
COMPUTE LANGUAGE INTERFACE: A

TRANSPARENT WRAPPER LIBRARY FOR

MULTI CPU-GPU

by

OOI KENG SIANG

Thesis submitted in fulfilment of the requirements
for the Degree of

Master of Sciences

March 2013

ACKNOWLEDGEMENTS

First of all, I wants to express my gratitude to my supervisor Dr. Chan Huah

Yong for spending his precious time supervising my research work and providing me

all the necessary advises and equipment for my research study. Thanks to School of

Computer Sciences given me the well-equipped research environment to complete

my research study.

I wants to give thanks to my parents for supporting my study ever since I was

small until today. Thanks to my beloved who always supports and encourages me.

Without their supports, I would not be able to make it so far.

I want to say thank you to all my friends and lab members whom help me go

through all different kind of troubles and problems during my research study. Last

but not least, thanks to the Ministry of Higher Education for offering me the

MyMaster scholarship which helps me to pay off the school fee in USM.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ii

TABLE OF CONTENTS iii

LIST OF TABLES vi

LIST OF FIGURES vii

LIST OF ABBREVIATIONS x

ABSTRAK xii

ABSTRACT xiii

CHAPTER 1 INTRODUCTION 1

1.1 Introduction ofGeneral-Purpose Computing on Graphics Processing Unit. 1

1.2 Background of the Problem 3

1.3 Research Problem 6

1.4 Justification of Research Problem 6

1.5 Objectives 8

1.6 Significance of the Research 8

1.7 Scope of the Research 9

1.8 Research Methodology 10

1.9 Contribution 11

1.10 Thesis Organisation 12

CHAPTER 2 LITERATURE REVIEW 13

2.1 Introduction 13

iii

2.2 General-Purpose Computing on Graphics Processing Unit (GPGPU) 14

2.3 Distributed Computing System 16

2.4 GPGPU in Distributed Computing System 19

2.5 CPU-GPU Benchmarking 20

2.6 Related Work 21

2.6.1 OpenCL Execution Model 21

2.6.2 MPI Execution Model 26

2.6.3 CPU Role in GPGPU Distributed Computing System 27

2.7 Discussion 29

CHAPTER 3 DESIGN OF COMPUTE LANGUAGE INTERFACE 32

3.1 Flow of Research 32

3.2 The Concept ofWrapper Library for CPU-GPU 33

3.3 Prototype Experiment Design 40

3.4 Limitations and Assumptions 41

CHAPTER4 IMPLEMENTATION OF THE WRAPPER LIBRARY FOR

MULTI CPU-GPU 43

4.1 Introduction 43

4.2 Compute Language Interface Framework 43

4.3.1 OpenCL Layer 44

4.3.2 MPI Layer 49

4.3.3 Memory Architecture 60

4.3.4 Limitation 64

iv

4.3 Evaluation Method 67

4.4 Application Optimization 68

4.5 Application Optimization Rules 71

4.6 Summary 75

CHAPTER 5 PERFORMANCE AND TRANSPARENCY EVALUATION 76

5.1 Introduction 76

5.2 Environment Setup 76

5.3 CLI Processing Overhead 80

5.4 CLI Performance on Single Device 84

5.5 CLI Performance on Multiple Devices 86

5.6 Workload Ratio between GPU & CPU 89

5.7 CLI Framework Transparency 91

5.8 Summary 94

CHAPTER 6 CONCLUSION AND FUTURE WORKS 96

6.1 Summary ofCompute Language Interface 96

6.2 Limitation of Compute Language Interface 98

6.3 Possible Improvement and Future Work 99

REFERENCES 100

APPENDIX A 104

APPENDIX B 105

Example ofOpenCL Host Program 105

Example ofOpenCL Kernel Program 110

v

LIST OF TABLES

Table 2.1: Comparison of GPGPU frameworks 16

Table 2.2: Comparison of frameworks and protocols used in distributed computing

system 19

Table 2.3: Comparison of GPU-only framework and CPU-GPU framework in

distributed computing system 28

Table 2.4: Comparison of existing framework and proposed solution 30

Table 2.5: Comparison of existing research project solutions and proposed solution31

Table 4.1: Complete list ofOpenCL functions supported in CLI 64

Table 5.1: Machine A's Specification 77

Table 5.2: Machine B's Specification 77

Table 5.3: Machine C's Specification 77

Table 5.4: CLI performance versus native OpenCL performance 82

Table A.I : Complete list ofOpenCL functions not supported in CLI 104

vi

LIST OF FIGURES

Figure 1.1: Research procedures 10

Figure 1.2: Research focus area 11

Figure 2.1: The general flow of application running on OpenCL programming

framework 23

Figure 2.2: An example of an NDRange index space showing work-items, their

global IDs and their mapping onto the pair of work-group and local IDs (Khronos

OpenCL Working Group, 20 10) 25

Figure 2.3: The general flow of application running on MPI 26

Figure 3.1: Application access on existing GPGPU frameworks compared with

proposed framework 35

Figure 3.2: Flow of proposed framework access compute resources 37

Figure 3.3: Simplified OpenCL library from different vendors 38

Figure 3.4: Basic concept of transparent memory transfer among multiple computers

in GPGPU application 40

Figure 4.1: OpenCL with different platforms and different contexts 45

Figure 4.2: CLI with universal proxy platform and context for all hardware devices46

Figure 4.3: OpenCL layer used the same API like OpenCL while hiding all the

communication details 47

Figure 4.4: Snippets of clGetDeviceIDs function hiding in CLI all the MPI calls 48

Figure 4.5: Snippets of clCreateContext function that serve as a universal context.. 49

Figure 4.6: Wrapper object concept 50

Figure 4.7: Inside ofOpenCL wrapper object 51

Figure 4.8: Snippets of clCreateCommandQueue function using wrapper object.. 52

Figure 4.9: Concept of wrapper object in multiple computers environment 53

vii

Figure 4.10: Problem of synchronizated function call in distributed computing

system 54

Figure 4.11: Synchronized function call 55

Figure 4.12: Snippets of synchronized clEnqueueReadBuffer implementation 56

Figure 4.13: Snippets of non-synchronized clEnqueueNDRangeKernel

implementation 58

Figure 4.14: Non-synchronized function call.. 59

Figure 4.15: Snippets ofa custom eLI function to broadcast error code 60

Figure 4.16: Memory architecture of GPGPU framework in distributed computing

system 61

Figure 4.17: Memory transfer between device's memory and computer's memory. 63

Figure 4.18: General OpenflL application flow with and without kernel profiling ... 69

Figure 4.19: Snippets of program that call kernel execution follow by kernel profiling

.. 70

Figure 4.20: Example of filtering rules to include only GPU devices 72

Figure 4.21: Example of filtering rules to include only devices with 6 or more scalar

processors 72

Figure 4.22: Overview of application applying optimization rules using eLI 74

Figure 5.1: Network Setup for Three Machine in Experiments 78

Figure 5.2: Image rendered by ray tracing running on eLI 80

Figure 5.3: Overview of eLI Targeting Remote Device Located in Another Machine

.. 81

Figure 5.4: Performance of eLI on different devices 85

Figure 5.5: Performance of eLI on single and multiple devices 87

viii

Figure 5.6: Performance changes with different workload ratio between GPU and

CPU 90

Figure 5.7: Overview of changes required between native OpenCL framework and

eLI framework 93

ix

LIST OF ABBREVIATIONS

API - Application Programming Interface

BrookGPU - Brook for GPU

Cg - C for Graphic

CLI - Compute Language Interface

CPU - Central Processing Unit

CUDA - Compute Unified Device Architecture

DNA - Deoxyribonucleic acid

FLOPS - Floating Point Operations per Second

GFLOPS - Giga Floating Point Operations per Second

GLslang - OpenGL Shading Language

GPGPU - General-Purpose Computing on Graphics Processing Unit

GPU - Graphics Processing Unit

HLSL - High Level Shader

MPI - Message Passing Interface

OpenCL - Open Computing Language

OpenGL - Open Graphic Language

PCIe - Peripheral Component Interconnect Express

RPC - Remote Procedure Call

x

SIMD - Single Instruction Multiple Data

SSI - Single System Image

TCP/IP - Transmission Control Protocol and Internet Protocol

xi

ANTARMUKA BAHASA PENGIRAAN: SATU SALUTAN

PUSTAKA YANG TELUS UNTUK CPU-GPU BERBILANG

ABSTRAK

Keupayaan pemprosesan bagi Unit Pemprosesan Grafik (GPU) didapati lebih

berkesan daripada sebelum ini. Aplikasi jenis data paralelisme dan intensif pengiraan

terbukti lebih baik apabila dijalankan dalam GPU berbanding dengan Unit

Pemprosesan Pusat (CPU). Namun begitu, rangka-rangka kerja pengaturcaraan bagi

GPGPU yang ada masih tidak dapat menyokong CPU dan GPU terletak di komputer

lain dalam sistem pengkomputeran teragih. Kajian ini mengemukakan CLI yang

merupakan satu salutan pustaka yang membolehkan aplikasi OpenCL untuk

mengakses secara telus bagi semua CPU dan GPU yang ada dalam sistem

pengkomputeran teragih dengan MPI. CLI direka untuk meningkatkan

kebolehskalaan aplikasi OpenCL dalam sistem pengkomputeran teragih di samping

dapat mengekalkan set API yang sama dalam pusaka OpenCL asal. Aplikasi dapat

menggunkan semua CPU dan GPU yang ada di dalam komputer yang berbeza

dengan sistem pengkomputeran teragih seolah-olah semua CPU dan GPU terletak di

dalam satu komputer yang sama. Ujikaji dalam kajian ini menunjukkan bahawa

aplikasi yang menggunakan CLI dengan dua GPU dapat mempercepatkan masa

pemprosesan keseluruhan sebanyak 44 peratus berbanding dengan satu GPU sahaja.

Manakala aplikasi yang menggunakan satu CPU dan satu GPU dapat

mempercepatkan masa pemprosesan keseluruhan sebanyak 51 peratus dengan

overhed hanya 0.1 peratus tambahan berbanding dengan rangka kerja pengaturcaraan

yang asal.

xii

COMPUTE LANGUAGE INTERFACE: A TRANSPARENT

WRAPPER LIBRARY FOR MULTI CPU-GPU

ABSTRACT

The Graphics Processing Unit (GPU) processing capability is getting more

powerful than before. Compute intensive and data parallelism applications are

proven to perform better on the GPU than on the Central Processing Unit (CPU).

However, available General-Purpose Computing on Graphics Processing Unit

(GPGPU) programming frameworks which are available publicly are unable to reach

beyond the single computer limitation to utilize multiple CPUs and GPUs at different

computers in a distributed computing system easily. This study presents the Compute

Language Interface (CLI) which is a wrapper library that enables the existing

OpenCL applications access to all available CPUs and GPUs in a distributed

computing system through Message Passing Interface (MPI) transparently. It is

designed to improve the scalability of the OpenCL applications on a distributed

computing system while maintaining the same set of application programming

interface (API) in the original OpenCL library. The applications can access all

available CPUs and GPUs in different computers in a distributed computing system

as ifall the CPUs and GPUs are in the same computer. One of the experiments shows

that the application running on two GPUs using the CLI can reduce the overall

processing time by 44% if compared with one GPU. While the application running

on one CPU and one GPU can reduce the overall processing time by 51% with 0.1 %

increases of overhead if compared with the native programming framework.

xiii

CHAPTER!

INTRODUCTION

1.1 Introduction of General-Purpose Computing on Graphics

Processing Unit

Over recent years, graphics processing unit (GPU) has played a more

significant role, rather than just accelerating the computational of graphics rendering

from central processing unit (CPU). Now GPU can use its massive floating-point

computational power that is originally designed for graphics rendering computation

to perform non-graphical computational (Buck, et al., 2004). The technique used to

perform non-graphical computational on the GPU that is usually handled by the

conventional CPU is called general-purpose computing on graphics processing unit

(GPGPU) (Wu & Liu, 2008).

Driven by the demand in computer gaming and console gaming industry, the

GPU technology has been growing faster and becoming cheaper. The GPU was even

proven to outperform the CPU in compute intensive and data parallelism application

(Buck, et al., 2004; Fan, et al., 2008; Lawlor, 2009). In year 2011, the latest high-end

workstation GPU like NVIDIA Tesla C2070 and AMD FireStream 9370 are capable

of performing over 515 Giga floating point operations per second (GFLOPS)

(NVIDIA, 2010) and 528 GFLOPS (AMD, 2011) in double precision calculations.

On the other hand, high-end workstation CPU like the Intel Xeon Processor X7560 is

only capable of performing over 82 GFLOPS in double precision calculations (Intel,

2011). This is because CPU is designed to execute common workloads, such as basic

1

arithmetical, logical and input-output operations of the system. In contrast, GPU is

only designed to process large amounts of independent data in parallel with its

massive number of scalar processors (Aoki, et aI., 2010).

Although the GPU is a powerful yet low cost resource, adoption of GPU in

massive distributed computing or scientific computing is still relatively low (Owens,

et aI., 2007). This is because there are only limited number of programming

frameworks available to program on GPU currently and many of them are unahle to

scale beyond a single computer as they are designed for a single computer

environment (Aoki, et al., 2010). Complicated architecture design and

implementation involving different frameworks are required to develop a GPGPU

application that is capable to execute on multiple computers that span across the

network (Fan, et aI., 2008; Lawlor, 2009; Moerschell & Owens, 2008). The problem

becomes even worse, when the computation involves heterogeneous computing

resources from various types of hardware and vendors.

The GPU indeed is very powerful for executing compute intensive and data

parallelism applications and it is very suitable to be used as an alternative

computational resources in massive distributed computing or scientific computing.

The major problem with the GPU currently is that the programming frameworks are

not designed for massive distributed computing because the framework cannot

support processors or resources beyond a single computer (Aoki, et aI., 2010). This

research targets to solve the problems using the Compute Language Interface (CLI)

which is a transparent wrapper library for GPGPU applications. It allows

applications execute transparency on multiple GPUs and CPUs located in multiple

different computers in the same network. The objectives are to improve the

2

performance and load balancing among all available resources, while keeping the

development of GPGPU applications as simple as possible to avoid a steep learning

curve.

1.2 Background of the Problem

The GPU is indeed a powerful and low cost computing power for scientific

computing or computing that requires massive computing power (Owens, et aI.,

2007). Presently, the CPU remains as the most popular choice in the distributed

computing even though the GPU was already proven to outperform the CPU in

compute intensive calculation. This is because the programming frameworks

available for the CPU are widely used and much simpler if compared with

programming frameworks for the GPU (Lee, et al., 2009). Development of GPGPU

applications on the distributed computing systems remains a tedious task for

programmers, as they need to solve all the problems and challenges before the

application can takes the advantages of all GPU processing power on all computers

in the distributed computing systems.

A programming framework or application framework is a set of reusable

class library, application programming interface (API) and structure that can be used

by other applications (Fayad, 2000). The number of public available programming

frameworks that can support GPGPU are currently very limited. The programming

framework selection is further narrow down because each of the available

programming framework has its own limitations (Owens, et al., 2007). The most

widely used CUDA programming framework is designed to support only NVIDIA's

GPUs (Aoki, et aI., 2010), while DirectCompute for the GPGPU development which

3

is part of the popular DirectX programming framework is designed to support only in

the Microsoft Windows platform (Wu & Liu, 2008). Although the OpenCL IS

designed to solve the problem of vendor and platform limitations by enabling the

application to utilize CPUs, GPUs, Cell Processors and other parallel processors

without tightly having to specify hardware or vendors, currently all hardware

vendors are implementing their own versions of OpenCL library that only supports

their own products.

Since a single computer can only have a few Peripheral Component

Interconnect Express (PCIe) slots for GPUs; therefore, GPU resources are usually

limited to a maximum of four GPUs. This because most existing GPGPU

programming frameworks only support a single computer environment and do not

support multiple computers environment across the networks. To scale beyond the

limitation of PCIe slots on a single computer, programming frameworks or protocols

like Message Passing Interface (MPI), Remote Procedure Call (RPC) or other

networks programming frameworks are required to integrate with GPGPU

programming framework to enable communication among computers (Aoki, et al.,

2010; Lawlor, 2009). The complicated frameworks and the high difficulty of

integrating multiple programming frameworks have caused the low adoption of GPU

in massive distributed computing or scientific computing (Fan, et al., 2008; Lawlor,

2009). Many still prefer CPU over GPU because the CPU programming frameworks

or libraries are much widely used and easier to implement if compared with the GPU

in an environment with many computers.

To simplify the implementation of a GPGPU application which is capable to

execute on multiple computers environment, many research projects choose to let

4

GPU handles all computational tasks, while let CPU handles all communication tasks

among computers (Lawlor, 2009). This is because the GPU is unable to access

directly to other devices such as network cards. The GPU has many advantages over

the CPU in executing compute intensive and data parallelism applications, but the

CPU computing power should not be ignored (Fan, et aI., 2008) especially when

current CPUs can easily scale up to 6 cores on a single CPU chip and a single

computer can have multiple sockets for multiple CPUs. The CPU has also been

proven as powerful as the GPU when appropriate optimization is applied (Lee, et aI.,

2010). The computational power and the functionalities of the CPU, other than just

performing communication tasks should be taken into consideration. This helps

utilizing all available resources more effectively while providing a better

performance in the distributed computing systems.

Although the idea of utilizing all available resources like CPUs and GPUs to

speed up the computational time is very simple, optimizing applications and

distribute the workloads to different types of processors can be very challenging

(Aoki, et aI., 2010). This is because some low-end CPUs and GPUs have limited

processing power and memory to handle any extra workload. Some low-end CPUs

and GPUs might even slow down the overall processing time. Furthermore, the

distributed computing systems are commonly built using different models and types

of GPUs and CPUs. This will further increases the challenges in optimizing

applications running on them. Multiple test runs are required to optimize a GPGPU

application currently because different GPU models perform differently. In addition,

the performance of GPU is not directly proportional to the processor's frequency or

number of scalar processor like CPU. This makes optimizing application designed

for CPUs and GPUs become more challenging.

5

1.3 Research Problem

This thesis concentrates on the challenges faced by integrating GPUs and

CPUs that span across multiple computers to achieve better scalability and

performance results as discussed in section 1.2. The main problem in this research is

"How to enhance existing programming framework to support CPU and GPU that

span across multiple computers?"

The sub problems of this research are as follows:

• How to improve the scalability of existing programming framework on

GPGPU and CPU?

• How to enhance the existing programrmng frameworks to enables

applications access to all available processors transparently?

• How to further optimize an application running on many different types of

device be without involving a major modification?

1.4 Justification of Research Problem

Even though the powerful computational power of GPU might be the answer

for the ever increasing demand of compute intensive applications, the existing

GPGPU programming frameworks are designed for a single computer environment

only (Aoki, et aI., 2010). They are still not powerful enough for applications like

computer graphic rendering applications that are normally saw in the movies or

scientific simulation applications which require large amount of computing powers.

6

Computational power of GPOPU needs to be scaled beyond the limit of a single

computer. Implementation difficulty and lack of frameworks to support the OPOPU

in the distributed computing environment has caused the low adoption of GPU in the

distributed computing systems. A better framework that enables OPGPU applications

to run on multiple computers environment is thus required. Nevertheless, the

framework should be as simple as possible.

Although some research projects propose frameworks that allow the GPGPU

to scale across multiple computers on the distributing computing systems, those

frameworks do not fully explore all available resources like CPUs (Owens, et al.,

2007). This happen because the GPU's processing power is far more powerful than

the CPU. While at the same time CPU is required to handle extra tasks like

communication among computers which does not involve OPU at all (Lawlor, 2009;

Fan, et al., 2008). This might be true for computers with a single CPU, as it will be

overloaded by the communication and operating system tasks. However, for a

computer with two or more CPUs, it will be a waste of resources if the other CPUs

processing power is left out during the computational time. Two or more CPUs built

in a workstation computer or server are very common now and applications need to

utilize the available resources more effectively. Since there is a huge difference

between the CPU and the GPU in terms of architectural design and processing

capabilities, a more in-depth study of the ratio of workloads between CPUs and

OPUs is required.

7

1.5 Objectives

The main objective of this research is to improve existing programming frameworks

on GPGPU and CPU to gain the following advantages:

• To scale beyond the limit of a single computer and executes on one or more

CPUs or GPUs at the same time.

• To enable applications transparently access to different CPUs and GPUs in

different computers.

• To provide a better way of controlling and optimizing application running on

GPUs and CPUs in a distributed computing system.

1.6 Significance of the Research

Driven by the ever increasing demand for more powerful processing power

by compute intensive applications such as simulation application and gaming

(Owens, et al., 2007; Fan, et al., 2008), the GPU's high computational power is

indeed an attractive resource that can be used as an alternative resource other than

the CPU. Different types of programming frameworks have been introduced to ease

the developer tasks in GPU programming, but GPU cluster or multiple computers

environment involving communication among GPUs on different computers remains

a big problem and challenge (Fan, et al., 2008). Developers need a better

programming framework that supports GPGPU execution on multiple computers

environment without major modification in the existing applications.

Consumer level GPU that supports OpenCL or CUDA are commonly found

in laptops or computers nowadays. Grid computing systems that build using many

8

different computers including the consumer level of computer are require a simple

yet powerful programming framework or library to enable applications to utilize the

GPU resources. Application executing on different models and vendors of GPUs and

CPUs might become a big problem because some low-end CPUs or GPUs might

slow down overall processing time. Applications need a better way to utilize all

available resources, yet a simple way to optimize the applications to adapt to

different hardware environments.

1.7 Scope of the Research

The scope of this research covers the following:

• Review the existing programming frameworks in order to propose an

improved library wrapper that enables applications to execute on GPU or

other parallel processors like CPU that span across multiple computers on a

network.

• Primary focus is on improving the performance and scalability of CPUs

GPUs in the distributed computing system; others like security, reliability and

load balancing will not be discussed in detail.

• Analyse the workloads ratio for GPU and CPU when combining both

different types of processors for computing.

9

1.8 Research Methodology

Figure 1.1 shows a preview of research procedures from analysing existing

programming frameworks until the design and testing of the proposed framework.

While Figure 1.2 shows the focusing research area in this study and the proposed

solution.

• Analyse existing GPGPU frameworks, communication
framework in distributed computing system and related research

projects
• Items to consider:

./ Support CPU / GPU computation

./ Communication among multiple computers

./ Transparency and ease of use

./ Implementation difficulty

• Design & implement the proposed framework
• Items to consider:

./ Support CPU & GPU computation

./ Transparent access to CPUs / GPUs in different computers

./ Easier to optimize GPGPU applications

./ No changes or minimum changes on existing applications

• Test and compare proposed framework with existing frameworks
• Analyse and discuss the experiment results
• Items to consider:

./ Extra overhead

./ Performance gain

./ Scale from one computer / device to multiples

./ Optimum workload ratio for CPU and GPU

./ Transparency

Figure 1.1: Research procedures

10

Application

GPGPU Framework

GPGPU Framework

Operating System
(Local)

Communication
Framework

At the end of this research, this study produces the following contributions:

GPU

(Local)
CPU

(Local)

Operating System
(Remote)

GPU

(Remote)
CPU

(Remote)

Figure 1.2: Research focus area

1.9 Contribution

• A wrapper library for GPGPU and CPU that enables applications to scale

beyond a single computer in a distributed computing system.

• Simplify the enhanced programming framework to allow the applications to

transparently access all available GPUs and CPUs in a distributed computing

system.

• A better way to control and optimize applications running in the environment

with many different types of devices without complicated changes.

11

1.10 Thesis Organisation

Chapter 2 reviews the existing GPGPU and distributed computing

technologies and research projects. The chapter is divide into several sections to

discuss each technique in detail. This includes GPGPU, distributed computing,

GPGPU in distributed computing systems and combining CPU-GPU in distributed

computing systems. All related works are also included at the end of this chapter.

Chapter 3 covers the proposed framework design in this research. This

chapter begins with simple flow of research that explains each phase of the research.

This is then followed by a discussion of the proposed theoretical framework. The

theoretical framework is further supported with justification of the research problems,

research design, research limitations and assumptions.

Chapter 4 explains in detail the technologies, techniques and methods

selected to achieve higher scalability, better resources utilization and simpler

framework for GPGPU in the distributed computing systems. The implementation of

the proposed framework and prototype is explained throughout the whole chapter.

Chapter 5 contains the experimental methods and results of this research. The

experiments covers the performance of existing programming frameworks and the

programming framework proposed by this research in various scenarios. The results

are further analysed and discussed in this chapter.

The last chapter, Chapter 6 concludes the findings and outcomes of this

research. The chapter also includes the suggestions for future works that could be

done related to this research.

12

CHAPTER2

LITERATURE REVIEW

2.1 Introduction

Other than CPU, the GPU is a very powerful and cheap computational

resource, which can be used in the distributed computing systems. Examples of

applications that can take advantages on those powerful computational resources are

Deoxyribonucleic acid (DNA) sequencing simulation, molecular modelling, weather

forecasting, video processing, 3-dimension computer graphics rendering and many

more. One of the problems is that the cost to develop a GPGPU application currently

is very high. This is because developers face a lot of different challenges in

developing a GPGPU application with the existing GPGPU programming

frameworks.

This chapter explores and discusses in depth of the GPGPU programming

frameworks evolution from the past until today. Protocols or programming

frameworks used for communication among computers in the distributed computing

systems are also included in the study to provide a foundation for the selection of

teclmologies and technique to be used in this research. Other research projects

concerning the GPGPU and the CPU-GPU used in distributed computing systems are

discuss in detail in the following section. Related works about the GPGPU execution

model and the distributed computing flow are also included. At the end of this

chapter, the suitable techniques or frameworks are selected to integrate into the

proposed frameworks.

13

2.2 General-Purpose Computing on Graphics Processing Unit

(GPGPU)

A GPU is built with many scalar processors that enables it to execute a single

instruction on multiple data at the same time. The powerful processing power of

GPU had attracted the attention of programmers since 2002 to perform non-graphical

computational tasks. Before 2004, writing a GPGPU application was a tedious task

because hardware and programming frameworks to support the GPGPU were very

limited. Programmers were required to write the programming model into multiple

graphic fragments or vertex shaders manually using languages or library like C for

Graphics (Cg), High Level Shader Language (HLSL) or OpenGL Shading Language

(GLslang) so that it can be processed by the GPU. With the limitations in graphic

programming framework, expressing algorithms in shading language can be

extraordinarily hard (Buck, et al., 2004).

Buck et al. (2004) proposed the very first public available GPGPU

framework, Brook for GPU (BrookGPU) (BrookGPU, 2007). BrookGPU was

designed as a high level programming language to address the problem of matching

algorithm using the low level graphic programming interface and graphic shader.

The framework cuts the arduous work needed to understand the shading languages

and the underlying hardware architecture (Buck, et al., 2004). The development of

BrookGPU has been discontinued since year 2007, but BrookGPU has brought the

GPGPU development to a new level where programmers no longer required any

knowledge of graphic shader to program GPGPU.

14

NVIDIA further simplified the development of the GPGPU by introducing

Compute Unified Device Architecture (CUDA), which is currently the most widely

used proprietary programming framework in GPGPU development (Lawlor, 2009).

CUDA provides programmers with a high level API for GPGPU with extended C

programming language, which is already familiar among most programmers. This

allows programmers to focus on writing efficient parallel applications without

wasting their time to learn everything from ground zero (Garland, et al., 2008).

Unlike BrookGPU, CUDA is still continuously updated and maintained by NVIDIA,

but NVIDIA specially designed CUDA to support only NVIDIA's GPUs.

Besides CUDA, DirectCompute is an API developed by Microsoft for

GPGPU development on the Windows platform. DirectCompute is the subset of

APIs in DirectX proprietary programming framework that is included in DirectX

since version 11 (Wu & Liu, 2008). The DirectX is the most popular framework used

in the development of video games currently. The DirectCompute is designed to run

on any DirectX 10 capable GPU, which is commonly found in the market today

without any vendor limitation. However, it is limited to Windows platform that

supports at least DirectX 10 such as the Windows Vista and Windows 7. Just like

CUDA, DirectCompute can only run on GPUs.

To solve the vendor and platform limitations, Apple Inc. initiated Open

Compute Language (OpenCL), which is an open royalty-free standard parallel

programming for modern processors that includes CPU, GPU, Cell Processor and

other parallel processors (Kim, et al., 2011). The OpenCL has received full support

from hardware vendors such as AMD, NVIDIA, Intel and IBM. Although the

OpenCL was initially designed for cross operating system and cross hardware vendor

15

programming framework. currently all hardware vendors are implementing their own

versions of OpenCL API that only support their ovvn products (Aoki. et al., 20 l O). It

is possible to utilize CPUs and GPUs from different vendors. but it requires tedious

work to make it happen. The OpenCL standard is currently maintained by Khronos

Group. Table 2.1 shows the sumrnarv of all GPGPU frameworks that have been

discussed.

Table 2.1: Comparison of GPGPU frameworks

Brook for
CUDA OpenCL DirectComputeGPU

GPU Support Yes Yes Yes Yes

CPU Support Yes No Yes No

NVIDIA
NVIDIA Depend on

NVIDIA GPU
Supported GPU GPU & AMD

GPU Only
GPU

& AMD GPU
GPU Vendor

Supported Cross Cross Cross Windows
Platform Platforms Platforms Platforms Platform Only

Low

Popularity (Project High Medium Low

Discontinued)

2.3 Distributed Computing System

A distributed computing system is consists of multiple computers that are

connected and communicated through computer networks. Each computer has its

own local memory. which is not share with other computers. It is called distributed

memory and all computers communicate through data transferring or message

passing. The goal of a distributed computing system is to speed up the processing of

a large problem by dividing the problem into many smaller problems that can be

processed by many computers. Since the existing GPGPU programming frameworks

16

are designed for a single computer environment, distributed computing frameworks

or protocols are required to integrate into GPGPU programming frameworks to

provide the communication function among computers in the distributed computing

systems.

Message Passing Interface (MPI) is a language independent communication

protocol that is used to program parallel distributed computer. The simple concept of

point to point communication and collective communication have made MPT as the

de facto standard used in distributed memory systems like computer clusters or grid

computing (Lawlor, 2009). Since the MPI runs on a distributed memory system, the

programmer is required to keep track of the data locality and communication

explicitly (Silcock & Goscinski, 1996). Besides, the MPI is originally designed and

intended for CPU processing only and GPU is yet to be supported by any public

available MPI programming framework (Fan, et al., 2008).

Remote Procedure Call (RPC) is an inter-process communication protocol

that allows applications to execute procedure call on another remote computer just

like executing procedure call on the local computer. RPC is able to abstract away the

details of communication and data movement (Silcock & Goscinski, 1996). Unlike

the MPI, the RPC reduces the burden of programmers by simplifying the procedure

call without explicitly controlling the data movement and processes involved in the

communication. The simplicity of RPC comes with a price, which is the performance

penalty. While the MPI requires one message between processes communication, the

RPC requires two messages to archive the same communication (Silcock &

Goscinski, 1996).

17

Single System Image (SSI) is a cluster operating system that allows a group

of computers to be viewed as a single computer. It allows applications to run on the

system to access the resources in other computers as if they were on the same

computer (Lottiaux, et aI., 2005). Some SSI such as the OpenSSI or Kerrighed are

built with a Distributed Shared Memory (DSM) which is a form of memory

architecture where it groups all memories which are distributed on multiple

computers in one single virtual address space (Moerschell & Owens, 2008). This

allows applications to execute on a distributed computer system to access all

memories just like a centralized computer system. Although the simplicity and high

transparency of SSI make application programming on distributed computer systems

very easy, they come with a great performance penalty cost. While the MPI requires

one message between processes communication, the SSI requires at least four to 12

messages to archive the same communication through DSM (Silcock & Goscinski,

1996).

Table 2.2 shows the companson of communication protocols and

architectures commonly used in distributed computing systems. The MPI and the

RPC are the most commonly used communication protocols in the distributed

computing systems currently. Meanwhile, DSM in the SSI is less often used in the

distributed computing systems due to its complicated implementation and

performance drawback. Each of the protocol and memory architecture discussed in

this section has its own advantages and disadvantages, which need to take into

consideration during the implementation.

18

Table 2.2: Comparison of frameworks and protocols used in distributed

computing system

MPI RPC SSI

Performance High Medium Low

Transparency Low Medium High
Popularity High High Low

Memory Architecture Distributed Distributed Shared

2.4 GPGPU in Distributed Computing System

GPGPU in distributed computing systems is not something new. Some

research projects have tried to integrate existing GPGPU programming frameworks

with communication frameworks to create an environment for GPGPU in distributed

computing systems. Fan ct al. (2008) proposed Zippy. a framework that is scalable

on the GPU computer clusters. Zippy integrated Open Graphics Library (OpenGL)

and MPI to create a high performance and non-uniform memory access modal. Zippy

hides the low level communication details and allows applications to move global

data without specifying the source and destination of GPU. Unlike modern GPGPU

frameworks such as CUDA or OpenCL Zippy uses shading language which is

known to be difficult and limited because it is designed for 3D graphics and not for

general computational usage.

Lav..-lor (2009) proposed cudaMPI. an improved version of CUDA with MP!

like message passing functionality for communication among GPUs. It is specially

designed for GPU computer clusters. Although the programming framework

provides all the basic MPI functionality required to implement an application on

GPU clusters. developers still require CUDA and MP! knowledge to develop an

application using this programming framework. The framework can helps

19

programmers in optimizing the communication call but the steep learning curve and

complicated memory management problems still remain.

The latest version ofCUDA, version 5 introduced GPUDirect, which is a new

technology from NVIDIA and Mellanox that enables GPU-to-GPU communication

without involving any CPU in the communication loop (Mellanox Technologies,

2010). It is specially designed to improve the performance and efficiency of GPU

clusters. The GPUDirect requires the latest version ofNVTDTA Tesla or Fermi GPUs

and Mellanox InfinitBand adapters to enable the GPU-to-GPU communication

feature. Although this can improves the memory transferring speed among GPUs and

simplify the communication among GPUs in GPU clusters, applications are still

required to manually initialize and handle each GPU running on different nodes in

the GPU cluster.

The steep learning curve and complicated framework integration have caused

many developers to stay away from GPGPU computer cluster before they can enjoy

the benefit of it. The GPGPU computer cluster needs a higher level of API and an

easy to use programming framework in order for programmers to utilize the

processing power of GPGPU computer clusters instead of building everything from

the ground.

2.5 CPU-GPU Benchmarking

The floating-point operations per second (FLOP) is the most common

measurement unit used to measure the performance of a distributed computing

system or a supercomputer currently, but some researches claim that FLOP is not

20

suitable. This is because FLOP only focuses on measuring the raw processing power

of the processors while other properties like network latency or memory transfer

latency (Gregg & Hazelwood, 2011) are often left behind. While the processor's

frequency and number of scalar processors are also commonly used to measure the

performance ofCPU, but it does not work well on the GPU either (Lee, et al., 2010).

Existing benclunarking tools are inadequate to measure the performance of a

distributed computing system that consist both CPUs and GPUs. This because they

are mainly optimized for specific processor like CPU only, GPU only or processor

from specific vendor only (Lee, et al., 2010). Furthermore, some evaluation methods

or tools ignore the memory transfer overhead which is important when measuring the

performance in a heterogeneous distributed computing system (Gregg & Hazelwood,

2011).

2.6 Related Work

In the following sections, OpenCL and MPI execution model are explained in

detail in order to provide the foundation for this two programming frameworks

which are required in this research study. The CPU role in GPGPU distributed

computing systems is included explicitly in the following section because it is one of

this research's focuses which is excluded by many other GPGPU research projects.

2.6.1 OpenCL Execution Model

The OpenCL is an open royalty free standard programming framework that

enables parallel programming across heterogeneous platforms like CPUs, GPUs and

21

other parallel processors (Khronos OpenCL Working Group, 2010). It is currently

maintained by Khronos Group and adopted by many hardware manufacturers such as

Apple, AMD, IBM, Intel and NVIDIA. The OpenCL consists of a subset of extended

C programming language that used to write program for the kernel and a set of API

to initialize and control the kernel.

The way the application executes on the GPUs using programnung

frameworks like CUDA or OpenCL is slightly different when compared with how

the applications executes on the conventional CPUs. A GPGPU application can be

divided into two main parts, the host program executes on the host or CPU and the

program executes on GPU. The program that executes on GPU is also called kernel.

The host program is used to setup and manages everything that is required for kernel

to execute on the target devices, while the kernel is used to define the functions that

required to execute repeatedly on devices like GPU (Khronos OpenCL Working

Group, 2010).

Figure 2.1 shows the general flow of an application executing on a GPU

using the OpenCL programming framework. First, the application needs to detect

and retrieve all information on devices that are capable of executing the kernel. Then,

the context is created base on the devices found. The context is very important

because it contains all resources like devices, kernels and memory objects (Khronos

OpenCL Working Group, 2010). After that, the command queue for each device is

created. It is used to coordinate the execution of the kernels on the devices. The

program source, which contains the implementation of kernel, is compiled and built

into program object and then convert into kernel.

22

