, Ghana, and Cameroon all the way to the Congo and near the equator 

(Shuit et al., 2009; Sowunmi, 1999). It is believed that the oil palm industry began in 

Southeast Asia, where it was first to be grown in large quantities in the 1970s and soon 

became a significant commercial crop in countries such as Malaysia, Indonesia, and 

Thailand (Sheil et al., 2009).  

The oil palm can be distinguished by its single-stemmed trunk and discernible 

crown (Figure 2.1). Eight fronds make up a rank and are arranged in succession as they 

spiral outward from the stem's apex. Viewed from above, it looks like an eight-pointed 

star (Chong et al., 2017). As an industry standard to enhance productivity and allow 

for the most sunlight penetration, the most suitable planting pattern for oil palms is a 

triangular pattern with a specified spacing of 9 meters (Basiron, 2007).  
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Figure 2.1 (a) Planting patterns of oil palm plantations (Chong et al., 2017); (b) 

oil palm plantations in JRB as seen from (b) Google Earth Pro; and (c) field visit in 

September 2020. 

Oil palm needs a favorable climate system to grow nicely. Four main climatic 

parameters that support the growth of oil palm such as annual average temperature, 

average temperature during the coldest month of the year, annual precipitation, and the 

number of months with precipitation less than 100 mm (Pirker et al., 2016). The 

optimum temperature range for oil palm growth is between 24 and 28°C, with the 

coldest month of the year's average temperature being above 15°C. The annual rainfall 

should range from 2000 to 2500 mm, with a minimum monthly rainfall of 100 mm, 

which is conducive to the growth of oil palm plantations (Corley & Tinker, 2008). 
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The growth of oil palm does not have high requirements on the chemical and 

physical qualities of the soil, but when the water supply is insufficient, the growth of 

oil palm is easily affected. Therefore, considering the sensitivity of the water supply, 

the nutritional condition and water holding capacity of the soil should be considered 

when selecting the soil for planting oil palm. Oil palm can obtain comparable yields 

in soils with a high clay concentration as well as in loam and silt-dominated soils 

(Pirker et al., 2016). 

Oil palm planting is limited by terrain because steep slopes increase the cost of 

planting, maintaining, and harvesting.  Shallow soil and weak surface runoff on slopes 

limit the oil palm planting as well. Oil palm plantations can also be cultivated 

effectively on slopes up to 16°, however, 0 to 4° is the slope range that is optimum for 

their growth. According to conventional perception, the slope cannot be steeper than 

25°. In addition, oil palm growth is affected by altitude, mainly because altitude is 

closely related to temperature and slope tendency (Pirker et al., 2016). 

Therefore, oil palms are suitable for growing in tropical climates with high 

precipitation rates, high solar radiation, and temperatures of 24–32 ℃ (Corley & 

Tinker, 2008). According to the suitability of the climate, the land suitable for planting 

oil palm is predominantly located in 12 tropical nations, covering about 1.37 billion 

hectares (Pirker et al., 2016). Figure 2.2 depicts the global oil palm suitability map and 

the enlarged three oil palm important locations such as Amazon, the Central African 

coast, and Borneo Island.  
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Figure 2.2 World oil palm suitability map with three focal areas enlarged in the 

Central African coast, the Amazon region, and the Borneo Island (Pirker et al., 

2016). 

2.2.2 Oil Palm in Malaysia 

In 1971, a Frenchman called Henri Fauconier established the first oil palm 

estate in Selangor that was utilized for commercial purposes (Sumathi et al., 2008). 

Since then, oil palm farming has been practices in Malaysia. Following more than a 

century of growth, Malaysia is now ranks second globally in terms of both palm oil 

production and exports (Tang & Al Qahtani, 2019). 

The Roundtable on Sustainable Palm Oil (RSPO) was founded in Malaysia to 

govern the sustainability of the oil palm plantation and industry (Tan et al., 2009). 

Furthermore, oil palm has been identified as a valuable renewable energy source, in 

addition to its principal use as a source of edible oil (Sumathi et al., 2008). The 

explosive growth of the oil palm industry is contributed by the increasing global 

demand for palm oil and the agricultural diversification initiative introduced by the 

Malaysian government in the early 1960s. 

The total area of oil palm plantations in Malaysia was decreased by 0.6% from 

5.9 million hectares in 2019 to 5.87 million hectares in 2020. With 1.59 million 

hectares or 27% of all oil palm plantations in Malaysia, Sarawak is the state with the 
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most oil palm plantations. Sabah is in second place with 1.54 million hectares, or 26.3% 

of the total oil palm plantation area. 2.74 million hectares, or 46.7%, of Malaysia’s 

total oil palm plantation area is on the Peninsular Malaysia (MPOB, 2020). Johor has 

the largest oil palm cultivation area in Peninsular Malaysia, which is followed by 

Kedah, Kelantan, Melaka, and Negeri Sembilan. 

While the oil palm industry’s rapid growth has brought significant economic 

advantage, it has also led to a number of environmental issues, including the loss of 

tropical rainforests, the extinction of species, and the emission of greenhouse gases. 

To address these issues, Fitzherbert et al. (2008) investigated the effect of oil palm on 

biodiversity, Sumathi et al. (2008) described Malaysia’s oil palm industry’s current 

status to promote sustainable and renewable energy. Tang and Al Qahtani (2019) 

performed a sustainability analysis on oil palm plantations in Malaysia. Hence, reliable 

oil palm plantation maps are required to support planning and monitoring of oil palm 

growth (Cheng et al., 2016). 

2.3 Remote Sensing 

Remote sensing is defined as a long-range technology for obtaining 

information about the surface of the Earth surface continuously without physical 

contact (Atzberger, 2013; Pandey & Sharma, 2021). It is an advanced technique for 

tracking the growth and development of oil palm, which may be useful for analysing 

the impacts of oil palm plantations on environment and for selecting effective 

management strategies. Major applications of remote sensing in the oil palm industry 

include monitoring of oil palm plantation, tree counting, age estimation, above-ground 

biomass (AGB) and carbon production, pest and disease detection, and yield 

estimation (Asming et al., 2022).  
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2.3.1 LULC Classification 

LULC monitoring is the identification and classification of samples of surface 

objects in remotely sensed images using classification methods. In remote sensing 

image classification, a number of variables are utilized to define the characteristics of 

the objects to be identified, and these variables are generally referred as image features 

or image knowledge (Li et al., 2017a).  

Image feature extraction is the basis of remote sensing classification. An 

effective feature library is crucial to express the classified objects and final outputs. In 

addition, spectral signal, vegetation index, image variation form, texture, contextual 

information, multi-temporal images, multi-sensor satellites and other auxiliary data are 

a variety of variables that used in image interpretation. 

The original feature variables used for computer image interpretation are the 

band images themselves, and the band images can be spatially operated to obtain 

variable features like texture and context. All of the above features are referred to as 

original features. The feature formation typically consists of the basic features 

produced by measuring the identified object with instruments or sensors.  Figure 2.3 

shows the LULC classification procedure for remote sensing images. 

 

Figure 2.3 LULC classification workflow for remote sensing images. 
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2.3.2 Oil Palm Mapping 

The rapid growth of oil palm in tropical regions has both positive and negative 

effects on the ecosystem. Accurate oil palm mapping can help to examine these effects. 

To evaluate the long-term effects of oil palm, it is important to regularly update the oil 

palm map. Hence, simple methods for mapping oil map plantations effectively and 

rapidly should be developed. Some researchers have exclusively studied SAR imagery 

for oil palm mapping (Cheng et al., 2018b; Li et al., 2015; Oon et al., 2019b), while 

others have combined optical and radar imagery (Cheng et al., 2016; Descals et al., 

2021; Gutiérrez-Vélez & DeFries, 2013; Nomura et al., 2019; Pohl, 2014; Sarzynski 

et al., 2020; Vaglio Laurin et al., 2013; Xu et al., 2020). 

Many researchers have mapped oil palm for large areas (Cheng et al., 2018a; 

Descals et al., 2021; Oon et al., 2019b; Rodríguez et al., 2021; Xu et al., 2020), with a 

focus on identifying oil palm from background LULC. Cheng et al. (2018a) mapped 

oil palm cultivation in the top 15 countries in the world in 2016 based on 100 m 

resolution PALSAR2 images and high-resolution data sourced from Google Earth, 

with the help of supervised classification and visual interpretation techniques. Descals 

et al. (2021) used deep learning and Sentinel-1/2 satellite data to create a 10 m-

resolution global oil palm map of smallholder and industrial closed-canopy oil palm 

plantations in 2019. Oon et al. (2019b) compared the differences between radar remote 

sensing signatures of industrial and smallholder oil palm plantations, two distinct oil 

palm landscapes. The backscatter intensities of the ALOS-2 PALSAR2 L-band and 

Sentinel-1 C-band SAR were used to detect these features. For example, Xu et al. 

(2020) used satellite data from ALOS-2/PALSAR2 and MODIS to map the Annual 

Oil Palm Area Dataset (AOPD) at 100 m resolution for Malaysia and Indonesia from 

2001 to 2016.  




