
ROBUST OPTIMIZATION APPROACH IN DATA 

ENVELOPMENT ANALYSIS MODELS: 

EXTENSION TO THE CASES WITH UNCERTAIN 

PRODUCTION TRADE-OFFS, INTEGER DATA 

AND NEGATIVE DATA 

 

 

 

 

 

 

 

 

 

 

 

YOUSEF ZEHI ROKHSANEH 

 

 

 

 

 

 

 

 

 

UNIVERSITI SAINS MALAYSIA 

 

 

2023  



 

ROBUST OPTIMIZATION APPROACH IN DATA 

ENVELOPMENT ANALYSIS MODELS: 

EXTENSION TO THE CASES WITH UNCERTAIN 

PRODUCTION TRADE-OFFS, INTEGER DATA 

AND NEGATIVE DATA 

 

 

 

 

 

 

 
by 

 

 

 

 

YOUSEF ZEHI ROKHSANEH 

 

 

 

 
Thesis submitted in fulfilment of the requirements  

for the degree of  

Doctor of Philosophy 

 

 

 

 

 August 2023 

 

 



ii 

ACKNOWLEDGEMENT 

First and foremost, I would like to express my appreciation to my supervisors, 

Dr Noor Saifurina Binti Nana Khurizan, who have taken over the supervision duties 

after the retirement of Dr. Adli Mustafa, for their support and patience and guidance 

throughout my research work.  

My deepest gratitude goes to my beloved husband Davoud, who have always 

believed in me and stood by me through my sadness and happiness moments in this 

journey. Undoubtedly, I could not have carried out this research without his support, 

motivation, continuous encouragement, and love. I would also like to thank my family, 

my sisters and specially my dearest mother, for their unconditional love and support.    

 

I dedicate this thesis to my son Sadra, the greatest blessing in my life.  

 

 

 

 

 

 

 

 

 



iii 

TABLE OF CONTENTS 

 
ACKNOWLEDGEMENT ......................................................................................... ii 

TABLE OF CONTENTS .......................................................................................... iii 

LIST OF TABLES ................................................................................................... vii 

LIST OF FIGURES ................................................................................................ viii 

LIST OF ABBREVIATIONS .................................................................................. ix 

ABSTRAK .................................................................................................................. x 

ABSTRACT .............................................................................................................. xii 

CHAPTER 1 INTRODUCTION .......................................................................... 1 

1.1 Data Envelopment Analysis and Uncertainty .................................................. 2 

1.2 Robust Optimization ........................................................................................ 2 

1.3 Problem Statement ........................................................................................... 4 

1.4 Research Objectives ......................................................................................... 5 

1.5 Research Contributions .................................................................................... 6 

1.6 Thesis Outline .................................................................................................. 7 

CHAPTER 2 BACKGROUND OF THE STUDY .............................................. 9 

2.1 Data Envelopment Analysis ............................................................................. 9 

2.1.1 Production possibility set (PPS) ..................................................... 10 

2.1.2 DEA models classifications ........................................................... 11 

2.1.2(a) Constant and variable returns to scale ........................... 11 

2.1.2(b) Radial and non-radial DEA models ............................... 12 

2.1.2(c) Input and output-oriented models .................................. 13 

2.2 Basic DEA models ......................................................................................... 13 

2.2.1 CCR model ..................................................................................... 13 

2.2.2 BCC model ..................................................................................... 15 



iv 

2.2.3 Additive model ............................................................................... 17 

2.2.4 Russell measure model ................................................................... 19 

2.2.5 Slack base measure of efficiency (SBM) ....................................... 20 

2.3 Weakness in weight distribution and discrimination power in DEA models. 23 

2.4 Approaches for handling lack of discrimination in DEA models .................. 24 

2.4.1 Absolute weight restriction ............................................................ 24 

2.4.2 Assurance region type I and II ....................................................... 25 

2.4.3 Common set of weights .................................................................. 26 

2.4.4 Super efficiency model................................................................... 27 

2.4.5 Weight restriction based on production trade-offs ......................... 28 

2.5 Uncertainty in DEA ........................................................................................ 30 

2.5.1 Robust optimization ....................................................................... 32 

2.5.1(a) Robust optimization with discrete data uncertainty ....... 32 

2.5.1(b) Robust optimization with continuous data 

uncertainty ..................................................................... 33 

2.6 Robust optimization under different uncertainty set ...................................... 33 

2.6.1 Robust optimization using a box uncertainty set ........................... 35 

2.6.2 Robust optimization using a combination of box and 

ellipsoidal uncertainty set ............................................................... 36 

2.6.3 Robust optimization using a combination of box and 

polyhedral uncertainty set .............................................................. 39 

2.7 Robust Data Envelopment Analysis ............................................................... 41 

CHAPTER 3 ROBUST WEIGHT RESTRICTION IN DEA ......................... 46 

3.1 Introduction .................................................................................................... 46 

3.2 Weight restriction based on production trade-offs ......................................... 46 

3.2.1 Production trade-offs ...................................................................... 47 

3.2.2 Production possibility set and production axioms in the 

presence of production trade-offs ................................................... 48 

3.2.3 DEA models in the presence of production trade-offs ................... 49 



v 

3.3 Uncertainty in production trade-offs .............................................................. 51 

3.4 Robust counterpart of the multiplier form of WR-TO model ........................ 52 

3.5 Robust counterpart of the envelopment form of WR-TO model ................... 58 

3.6 Handling uncertainty in production trade-offs using interval DEA approach 60 

3.7 Application ..................................................................................................... 63 

3.7.1 Performance evaluation of funded research projects ..................... 63 

3.7.2 Case study ...................................................................................... 63 

3.8 Concluding remarks ....................................................................................... 71 

CHAPTER 4 A ROBUST MIXED INTEGER DEA MODEL ........................ 73 

4.1 Introduction .................................................................................................... 73 

4.2 Integer valued data in DEA models ............................................................... 74 

4.2.1 Production possibility set and production axioms in the 

presence of integer valued data ...................................................... 75 

4.2.2 MIDEA model ................................................................................ 76 

4.3 Equality constraints in robust optimization .................................................... 77 

4.4 Proposing an equivalent MIDEA model ........................................................ 79 

4.4.1 Preliminary ..................................................................................... 79 

4.4.2 CCR model based on the fuzzy interpretation of efficiency .......... 80 

4.4.3 MIDEAE model ............................................................................... 84 

4.5 Proposing a R-MIDEA model ........................................................................ 88 

4.5.1 Uncertainty set with uncertain integer valued coefficients ............ 88 

4.5.2 Robust counterpart of the 𝑀𝐼𝐷𝐸𝐴𝐸  model .................................... 91 

4.6 Application ..................................................................................................... 96 

4.6.1 Background of application ............................................................. 96 

4.6.2 Input and output selection .............................................................. 98 

4.6.3 Applying the proposed models to assess the efficiency of 

Malaysian public universities ......................................................... 98 

4.7 Concluding remarks ..................................................................................... 104 



vi 

CHAPTER 5 UNCERTAIN NEGATIVE DATA AND ROBUST 

OPTIMIZATION ................................................................................................... 106 

5.1 Introduction .................................................................................................. 106 

5.2 Negative data in efficiency assessment ........................................................ 106 

5.3 SORM model ................................................................................................ 108 

5.4 Equality constraint in the multiplier form of the SORM model .................. 110 

5.4.1 An equivalent model to the multiplier SORM model .................. 111 

5.5 Robust DEA in the presence of negative data .............................................. 114 

5.5.1 Robust counterpart of the SORM model under a box-

polyhedral uncertainty set ............................................................ 115 

5.5.1(a) Robust counterpart of the  multiplier SORM model ... 115 

5.5.1(b) Robust counterpart of the envelopment SORM 

model ........................................................................... 120 

5.5.2 Robust counterpart of the multiplier SORM model under a 

box-ellipsoidal uncertainty set ..................................................... 124 

5.6 Application ................................................................................................... 129 

5.6.1 Background of application ........................................................... 129 

5.6.2 Input and output selection ............................................................ 130 

5.6.3 Banking efficiency assessment in Malaysia utilizing DEA 

approach ....................................................................................... 131 

5.6.4 Case study .................................................................................... 133 

5.7 Concluding remarks ..................................................................................... 139 

CHAPTER 6 CONCLUSION ........................................................................... 141 

6.1 Concluding remarks ..................................................................................... 141 

6.2 Future research directions ............................................................................ 143 

REFERENCES ....................................................................................................... 145 

 

LIST OF PUBLICATIONS AND PRESENTATIONS 

 

 

 

 



vii 

LIST OF TABLES 

Page 

Table 3.1 Descriptive statistics for data sets (35 funded research projects) ...... 64 

Table 3.2 Optimal value and weights from CCR model .................................... 67 

Table 3.3 Optimal value and weights from WR-TO model ............................... 68 

Table 3.4 Comparison of the efficiency scores and ranking from different 

models. ............................................................................................... 70 

Table 4.1 The list of Malaysian public universities and their abbreviations. .... 99 

Table 4.2 The data and efficiency scores from CCR, MIDEA and 

𝑀𝐼𝐷𝐸𝐴𝐸   models .............................................................................. 100 

Table4.3 Input target values by applying CCR model, MIDEA model and .........  

𝑀𝐼𝐷𝐸𝐴𝐸  model ................................................................................ 101 

Table 4.4 Efficiency scores and input target values by R-MIDEA model  ...... 103 

Table 5.1 Descriptive statistics for data sets (Malaysian Ringgit’000)............ 133 

Table 5.2 Optimal solutions obtained from SORM Model and 𝑅𝑆𝑂𝑅𝑀𝑀
𝛤  

model (Γ𝑗 = 2) ................................................................................. 135 

Table 5.3 Optimal solutions obtained from SORM Model and 𝑅𝑆𝑂𝑅𝑀𝑀
𝜑

 

model (𝜑𝑗 = 1.4) ............................................................................. 136 

Table 5.4 𝑅𝑆𝑂𝑅𝑀𝑀
𝜑

 optimal values for different level of 𝜑𝑗 ........................... 138 



viii 

LIST OF FIGURES 

Page 

Figure 2.1 Illustration of a box uncertainty set .................................................... 36 

Figure 2.2 Illustration of box and ellipsoidal uncertainty sets ............................ 37 

Figure 2.3 Illustration of box and polyhedral uncertainty sets ............................ 39 

Figure 3.1 Comparison of efficiency scores by CCR, WR-TO, robust WR-TO 

and interval WR-TO models .............................................................. 71 

Figure 4.1 A fuzzy view of CCR model .............................................................. 83 

Figure 5.1 Comparison of efficiency score from SORM, 𝑅𝑆𝑂𝑅𝑀𝑀
Γ , 𝑅𝑆𝑂𝑅𝑀𝑀

𝜑
 

models  ............................................................................................. 139 

 

 

 

 



ix 

LIST OF ABBREVIATIONS 

 

AHP Analytic Hierarchy Process 

BCC Banker, Charnes and Cooper 

CCR Charnes, Cooper and Rhodes 

CE Cost efficiency measure  

CRS Constant returns to scale  

DEA Data envelopment analysis  

DFA Distribution free approach  

DMU Decision making unit  

FDH Free disposal hull 

HRS Hybrid returns to scale  

MIDEA Mixed-integer DEA  

𝑀𝐼𝐷𝐸𝐴𝐸  The equivalent mixed-integer DEA 

MILP Mixed-integer linear programming  

𝑃𝑇𝑂 Production possibility set in the presence of production trade-offs  

PPS Production possibility set  

RDM Range directional measure  

RM Russell measure  

R-MIDEA Robust mixed-integer DEA 

RSORM Robust semi-oriented radial measure  

𝑅𝑆𝑂𝑅𝑀𝑀
Γ  Robust counterpart of the multiplier SORM model under a box-

polyhedral uncertainty set  

𝑅𝑆𝑂𝑅𝑀𝐸
Γ Robust counterpart of the envelopment SORM model under a box-

polyhedral uncertainty set 

𝑅𝑆𝑂𝑅𝑀𝑀
𝜑

 Robust counterpart of the multiplier SORM model under a box-

ellipsoidal uncertainty set 

SBM Slack base measure of efficiency  

SFA Stochastic frontier approach  

SORM Semi-oriented radial measure  

TE Technical efficiency measure  

VRS Variable returns to scale  

 

 



x 

 

 

 

PENDEKATAN PENGOPTIMUMAN TEGUH UNTUK MODEL 

ANALISIS PENYAMPULAN DATA: PERLUASAN KEPADA KES DENGAN 

PENGELUARAN PERDAGANGAN TIDAK PASTI, DATA INTEGER DAN 

DATA NEGATIF 

ABSTRAK 

Analisis Penyampulan Data (APD) merupakan teknik mengukur prestasi yang 

popular dan semenjak diperkenalkan, model APD telah diaplikasikan secara meluas 

dalam masalah pengurusan dunia nyata. Salah satu cabaran dalam mengaplikasikan 

model APD dalam masalah dunia nyata ialah ketidakpastian dan ketidaktepatan data 

yang boleh menyebabkan ralat dalam pengukuran, pengiraan, jangkaan dan lain-lain. 

Oleh kerana ketidakpastian merupakan faktor yang tidak dapat dielakkan dalam 

kebanyakan masalah pengoptimuman, ketidakpastian dalam data perlu 

dipertimbangkan untuk memastikan penyelesaian optimum dan penanda aras yang 

boleh dipercayai. Pengoptimuman teguh merupakan salah satu pendekatan terbaru 

dalam mengendalikan ketidakpastian dalam model APD yang memberi imunisasi 

kepada parameter tidak pasti dengan set tidak pasti yang telah ditentukan untuk 

menentukan penyelesaian optimum yang dijamin menjadi terbaik bagi kebanyakan kes 

parameter tidak pasti. Aplikasi pendekatan pengoptimuman teguh pada model APD 

telah memperkenalkan bidang APD teguh pada tahun 2008, yang merupakan cabang 

baru dan sedang berkembang dalam APD. Matlamat tesis ini adalah untuk memenuhi 

beberapa jurang teori dan praktikal dalam bidang APD teguh. Penyelidikan terdahulu 

dalam APD teguh hanya mempertimbangkan data masuk dan data keluar yang tidak 

pasti. Oleh itu, salah satu objektif tesis ini adalah untuk mengakses kesan 



xi 

ketidakpastian pada parameter lain yang terlibat dalam pengoptimuman seperti 

pemberat yang berkait dengan data masuk dan keluar dan pengeluaran perdagangan. 

Tambahan pula, analisis perbandingan antara model APD teguh yang dicadangkan 

dengan pendekatan lain untuk pengendalian ketidakpastian dalam data seperti APD 

selang, akan disertakan. Objektif lain tesis ini adalah mencadangkan model APD teguh 

yang mampu untuk menangani jenis data tidak pasti tertentu seperti data integer dan 

data negatif. Salah satu cabaran dalam membina kaunterpart teguh untuk model APD 

yang mengandungi data sedemikian adalah kewujudan pembatas kesamaan dalam 

model-model ini yang boleh menyebabkan penyelesaian tidak tersaur atau rantau 

tersaur yang terbatas. . Oleh itu, model-model setara yang mengandungi data tidak 

pasti integer dan negatif tanpa sebarang pembatas kesamaan telah diformulasi untuk 

mengatasi masalah ini. Sebagai tambahan, ciri-ciri set tidak pasti dalam kewujudan 

data integer tidak pasti akan dikaji dalam tesis ini. Juga, model-model APD teguh yang 

dibina berdasarkan set tidak pasti berlainan seperti set tidak pasti kotak polyhedron 

dan kotak ellipsoid akan dibandingkan dari segi aspek pengiraan dan ciri-ciri dan had 

pendekatan-pendekatan ini juga telah dikaji. Daripada sudut pandangan praktikal, 

beberapa aplikasi dalam dunia nyata disediakan untuk mengesahkan kebolehgunaan 

model-model yang dibangunkan. . Sebagai contoh, tiga kajian kes berbeza disediakan 

untuk mengukur kepekaan seperti penyelidikan bertaja, universiti dan bank untuk 

menunjukkan kebolehgunaan model-model yang dicadangkan sekaligus menunjukkan 

peluang bahawa model-model tersebut boleh diaplikasikan untuk mengendalikan 

pelbagai kes analisis kepekaan teguh. 
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ROBUST OPTIMIZATION APPROACH IN DATA ENVELOPMENT 

ANALYSIS MODELS: EXTENSION TO THE CASES WITH UNCERTAIN 

PRODUCTION TRADE-OFFS, INTEGER DATA AND NEGATIVE DATA 

ABSTRACT 

Data envelopment analysis (DEA) is a popular performance measurement 

technique and since it was first introduced, DEA models have been extensively applied 

in real-world managerial problems. One of the challenges in applying DEA models in 

real-world problems is uncertainty and inaccuracy in data which can be due to error in 

measurement, calculation, prediction etc. As uncertainty is an inevitable factor in many 

optimization problems, therefore the uncertainty in data should be taken into 

consideration to ensure reliable optimal solutions and benchmarking. Robust 

optimization is one of the most recent approaches for handling uncertainty in DEA 

models which immunize the uncertain parameters over a pre-specified uncertainty set 

to determine an optimal solution which is guaranteed to be the best for all or most of 

the possible realizations of the uncertain parameters. Applying robust optimization 

approach in DEA models resulted to Robust DEA field which is a relatively young yet 

growing field in DEA, introduced in 2008.  The goal of this thesis is to fulfil some of 

the theoretical and practical gaps in robust DEA field. The previous works on robust 

DEA models only considered inputs and outputs data to be uncertain, thus one of the 

objectives of this thesis is to assess the effect of uncertainty in the other involved 

parameters in the optimization such as weights assigned to inputs and outputs and 

production trade-offs. Moreover, a comparative analysis between the proposed robust 

DEA model and other approaches of handling uncertainty in data such as interval DEA 

will be provided. Another objective of this thesis is to propose robust DEA models that 
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are capable to handle special type of uncertain data such as integer data and negative 

data. One of main challenges to construct a robust counterpart for the DEA models 

containing such data is the presence of equality constraints in these models which can 

lead to an infeasible solution or a restricted feasible region. Therefore, equivalent 

models containing integer or negative uncertain data without any equality constraints 

are formulated to overcome this problem. In addition, the characteristic of uncertainty 

set in the presence of uncertain integer-valued data is investigated in this thesis. Also, 

robust DEA models constructed based on different uncertainty sets such as polyhedral-

box and ellipsoidal-box uncertainty sets are compared from a computational aspect 

and the characteristic and limitations of these approaches have been studied. From the 

practical point of view, several real-world applications are provided to validate the 

applicability of the developed models in this thesis. For example, three different 

efficiency measurement case studies such as funded research projects, universities and 

banks are provided to show the applicability of the proposed models and the 

opportunities that the proposed models can be applied to handle various case of robust 

efficiency analysis.  
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CHAPTER 1  
 

INTRODUCTION 

Performance measurement and benchmarking are critical procedures for all 

type of organizations, by which an organization monitors important aspects of its 

programs, systems, and processes. Performance assessment helps organizations to 

improve their efficiency and set goals, using the data which have been derived in the 

process of performance measurement. Performance assessment provides a reliable 

process for the organizations to determine if their current systems and processes are 

working efficiently and as a result, best and worst performers in the organization can 

be detected. Analysing the result of performance assessment can provide important 

information and data on how an organization can use its resources in order to optimize 

its efficiency and productivity.  There are several methods in operations research 

literature that can be applied for the assessment of efficiency in different organizations.   

Efficiency assessment methods are categorized into two basic groups based on 

the estimation of production frontier: parametric and non-parametric methods. In the 

parametric methods the shape of the frontier will be estimated by identifying the 

relationship between inputs and outputs based on a production function that shows 

how a maximum output can be attained by using a certain level of input. Parametric 

frontiers are based on specific functional forms and can be either deterministic or 

stochastic. In the Non-parametric techniques such as Data Envelopment Analysis 

(DEA), the efficiency frontier will be identified using linear programming methods. In 

fact, all decision-making units (DMUs) in the technology will be compared with those 

which are placed on the efficient frontier and called efficient DMUs.  
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1.1 Data Envelopment Analysis and Uncertainty 

Data Envelopment Analysis (DEA) is a popular non-parametric technique for 

the assessment of efficiency of a set of homogeneous decision-making units (DMUs) 

with the same set of inputs and outputs. DEA pioneered by Farrell (1957), who 

proposed a non-parametric frontier analysis for solving a linear programming to 

measure productive efficiency.  Later the first DEA model which is called Charnes, 

Cooper Rhodes (CCR) model was developed by Charnes et al., (1978). Since 

introducing the first DEA model, there has been a massive growth in the theory and 

application of DEA.  From the theoretical aspect, various new DEA models have been 

proposed to improve and extend DEA methodology and its applicability. In managerial 

applications, DEA has been widely used in different areas, such as health care, 

education, banking, agriculture, marketing, hospitality and many more. One of the 

challenges in applying DEA models in real world applications is uncertainty and 

imprecision in data which is inevitable in many production technologies. The 

ambiguity in data can be due to errors in measurement and calculations, errors in 

predictions, unachievable or inadequate information, quantifying qualitative measures 

or environmental conditions. Hence, the uncertainty in data can lead to unreliable 

efficiency scores and ranking for the DMUs and the decisions made based on the 

unreliable efficiency scores, ranking and benchmarking will lead to unreliable and 

practically unattainable management decisions.  

1.2 Robust Optimization  

Data uncertainty seems to be an unavoidable issue in many real-world 

optimization problems and a small uncertainty or perturbation in data may easily result 

in a completely meaningless and misleading nominal solution for the optimization 
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problem. Hence, various approaches have been developed to handle the uncertainty in 

data in the mathematical optimization problems such as stochastic optimization, fuzzy 

theory, robust optimization. Currently robust optimization is one of the popular 

optimization methodologies which has been proposed to tackle the issue of uncertainty 

and inexactness in data in mathematical programming problems. Robust optimization 

was first introduced by Soyster (1978) and was developed and extended by many 

researchers such as Ben-Tal and Nemirovski (1998; 1999; 2000) and Bertsimas and 

Sim (2003; 2004). One of the advantages of robust optimization approach in 

comparison with the other approaches is the tractability of formulations based on this 

approach. Moreover, in robust optimization the probability distributions of the 

uncertain data are assumed to be unknown which is also an important point. This is 

because in many optimization problems the historical information for an uncertain data 

or event might not be available or accessible. In robust optimization the uncertain 

parameters are immunized over a pre-specified uncertainty set to determine an optimal 

solution which is guaranteed to be the best for all or most of the possible realizations 

of the uncertain parameters. 

 Sadjadi and Omrani (2008) were the first to introduce robust optimization in 

DEA models to handle the uncertainty on inputs and outputs data for DMUs. 

Afterwards, many researchers developed more robust DEA models and the Robust 

DEA field started to form. The robust DEA field is relatively young, yet popular, as 

various robust DEA models are being developed and introduced in this research area 

in recent years.  
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1.3 Problem Statement 

Since the introduction of the first robust DEA model by Sadjadi and Omrani 

(2008), the robust DEA field has been growing rapidly and various robust DEA models 

have been developed under different uncertainty sets. However, to the best of our 

knowledge almost all these models considered the uncertainty to appear in inputs and 

outputs data in DMUs, where other factors that are involving in the efficiency 

assessment process such as weights assigned to the inputs and outputs might also be 

subjected to uncertainty.  In weight restriction approaches such as super efficiency and 

assurance regions type I and II, the technological meaning of efficiency as a realistic 

input or output improvement factor does not remain clear and interpretable. The main 

reason is that the conventional weight restrictions in approaches such as assurance 

region type I and II, are constructed based on value judgments, monetary values or 

perceived importance of inputs or outputs. One of the recent methods to overcome this 

issue is incorporating production trade-offs as simultaneous changes to the inputs and 

outputs which naturally exist in any real production technology (Podinovski, 2004). 

However, in many real-world cases, the trade-offs between inputs and outputs cannot 

be express precisely. Therefore, by ignoring the uncertainty and perturbation in 

production trade-offs, the results will not be reliable.  

One of the difficulties in construction of robust counterpart for different DEA 

models is the existence of equality constraints in some of DEA models. Such 

constraints containing uncertain parameters restrict the feasible region and may lead 

to infeasible solutions for the robust analysis. One of the popular DEA models 

containing equality constraints is the mixed-integer DEA (MIDEA) model by 

Kuosmanen and Matin (2009) which was proposed to handle integer-valued data in 

DEA models and ensure feasible integer-valued targets for inefficient DMUs. Another 
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problem for developing a robust integer DEA model is the construction of uncertainty 

set in the presence of integer-valued data, as the general assumption is that the 

uncertain parameters are real-valued.  

One of the assumptions in the proposed robust DEA models so far, is that the 

inputs and outputs variables are non-negative, however in many applications such as 

banking cases some variables may take negative values and such negative values can 

also be affected by perturbation and errors. Therefore, the conventional robust DEA 

models are not capable to handle negative data and appropriate robust DEA model can 

be proposed which are capable to cope with uncertain negative data. Also, the presence 

of equality constraint in DEA models in the presence of negative data such as semi-

oriented radial measure (SORM) (Emrouznejad et al., 2010), might be problematic and 

cause difficulty in constructing an appropriate robust counterpart, hence these models 

should be modified to an equivalent model without any equality constraints. 

A comparative analysis between the proposed robust DEA models and other 

DEA approaches for handling uncertainty such as interval DEA and a comparative 

study between robust DEA models constructed based on different uncertainty sets 

provides a computational comparison as well as an insight on the characteristic and 

limitations of these approaches.  

1.4 Research Objectives  

The objectives of this research are as follows: 

▪ To propose a robust weight restriction model in which the weight 

restrictions are constructed based on production trade-offs and provide a 

comparison between the methods that are able to cope with uncertainty in 

production trade-offs.    
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▪ To construct an uncertainty set in the presence of uncertain integer valued 

parameters and investigate difficulties for constructing a robust counterpart 

for the conventional MIDEA model. 

▪ To propose a robust DEA model with the ability to be applied in cases with 

integer-valued uncertain parameters.  

▪ To modify robust DEA models in the presence of uncertain negative data 

under different uncertainty sets.   

1.5 Research Contributions  

This thesis addresses some of the theoretical gaps in the robust DEA field to 

expand this field to be more applicable for real-life optimization problems. First, this 

research proposes a robust weight restriction model where the weight restrictions are 

constructed based on production trade-offs. Additionally, an interval weight restriction 

model is modified to handle the uncertainty in production trade-offs and to provide an 

insightful comparison between the interval weight restriction model and the robust 

weight restriction model. The proposed models are examined with a case study of 

funded research projects in engineering discipline from Universiti Sains Malaysia.  

Next, the gap in the robust DEA models in the presence of integer-valued data 

is addressed and the difficulties in constructing a robust counterpart for the 

conventional MIDEA model are studied. We proposed an equivalent integer DEA 

model without any equality constraint based on the fuzzy interpretation of efficiency 

to cope with the arise problem from the equality constraints. Moreover, we studied the 

properties of the uncertainty set constructed for the uncertain integer-valued 

parameters Then, based on the developed uncertainty set, the robust counterpart of the 

proposed equivalent integer DEA model is proposed. To demonstrate the applicability 
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our proposed model, an application of efficiency assessment in Malaysian universities 

is provided.  

Then the robust DEA models in the presence of uncertain negative data are 

studied. In robust DEA literature many of the proposed robust DEA models ignored 

the uncertainty in either inputs or outputs to avoid the uncertainty in the normalization 

constraint. To be clear, in an input-oriented DEA model only output variables are 

assumed as uncertain, hence we modified an equivalent SORM model that can be 

applied in cases where inputs and outputs are simultaneously subjected to uncertainty. 

Aside from the proposed robust DEA models under a box-polyhedral uncertainty set, 

we studied and formulated the robust counterpart of SORM model considering a box-

ellipsoidal uncertainty set.  

1.6 Thesis Outline  

This thesis is organized in the following way: 

Chapter 2 provides a review on the basic DEA models and particularly weight 

restriction approaches. The data uncertainty in DEA is discussed and a review of 

approaches for handling uncertainty in DEA is provided. In addition, an overview of 

robust optimization approach under various uncertainty sets is given. A literature 

review on the previous studies on robust DEA and proposed models is presented to 

find out the major developments in the robust DEA research field.   

Chapter 3 develops a robust weight restriction model where production trade-

offs are applied to construct weight restriction constraints to tackle the uncertainty in 

production trade-offs. Additionally in order to provide a comparison between the 

methods that are capable in handling the uncertainty in production trade-offs an 

interval weight restriction model is modified.  



8 

In Chapter 4 we recall a short background of fuzzy concept and relationship of 

fuzzy concept with the conventional CCR model. This chapter presents a new mixed-

integer DEA model without any equality constraint based on the fuzzy interpretation 

of efficiency, as well as a modified uncertainty set constructed in the presence of 

uncertain integer-valued parameters. Next a robust DEA model to handle uncertain 

integer-valued data is presented.  

Chapter 5 presents a review on the presence of negative data and proposed 

models in the literature to take negative data into consideration in the efficiency 

assessment.  Moreover, the conventional DEA models in the presence of negative data 

are modified to provide equivalent models without the normalization constraint. Then 

the chapter focuses on the robust DEA models with uncertain negative data under  box-

polyhedral and box-ellipsoidal uncertainty sets.  

Finally in Chapter 6 we discuss the concluding remarks of this thesis and future 

research directions. 

 

 

 

 



9 

CHAPTER 2  
 

BACKGROUND OF THE STUDY  

This chapter presents a research background on the models and approaches 

applied in this thesis, as well as a specific review on previous relevant studies on the 

robust DEA models and applications. Firstly, a background on traditional and basic 

DEA models is given and then the weight discrimination problem and approaches to 

handle this shortcoming in the conventional DEA models are discussed. Also, the 

arising problems, resulting from data uncertainty and perturbation are discussed and a 

review on approaches which are able to cope with data uncertainty is presented.  Special 

attention is given to robust optimization which is the applied approach in this thesis to 

handle data uncertainty. Finally, the previous studies on the application of robust 

optimization in different DEA models have been studied. 

2.1 Data Envelopment Analysis 

Data envelopment analysis is a decision making tool for evaluating relative 

efficiency of a set of homogeneous DMUs (Charnes et al., 1978). The reason for using 

relative term is that the efficiency of each DMU under evaluation will be obtained by 

comparing it with all other DMUs with a simple restriction that all DMUs lie on or 

below an efficient frontier. A Production Possibility Set (PPS) will be constructed, 

which contains all input-output correspondences which are feasible in principle 

including those observed units being assessed (Thanassoulis, 2001).  In DEA the aim is 

to determine which DMU is performing efficiently in comparison with other units and 

to benchmark the other DMUs relative to the efficient units in the defined PPS. Such an 

aim will be succeeded by calculating the efficiency scores with linear programming 

approaches which the calculated efficiency scores determine the units on and below the 
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efficient frontier. To clarify the meaning of efficiency or a relative efficient DMU, the 

following definitions can be considered.  

Definition 2.1. (Efficiency) A DMU can attain full efficiency if and only if none of its 

inputs or outputs can be improved without worsening some of its other inputs or outputs. 

Definition 2.2. (Relative Efficiency) A DMU is relatively efficient if and only if the 

performances of other DMUs does not show that some of its inputs or outputs can be 

improved without worsening some of its other inputs or outputs. 

2.1.1 Production possibility set (PPS) 

In DEA a PPS is constructed to link inputs and outputs instead of functional 

forms. PPS is defined as the minimum set enveloping the observed units and all the 

input-output correspondences that are feasible. To generalize the basic assumptions 

underlying the PPS in DEA, suppose there are 𝑛 DMUs, DMU𝑗 𝑗 ∈ 𝐽 = {1,… , 𝑛}, which 

DMU𝑗, denoted by (𝑿𝑗 , 𝒀𝑗) ∈ ℝ+
𝑚+𝑠   uses 𝑚 inputs 𝑿𝑗 = (𝑥𝑖𝑗) ≥ 0  𝑖 ∈ 𝐼 = {1,… ,𝑚} 

to produce 𝑠 outputs  𝒀𝑗 = (𝑦𝑟𝑗) ≥ 0  𝑟 ∈ 𝑅 = {1, . . , 𝑠}. Here, the symbol ́ ≥´ indicates 

that at least one component of 𝑿𝑗 or 𝒀𝑗  is positive while the remaining inputs and 

outputs are considered as non-negative. The production possibility set, denoted by 𝑃 is 

defined as follow: 

𝑃 = {(𝒙, 𝒚)| 𝒙 can produce 𝒚}. 

The PPS in DEA is defined as the minimum technology that satisfies the following 

production axioms (Banker et al., 1984). 
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Axiom 2.1. Feasibility of observed data.   (𝑿𝑗 , 𝒀𝑗) ∈ 𝑃, ∀ 𝑗 = 1,2, … , 𝐽.   

Axiom 2.2. Proportionality. Any positive proportion of a feasible pair of input and 

output is also feasible.  

𝐼𝑓 𝜆 ≥ 0 𝑎𝑛𝑑  (𝒙, 𝒚) ∈ 𝑃 ⇒ (𝜆𝒙, 𝜆𝒚)  ∈ 𝑃.    

Axiom 2.3. Convexity. The set 𝑃 is convex. 

∀ (𝒙, 𝒚) ∈ 𝑃, (𝒙′, 𝒚′) ∈ 𝑃, 0 ≤ 𝜆 ≤ 1 ⇒ [𝜆(𝒙, 𝒚) + (1 − 𝜆)(𝒙′, 𝒚′)] ∈ 𝑃.    

Axiom 2.4. Free disposability. If a specific pair of input and output is producible, any 

pairs of more input and less output for the specific one are also producible.  

 (𝒙, 𝒚) ∈ 𝑃, 𝒙̅ ≥ 𝒙 ⇒ (𝒙̅, 𝒚) ∈ 𝑃. 

(𝒙, 𝒚) ∈ 𝑃, 𝒚̅ ≥ 𝒚 ≥ 0 ⇒ (𝒙, 𝒚̅) ∈ 𝑃. 

(𝒙, 𝒚) ∈ 𝑃, 𝒚 ≥ 𝒚̅ ≥ 0 𝑎𝑛𝑑 𝒙 ≤ 𝒙̅ ⇒ ( 𝒙̅, 𝒚̅) ∈ 𝑃.     

2.1.2 DEA model classifications 

2.1.2(a) Constant and variable returns to scale  

DEA models can be categorized based on different aspects. One of the basic 

classifications is based on the returns to scale assumption which can be divided into two 

categories, constant returns to scale (CRS) and variable returns to scale (VRS). A brief 

definition of returns to scale can be given as follows:  

Definition 2.3.  (Returns to scale) Return of scale is an important term in production 

economics. It usually defined as the effect of production factors on the production. In 

other words, it explains the behaviour of the rate of increase in outputs (production) 

with respect to the associated increase in inputs (the factors of production).  
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Returns to scale can be either constant or variable (increasing or decreasing). If 

a proportional increase in all inputs result in the same proportional change in the output, 

returns to scale will be defined as constant returns to scale. When output increases by 

more than the proportional increase in all inputs, returns to scale will be defined as 

increasing returns to scale. When output increases by less than the proportional increase 

in all inputs, returns to scale will be defined as decreasing returns to scale.  

2.1.2(b) Radial and non-radial DEA models  

In general, DEA models can be classified into radial and non-radial models.  

Radial models deal with the proportional changes in inputs or outputs, in fact these 

models assume a proportional reduction of inputs or a proportional expansion of outputs 

which is common to all inputs or outputs. One of the main properties of these models is 

providing an efficiency score for all DMUs. The conventional radial models include 

CCR model which was proposed by Charnes et al. (1978) and BBC model which was 

proposed by Banker et al. (1984). In real world applications proportional changes in all 

inputs or outputs may not be possible, hence this assumption restricts radial DEA 

models, and this shortcoming has led to the development of non-radial DEA models. 

The non-radial DEA models in contrast of radial models, put aside the assumption of 

proportional reduction of inputs (or proportional expansion of outputs) and deal with 

slack variables directly. In fact, in the non-radial models the aim is to maximize the rate 

of reduction in inputs (or minimize the rate of expansion in outputs) which may discard 

varying proportions of original inputs and outputs. The additive model introduced by 

Charnes et al. (1985), Russell measure model by Fare and Lovell (1978) and slack base 

measure model (SBM) by Tone (2001) are some of the most well-known non-radial 

DEA models.  
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2.1.2(c) Input and output-oriented models 

DEA models based on the orientation are classified into input-oriented and 

output-oriented models. In an input-oriented model, the objective is to minimize the 

inputs while satisfying at least the given output level. Indeed, in later models a DMU is 

inefficient if it is possible to decrease any input without increasing any other input and 

without decreasing any output. So, an inefficient DMU in an input-oriented model will 

become efficient through the proportional reduction of its inputs while its outputs level 

is held unchanged.  

On the other hand, in an output-oriented model, the objective is to maximize the 

level of outputs without requiring an increase in input resources. In fact, in an output-

oriented model a DMU is called inefficient if it is possible to increase any output 

without decreasing any other output or increasing any input. In an output-oriented 

model an inefficient DMU will become efficient through the proportional increase of 

its outputs while the inputs level is held constant.    

2.2 Basic DEA models 

2.2.1 CCR model  

[The CCR model was introduced by Charnes et al. (1978), assumes constant 

returns to scale.] The DMU under evaluation is designated as 𝐷𝑀𝑈𝑂 where 𝑂 ranges 

over 1, 2, … , 𝑛 and the vector 𝝀 = (𝜆1, 𝜆2, … , 𝜆𝑛) is used to construct a hull that covers 

all data points. The envelopment form of the input-oriented CCR model for assessing 

the efficiency of 𝐷𝑀𝑈𝑂 is formulated as following mathematical linear programming: 
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minimize 𝜃𝑜   

Subject to:    

∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝜃𝑜𝑥𝑖𝑜 ,  𝑖 = 1, … ,𝑚  

∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜 ,   𝑟 = 1, … , 𝑠  

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛                                                                               (2.1) 

where 𝜃𝑜 is the efficiency score for 𝐷𝑀𝑈𝑂 .   

Let  𝑢𝑟 and 𝑣𝑖 represent the weights factors related to the 𝑟𝑡ℎ output and 𝑖𝑡ℎ input 

respectively, so the dual form of model (2.1) which is known as the multiplier CCR 

model is formulated as follows: 

maximize 𝜃𝑜 = ∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜   

Subject to:   

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜 = 1,    

∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖

𝑚
𝑖=1 𝑥𝑖𝑗 ≤ 0,   𝑗 = 1,… , 𝑛      

𝑢𝑟 ≥ 0, 𝑟 = 1, … , 𝑠          

𝑣𝑖 ≥  0. 𝑖 = 1, … ,𝑚                                   (2.2) 

Definition 2.4. Efficient DMU 

1. 𝐷𝑀𝑈𝑂 is efficient, if and only if the 𝜃𝑜
∗ = 1. (𝜃∗ is the optimal value of the 

objective function in model (2.1)) 

2. 𝐷𝑀𝑈𝑂 is inefficient, if and only if 0 <  𝜃𝑜
∗ < 1.  

The input-oriented models try to minimize the level of inputs to produce at least the 

same level of outputs. On the other hand, the output-oriented models maximize the level 

of output by utilizing the given amount of inputs. The output-oriented CCR model is 

formulated as follows: 
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maximize 𝜑𝑜   

Subject to:   

∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 ,                 𝑖 = 1, … ,𝑚  

∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝜑𝑜𝑦𝑟𝑜,            𝑟 = 1, … , 𝑠  

𝜆𝑗 ≥ 0,                                 𝑗 = 1,… , 𝑛                                       (2.3) 

where 𝜑𝑜 = 1/ 𝜃𝑜.  

The multiplier output oriented CCR model which is the dual form of model (2.3) is 

defined as follows: 

minimize ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜   

Subject to:   

∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜 = 1,    

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑗 − ∑ 𝑢𝑟

𝑠
𝑟=1 𝑦𝑟𝑗 ≥ 0,   𝑗 = 1,… , 𝑛      

𝑢𝑟 ≥ 0, 𝑟 = 1, … , 𝑠          

𝑣𝑖 ≥  0. 𝑖 = 1, … ,𝑚                                         (2.4) 

2.2.2 BCC model  

The BCC model was introduced by Banker et al. (1984). In fact, the BBC model 

is an expansion in the formulation of the CCR model to analyse the variable returns to 

scale which ignores the proportionality assumption. The envelopment form of input-

oriented BBC model is formulated as follows:  
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minimize 𝜃𝑜   

Subject to:   

∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝜃𝑜𝑥𝑖𝑜 ,  𝑖 = 1, … ,𝑚  

∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝑦𝑟𝑜 ,   𝑟 = 1, … , 𝑠  

∑ 𝜆𝑗
𝑛
𝑗=1 = 1,                   𝑗 = 1,… , 𝑛                                                   

𝜆𝑗 ≥ 0. 𝑗 = 1,… , 𝑛                                                                               (2.5) 

The dual form of the model (2.5) which is known as the multiplier form of the input-

oriented BCC model is given as follows: 

maximize 𝜃𝑜 = ∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜 − 𝑣𝑜   

Subject to:   

∑ 𝑣𝑖
𝑠
𝑟=1 𝑥𝑖𝑜 = 1,                                                                                                

∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖

𝑚
𝑖=1 𝑥𝑖𝑗 − 𝑣𝑜 ≤ 0,         𝑗 = 1,… , 𝑛      

𝑢𝑟 ≥ 0,  𝑟 = 1, … , 𝑠          

𝑣𝑖 ≥  0, 𝑖 = 1,… ,𝑚    

𝑣𝑜 is free in sign,                                   (2.6) 

where 𝑢𝑟 and 𝑣𝑖 are given weights to the 𝑟𝑡ℎ  output and 𝑖𝑡ℎ input respectively and 𝑣𝑜 is 

scalar indicator for returns to scale.  The envelopment form of output-oriented BBC 

model is defined as follows: 
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maximize 𝜑𝑜   

Subject to:   

∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝑥𝑖𝑜 ,                 𝑖 = 1, … ,𝑚  

∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝜑𝑜𝑦𝑟𝑜,  𝑟 = 1, … , 𝑠  

∑ 𝜆𝑗
𝑛
𝑗=1 = 1,                   𝑗 = 1,… , 𝑛  

𝜆𝑗 ≥ 0.                                                              (2.7) 

And the following model is defined as the multiplier form of output-oriented BCC 

model: 

minimize ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜 + 𝑣𝑜   

Subject to:   

∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜 = 1,                                                                                                

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑗 − ∑ 𝑢𝑟

𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑣𝑜 ≥ 0,    𝑗 = 1,… , 𝑛      

𝑢𝑟 ≥ 0,                                                 𝑟 = 1, … , 𝑠          

𝑣𝑖 ≥  0,                                                  𝑖 = 1, … ,𝑚        

𝑣𝑜 is free in sign.  (2.8) 

The definition of efficiency in the BBC model is the same as the CCR model, however 

for an inefficient DMU, the BCC efficiency is less than or equal to the CCR efficiency 

due to the restriction on PPS caused by the additional restriction (∑ 𝜆𝑗
𝑛
𝑗=1 = 1) in the 

BBC model.  

2.2.3 Additive model  

Additive DEA model was developed by Charnes et al. (1985) as a non-radial 

DEA model that unlike the CCR model and BBC model which are different in the input-

oriented form and output-oriented form, combines input and output orientations in a 
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single model and measure all the inefficiency scores. This model directly deals with the 

input excesses and output shortfalls. The envelopment form of Additive model is 

formulated as the follows: 

maximize  ∑ 𝑠𝑖
−𝑚

𝑖=1 + ∑ 𝑠𝑟
+𝑠

𝑟=1    

Subject to:   

∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 + 𝑠𝑖

− = 𝑥𝑖𝑜 ,   𝑖 = 1, … ,𝑚  

∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 − 𝑠𝑟

+ = 𝑦𝑟𝑜,   𝑟 = 1, … , 𝑠          

∑ 𝜆𝑗
𝑛
𝑗=1 = 1,               𝑗 = 1,… , 𝑛      

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛      

𝑠𝑖
− ≥ 0,                                       𝑖 = 1, … ,𝑚  

𝑠𝑟
+ ≥ 0,                                      𝑟 = 1, … , 𝑠 (2.9) 

where 𝑠𝑖
− is the slack variable for the 𝑖𝑡ℎ input and 𝑠𝑟

+ is the slack variable for the  𝑟𝑡ℎ 

output.  

 

Definition 2.5. Efficiency in additive model  

A DMU is additive efficient, if and only if the optimal value of objective 

function is equal to zero which means all slacks are zero.  ∀ 𝑖, 𝑗 ∶ (𝑠𝑖
−∗ , 𝑠𝑟

+∗) = 0. 

The multiplier form of model (2.9) is indicated in the following formulation: 
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Minimize ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑜 − ∑ 𝑢𝑟

𝑠
𝑟=1 𝑦𝑟𝑜 + 𝑣𝑜   

Subject to:   

∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑗 − ∑ 𝑢𝑟

𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑣𝑜 ≥ 0,         𝑗 = 1,… , 𝑛  

𝑢𝑟 ≥ 1, 𝑟 = 1, … , 𝑠          

𝑣𝑖 ≥  1,                                                        𝑖 = 1, … ,𝑚        

𝑣𝑜 𝑖𝑠 𝑓𝑟𝑒𝑒 𝑖𝑛 𝑠𝑖𝑔𝑛.  (2.10) 

2.2.4 Russell measure model  

Russell measure (RM) model is another non-radial DEA model that was 

proposed by Fare and Lovell (1978) when they observed some difficulties with the 

Farrell’s (1957) measure of technical efficiency. [Russell measure model to measure 

the efficiency of 𝐷𝑀𝑈𝑂 is formulated as the following non-linear mathematical 

programming:] 

minimize 𝑧 =
1

𝑚+𝑠
( ∑ 𝜃𝑖

𝑚
𝑖=1 + ∑  

1

𝜑𝑟

𝑠
𝑟=1 )   

Subject to:   

∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 ≤ 𝜃𝑖𝑥𝑖𝑜 ,  𝑖 = 1, … ,𝑚  

∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 ≥ 𝜑𝑟𝑦𝑟𝑜 ,                             𝑟 = 1, … , 𝑠  

𝜑𝑟 ≥ 1,    𝑟 = 1, … , 𝑠  

𝜃𝑖 ≤  1, 𝑖 = 1, … ,𝑚  

𝜆𝑗 ≥ 0,                                                   𝑗 = 1,… , 𝑛    (2.11) 

where 𝜃𝑖 is the contraction variable for 𝑖𝑡ℎ input and  𝜑𝑟 is the expansion variable for 

𝑟𝑡ℎ  output.  
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Definition 2.6. Efficiency in RM model  

A DMU is RM efficient, if and only if the optimal value of objective function is 

equal to one which means the optimal value of  𝜃𝑖 =  1, ∀ 𝑖  and 𝜑𝑟 = 1, ∀𝑗.         

2.2.5 Slack based measure of efficiency (SBM) 

The slack based measure of efficiency is a non-radial model that deals with 

slacks (input excess and output shortfall) directly which was proposed by Tone (2001). 

The SBM model is invariant with respect to the units of data, and it is monotone 

decreasing with respect to input excess and output shortfall. This model is not 

translation invariant, which means if the original data are translated, the efficient 

frontier and the position of the DMUs relative to the efficient frontier will be changed. 

Also, this measure is reference set dependent which means it should be determined only 

by consulting the reference set of the DMU concerned. In order to measure the 

efficiency of 𝐷𝑀𝑈𝑂, the following fractional programming for SBM model can be 

applied: 

minimize 𝜌 =
1−

1

𝑚
∑

𝑠𝑖
−

𝑥𝑖𝑜

𝑚
𝑖=1

1+
1

𝑠
∑

𝑠𝑟
+

𝑦𝑟𝑜

𝑠
𝑟=1

 
  

Subject to:   

∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 + 𝑠𝑖

− = 𝑥𝑖𝑜 ,   𝑖 = 1, … ,𝑚                                                           

∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 − 𝑠𝑟

+ = 𝑦𝑟𝑜,  𝑟 = 1, … , 𝑠                                

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛  

𝑠𝑖
− ≥ 0, 𝑖 = 1, … ,𝑚                                                           

𝑠𝑟
+ ≥ 0, 𝑟 = 1, … , 𝑠                               (2.12) 

where 𝜃𝑖 is the contraction variable for 𝑖𝑡ℎ input and  𝜑𝑟 is the expansion variable for 

𝑟𝑡ℎ  output.  
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Note if  𝑥𝑖𝑜 = 0, then 
𝑠𝑖
−

𝑥𝑖𝑜
 will be eliminated from objective function and if 𝑦𝑟𝑜 ≤ 0, 

then it is possible to change it with a small positive scalar and so 
𝑠𝑟
+

𝑦𝑟𝑜
  plays a penalty 

role.  It can be observed that by increasing  𝑠𝑖
−, 𝑠𝑟

+ while the other variables are supposed 

to be fixed, the value of objective function will be decreased, and it shows that the slack 

base measure of efficiency is monotone decreasing. Moreover, 0 ≤ 𝜌 ≤ 1. 

Definition 2.6. Efficiency in SBM model  

A DMU is SBM efficient, if and only if the optimal value of objective function 

is equal to one (𝜌∗ = 1) which means the optimal value of the input and output slacks 

are equal to zero; (𝑠𝑖
−∗ , 𝑠𝑟

+∗) = 0. 

SBM model can be transformed to a linear mathematical programming by introducing 

a positive scalar variable (t) as follows: 

minimize 𝜏 = 𝑡 −
1

𝑚
∑

𝑡𝑠𝑖
−

𝑥𝑖𝑜

𝑚
𝑖=1    

Subject to:   

𝑡 +
1

𝑟
∑

𝑡𝑠𝑟
+

𝑦𝑟𝑜

𝑠
𝑟=1 = 1,    

∑ 𝜆𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 + 𝑠𝑖

− = 𝑥𝑖𝑜 ,  𝑖 = 1, … ,𝑚  

∑ 𝜆𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 − 𝑠𝑟

+ = 𝑦𝑟𝑜,  𝑟 = 1, … , 𝑠     

𝜆𝑗 ≥ 0, 𝑗 = 1,… , 𝑛     

𝑠𝑖
− ≥ 0, 𝑖 = 1, … ,𝑚  

𝑠𝑟
+ ≥ 0. 𝑟 = 1, … , 𝑠    (2.13) 

Model (2.13) can be transformed into a linear model by defining  𝑆− = 𝑡𝑠− , 𝑆+ = 𝑡𝑠+, 

Λ = 𝑡𝜆 as shown in the following mathematical programming: 
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minimize 𝜏 = 𝑡 −
1

𝑚
∑

𝑆𝑆𝑖
−

𝑥𝑖𝑜

𝑚
𝑖=1    

Subject to:   

𝑡 +
1

𝑟
∑

𝑆𝑟
+

𝑦𝑟𝑜

𝑠
𝑟=1 = 1,    

∑ Λ𝑗
𝑛
𝑗=1 𝑥𝑖𝑗 + 𝑆𝑖

− = 𝑡𝑥𝑖𝑜 ,                               𝑖 = 1, … ,𝑚                    

∑ Λ𝑗
𝑛
𝑗=1 𝑦𝑟𝑗 − 𝑆𝑟

+ = 𝑡𝑦𝑟𝑜 ,                              𝑟 = 1, … , 𝑠     

Λ𝑗 ≥ 0, 𝑗 = 1,… , 𝑛  

𝑆𝑖
− ≥ 0, 𝑖 = 1, … ,𝑚                    

𝑆𝑟
+ ≥ 0, 𝑟 = 1, … , 𝑠     

𝑡 > 0.  (2.14) 

Let (𝜏∗, 𝑡∗,Λ^*, 𝑆−
∗
, 𝑆+

∗
) be an optimal solution of model (2.14). Hence the optimal 

solution of SBM model is defined by 𝜌∗ = 𝜏∗, 𝜆∗ =
𝛬∗

𝑡∗
  , 𝑠−

∗
=   

𝑆−
∗

𝑡∗
  and  𝑠+

∗

=   
𝑆+

∗

𝑡∗
. 

The optimal value of SBM model (𝜌∗) is not greater than the optimal value of CCR 

model (𝜃∗) because the CCR model does not account slacks in efficiency measure and 

accounts only for purely technical inefficiency whereas the SBM model accounts the 

input and output slacks into efficiency measurement and therefore SBM model account 

for all inefficiencies. If the SBM model is assumed in variable returns to scale, it can be 

easily expressed by adding the convexity constraint (∑ 𝜆𝑗
𝑛
𝑗=1 = 1) into the formulation 

(2.12) (Cooper et al., 2007). 

The following mathematical programming is the dual program of SBM model:  
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maximize ∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜 − ∑ 𝑣𝑖

𝑠
𝑟=1 𝑥𝑖𝑜     

Subject to:   

∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜 − ∑ 𝑣𝑖

𝑚
𝑖=1 𝑥𝑖𝑜 + 1 ≤ 𝑠𝑦𝑟𝑜 ,      

∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖

𝑚
𝑖=1 𝑥𝑖𝑗 ≤ 0,   𝑗 = 1,… , 𝑛         

(𝑚𝑥𝑖𝑜)𝑣𝑖 ≥ 1,                                                          𝑖 = 1, … ,𝑚  

𝑢𝑟 ≥ 0,                                                𝑟 = 1, … , 𝑠      

𝑣𝑖 ≥ 0.      𝑖 = 1, … ,𝑚 (2.15) 

𝐷𝑀𝑈𝑂 is efficient in the multiplier form of SBM model when the optimal value of 

objective function in the optimal solution is equal to zero (Tone, 2001).  

2.3 Weakness in weight distribution and discrimination power in DEA models 

Applying DEA models for a set of DMUs when the number of DMUs is less 

than the number of inputs and outputs may result in evaluating many of these DMUs as 

an efficient unit. The high number of efficient DMUs will not give an acceptable and 

reliable ranking of DMUs which is necessary in many real-world applications of DEA 

models. This is one of the main drawbacks of the conventional DEA models. On the 

other hand, in the multiplier DEA models a variable weight is associated with each input 

and output. By varying these weights, the efficiency of 𝐷𝑀𝑈𝑂 can be determined by 

maximizing the ratio of weighted sum of its outputs to the weighted sum of its inputs.  

The optimal weight assessed by the conventional multiplier model such as CCR and 

BCC, put 𝐷𝑀𝑈𝑂 in the best light compared to all other DMUs, because the model is 

free to set its weight to attempt to reach the efficient frontier. The flexibility in selecting 

weights permits the DMUs to choose very small weights and even zero for some inputs 

and outputs which is not acceptable, because it means some of the variables were not 

used in the efficiency assessment. To overcome this problem and restrict the flexibility 
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of inputs and outputs weights, several models have been presented which are called 

weight restriction models. These models improve the discrimination power of DEA 

models.  

Generally, weight restrictions will be added into the DEA models in the form of 

additional constraints on the weights of inputs and outputs in the multiplier model, 

which leads to the expansion of the production technology (Allen et al., 1997; Roll et 

al., 1991). In order to incorporate weight restrictions into DEA models various methods 

and models have been presented in the literature of DEA, a very detailed classification 

is given in Allen et al. (1997) and Thanassoulis et al. (2004). Absolute weight restriction 

model by Dyson and Thanassoulis (1988), Assurance region model of type I by 

Thompson et al. (1986), Assurance region type II Thompson et al. (1990), common 

weights model by Roll et al. (1991), super efficiency model by Andersen and Petersen 

(1993), cross efficiency assessment by Green et al. (1996), multi objective programs by 

Li and Reeves (1999) and weight restriction based on production trade-offs by 

Podinovski (2004), are some of the well-known weight restriction approaches. 

2.4 Approaches for handling lack of discrimination in DEA models  

2.4.1 Absolute weight restriction  

Dyson and Thanassoulis (1988) were the first who introduced absolute weight 

restrictions which the inputs and outputs weight can only vary in a specific range.  In 

other words, this method defines lower and upper bounds for weight factors related to 

inputs or outputs. The absolute weight restrictions are defined as follows: 

𝜌𝑟 ≤ 𝑢𝑟 ≤ 𝜂𝑟 .                                      𝛿𝑖 ≤ 𝑣𝑖 ≤ 𝜏𝑖.                      

 




