CO₂ BIOFIXATION AND CARBOHYDRATE BIOSYNTHESIS BY LOCALLY ISOLATED ACIDOPHILIC MICROALGAE FOR BIOBUTANOL PRODUCTION THROUGH SIMULTANEOUS SACCHARIFICATION AND FERMENTATION

TAN KEAN MENG

UNIVERSITI SAINS MALAYSIA

2023

CO₂ BIOFIXATION AND CARBOHYDRATE BIOSYNTHESIS BY LOCALLY ISOLATED ACIDOPHILIC MICROALGAE FOR BIOBUTANOL PRODUCTION THROUGH SIMULTANEOUS SACCHARIFICATION AND FERMENTATION

by

TAN KEAN MENG

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

September 2023

ACKNOWLEDGEMENT

A special thanks to my supervisor, Dr. Mohd Asyraf Kassim, for his continue endless support throughout my PhD's research. His important guidance, motivation, and immense knowledge were critical to the success of this research. Besides that, I also special thanks to my both co-supervisors namely Associate Prof. Dr. Japareng Lalung and Associate Prof. Dr. Mohd Nazri Ismail for their unfailing support and encouragement along my research.

Apart from that, I would like to special thanks to both my parents, who fully understand about my passion and continue to support me during my PhD journey. This thesis would not have been completed successfully without their encouragement.

Moreover, I also need to express my grateful to lab technician, Mr. Azmaizan bin Yaakub and Mrs. Najmah binti Hamid who continue to assist me along my research project. Not to forget to thank to my amazing labmates for their endless support. We had spent a lot of time together by sharing problems and finished our own projects.

Last but not least, I would like to acknowledge all the financial aids throughout this research including USM Fellowship RU (1001/CIPS/AUPE001) and RUI Grant 1001/PTEKIND/ 8011043. Finally, the Institute of Postgraduate Study (IPS) from USM is also credited for the guidance related to the postgraduate study matters.

TABLE OF CONTENTS

ACKN	NOWLED	GEMENTii
TABLE OF CONTENTSiii		
LIST	OF TABI	LESviii
LIST	OF FIGU	RES xi
LIST	OF SYM	BOLS xvi
LIST	OF ABBI	XEVIATIONS xvii
LIST	OF APPE	NDICES xxi
ABST	'RAK	xxii
ABST	RACT	xxiv
CHAI	PTER 1	INTRODUCTION1
1.1	Research	Background1
1.2	Research	Scope and Objectives
CHAI	PTER 2	LITERATURE REVIEW7
2.1	Classific	ation of biofuel7
2.2	Butanol a	as next generation biofuel
	2.2.1	Butanol production technology11
		2.2.1(a) Chemical synthesis of butanol11
		2.2.1(b) Biological approach for acetone-butanol-ethanol (ABE) fermentation of butanol13
2.3	ABE ferr	nentation feedstocks
2.4	ABE ferr	nentation using microalgae biomass16
2.5	Microalg	ae biomass pretreatment
2.6	Enzymat	ic saccharification
2.7	Fermenta	ation for biobutanol production
2.8	Microalg	al carbohydrate

	2.8.1	Microalgal carbohydrate metabolism biosynthesis
2.9	Physiocl and bior	hemical factors influencing microalgal-carbohydrate accumulation nass production
	2.9.1	Assessment of pH
	2.9.2	Assessment of temperature
	2.9.3	Assessment of light intensity
	2.9.4	Assessment of carbon dioxide (CO ₂)43
2.10	Biofixat	ion rate of carbon dioxide
CHA	PTER 3	METHODOLOGY 48
3.1	Collection	on of microalgal samples
3.2	Enrichm	ent and isolation process
3.3	Purificat	tion of acidophilic microalgae 50
	3.3.1	Single cell picking by micropipette50
	3.3.2	Dilution technique
	3.3.3	Agar streaking method51
3.4	Screenir	ng and selection of acidophilic microalgae
3.5	Growth	measurement, carbohydrate content and productivity analysis 52
	3.5.1	Microalgae growth measurement
	3.5.2	Carbohydrate content and productivity analysis
3.6	Identific	ation of microalgae
	3.6.1	Morphological characterisation54
	3.6.2	Molecular approach54
		3.6.2(a) 18S rRNA amplification55
		3.6.2(b) Phylogenetic analysis
3.7	Characte	erisation of the selected microalgae56
	3.7.1	Assessment of initial pH
	3.7.2	Assessment of light intensity
	3.7.3	Assessment of temperature

	3.7.4	Assessment of CO ₂ concentration	57
3.8	Transmi	ssion electron microscope (TEM) analysis	58
3.9	Indoor and outdoor cultivation in 20L photobioreactor (PBR) system		59
3.10	3.10 Photobioreactor system for indoor and outdoor cultivation		60
3.11 Multi-omic analysis		mic analysis	61
	3.11.1	Transcriptomics analysis	61
		3.11.1(a) Sample preparation and RNA extraction	62
		3.11.1(b) cDNA synthesis.	63
		3.11.1(c) Amplification of cDNA.	64
	3.11.2	Proteomic analysis.	64
		3.11.2(a) Acetone precipitation	65
		3.11.2(b) Ethanol extraction	65
		3.11.2(c) Modified borax/ polyvinvyl-polypyrrolidone/ phenol (M-BPP) extraction	66
		3.11.2(d) Phenol extraction	67
		3.11.2(e) TCA/ acetone extraction	67
		3.11.2(f) Modified phenol extraction	68
	3.11.3	Protein quantification	69
	3.11.4	In-solution protein digestion	69
	3.11.5	Proteins profiling analysis	70
	3.11.6	Proteins and peptides identification (De Novo Sequencing)	71
3.12	Pretreat	ment of microalgae biomass	71
	3.12.1	Sonication method	72
	3.12.2	Bead milling method	72
	3.12.3	Combination of sonication and bead milling.	73
3.13	Seed act	tivation and culture preparation	73
3.14	ABE ba	tch fermentation	74

	3.14.1	Primary screening75
	3.14.2	Optimisation of biobutanol production76
	3.14.3	Biobutanol production and analysis76
3.15	Statistica	ıl analysis
CHA	PTER 4	RESULTS AND DISCUSSION 78
4.1	Screenin	g and isolation of acidophilic microalgae78
4.2	Characte carbohyc	risation of acidophilic microalgae on microalgae growth and lrate productivity
	4.2.1	Effect of pH
	4.2.2	Effect of light intensity
	4.2.3	Effect of temperature
	4.2.4	Effect of carbon dioxide (CO ₂)
4.3	CO ₂ biof	ixation of microalgae under different CO ₂ concentrations 109
4.4	Transmis	ssion electron microscopy analysis for microalgae cell
4.5	Transcri	ptomic analysis of microalgae cell112
	4.5.1	Expression of carbohydrate related genes in microalgae 112
	4.5.2	Differential metabolites accumulation analysis related to <i>C</i> . <i>dispar</i> and <i>S</i> . <i>parvus</i> employed for carbohydrate biosynthesis 121
4.6	Liquid c	hromatography-tandem mass spectrometry (LC-MS/MS) analysis 123
	4.6.1	Protein yield and coverage
	4.6.2	Mass spectrometry for protein identification and quantification
	4.6.3	Gene ontology (GO) functional analaysis
	4.6.4	Summary of expression level on protein related carbohydrate 134
4.7	Indoor a	nd outdoor cultivation of microalgae151
4.8	Biobutar	nol production from microalgae biomass
	4.8.1	Screening of <i>Clostridium saccharoperbutylacetonicum</i> in different reinforcement mediums (RCM)

	4.8.2	Growth profile of <i>Clostridium saccharoperbutylacetonicum</i> N1-4159
	4.8.3	Pretreatment of the microalgae biomass for biobutanol production
	4.8.4	Screening of factors affecting biobutanol production by 2k factorial design
	4.8.5	The steepest ascent path analysis on biobutanol production 173
	4.8.6	Optimisation of biobutanol production using CCD approach 176
	4.8.7	Analysis of variance (ANOVA) of biobutanol production model
	4.8.8	Parametric interaction effect
	4.8.9	Validation of biobutanol optimisation188
CHAI	PTER 5	CONCLUSION AND FUTURE RECOMMENDATIONS 191
5.1	Conclusi	on
5.2	Recomm	endations for Future Research 193
REFERENCES 195		
APPENDICES		

LIST OF PUBLICATIONS

LIST OF TABLES

Table 2.1	Properties of butanol10
Table 2.2	Comparison characteristics between gasoline, butanol, and ethanol
Table 2.3	Biobutanol production using different substrates15
Table 2.4	Chemical composition of different microalgae species on a dry matter basis (%)
Table 2.5	Types of pretreatment, advantages and limitations used to pretreat the microalgal biomass
Table 2.6	The maximum biomass or productivity of microalgae species under different pH conditions
Table 2.7	Types of microalgae and its tolerance on different CO ₂ concentrations
Table 3.1	Selected primers for gene expression analysis
Table 3.2	The screening of biobutanol production from microalgae biomass using 2k factorial design
Table 4.1	Total number of isolates from three different ponds and two different soils samples
Table 4.2	Cell dry weight, carbohydrate content, and productivity of axenic
	acidophilic microalgae isolated from pond areas
Table 4.3	Cell dry weight, carbohydrate content, and productivity of axenic
	acidophilic microalgae isolated from soil areas
Table 4.4	Blast result of the PUSM1_2 strain used in this study, including
	the percentage of identity, accession number, and the name of the
	identified species retrieved from the GenBank database

- Table 4.11ANOVA analysis of biobutanol production under differentindependent variables using C. dispar biomass as a carbon source.168
- Table 4.12ANOVA analysis of biobutanol production under differentindependent variables using S. parvus biomass as a carbon source. 168
- Table 4.13Experimental design of steepest ascent path analysis on
biobutanol production using C. dispar biomass in SSF process 175
- Table 4.14Experimental design of steepest ascent path analysis on
biobutanol production using S. parvus biomass in SSF process 175

Table 4.17	ANOVA analysis of biobutanol production obtained under
	different variables from C. dispar biomass using experimental
	design CCD
Table 4.18	ANOVA analysis of biobutanol production obtained under
	different variables from S. parvus biomass using experimental
	design CCD
Table 4.19	Validation of biobutanol production using C. dispar biomass
	based on optimisation condition189
Table 4.20	Validation of biobutanol production using S. parvus biomass
	based on optimisation condition189

LIST OF FIGURES

Figure 2.1	Classification different generations of biofuel feedstock7
Figure 2.2	Simplified acetone-butanol-ethanol metabolic pathway in
	solventogenic Clostridia sp14
Figure 2.3	Flow diagram for biobutanol production from renewable
	feedstocks
Figure 2.4	Flow diagram of SHF and SSF for biobutanol production26
Figure 2.5	Carbohydrate biosynthesis pathway in microalgae30
Figure 2.6	The diagram on different cultivation parameters on the biomass
	production and microalgal-carbohydrate
Figure 3.1	The samples collection at Bukit Katak Tasek Gelugor Penang,
	Malaysia (5.4354°N, 100.4847°E)48
Figure 3.2	Schematic diagram of 20L PBR supplied with 15% (v/v) CO_2
	concentration
Figure 3.3	Overview of different pretreatment methods of microalgae
	biomass for biobutanol production
Figure 4.1	Samples collected as (a) PUSM1, (b) PUSM2, (c) PUSM3, (d)
	SUSM1, and (e) USM2 respectively
Figure 4.2	Cell dry weight of the isolated microalgae strains over the
	cultivation period (a) from ponds and (b) from soils respectively.
	The error bar indicates the mean \pm standard error (n=3)80
Figure 4.3	The microscopic image for (a) PUSM2_1 (b) SUSM1_1 captured
	using light microscope Olympus CX41 at a magnification of
	1000X

- Figure 4.9 Carbohydrate content and productivity of (a) *Coccomyxa dispar* (b) *Scenedesmus parvus* cultivated at different light intensities conditions, where the different lowercase or uppercase letters indicate significant (p < 0.05) differences of carbohydrate contents or carbohydrate productivity respectively. The error bar indicates the mean \pm standard error (n=3).......97
- Figure 4.10 Growth profile of (a) *Coccomyxa dispar* (b) *Scenedesmus parvus* cultivated at different temperature conditions, where the different

- Figure 4.11 Carbohydrate content and productivity of (a) *Coccomyxa dispar* (b) *Scenedesmus parvus* cultivated at different temperature conditions, where the different lowercase or uppercase letters indicate significant (p < 0.05) differences of carbohydrate contents or carbohydrate productivity respectively. The error bar indicates the mean \pm standard error (n=3)......102

- Figure 4.16 Pathways and critical enzymes of *C. dispar* related to starch and lipid biosynthesis in microalgae under CO₂ elevated condition116

Figure 4.17	Heatmap analysis of 15 genes expression in <i>S. parvus</i> under normal and elevated conditions respectively
Figure 4.18	Pathways and critical enzymes of <i>S. parvus</i> related to starch and lipid biosynthesis in microalgae under CO ₂ elevated condition119
Figure 4.19	PCA score plot of (a) <i>C. dispar</i> and (b) <i>S. parvus</i> under normal and elevated conditions
Figure 4.20	Protein yield using six different protein extraction methods on (a)
	C. dispar and (b) S. parvus. The error bar indicates the mean \pm
	standard error (n=3)124
Figure 4.21	Venn diagrams of metabolite compounds in microalgae under normal and elevated cultivation conditons (a) <i>C. dispar</i> and (b) <i>S.</i>
F: 4.22	
Figure 4.22	Gene ontology (GO) distribution in <i>C. dispar</i> microalgae (a) first
	of proteome coverage under elevated condition. (c) second level
	of GO under normal condition, and (d) second level of GO under
	elevated condition
Figure 4.23	Gene ontology (GO) distribution in S. parvus microalgae (a) first
	level of proteome coverage under normal condition, (b) first level
	of proteome coverage under elevated condition, (c) second level
	of GO under normal condition, and (d) second level of GO under
	elevated condition
Figure 4.24	Suggested pathways of carbohydrate synthesis in (a) C. dispar (b)
	S. parvus under elevated condition
Figure 4.25	Cell dry weight of (a) C. dispar (b) S. parvus cultivated under
	indoor and outdoor condition. The error bar indicates the mean \pm
	standard error (n=3)152
Figure 4.26	The fluctuation of temperature and light intensity during the microalgae cultivation period from 13/12/2019 to 28/12/2019155
Figure 4.27	The cell dry weight of Clostridium saccharoperbutylacetonicum
	N1-4 under different RCM158

- Figure 4.30 The model graph effect of different parameters (a) pH, (b)Temperature, (c) Agitation speed, and (d) Solid loading onbiobutanol production using *C. dispar* biomass as a carbon source 169
- Figure 4.31 The model graph effect of different parameters (a) pH, (b)Temperature, (c) Agitation speed, and (d) Solid loading onbiobutanol production using *S. parvus* biomass as a carbon source 170

LIST OF SYMBOLS

- Represent
- TM Trade Mark
- °C Degree Celcius
- ± Plus-Minus sign
- μ Micro
- % Percentage

LIST OF ABBREVIATIONS

AGB	1,4-Alpha-Glucan Branching Enzyme
AS	Agar Streaking
CHAP	3-[(3-Cholamidopropyl)Dimethylammonio]-1-Propanesulfonate
FabG	3-Oxoacyl-[Acylcarrierprotein] Reductase
3PGA	3-Phosphoglycerate
HEPES	4-(2-Hydroxyethyl)-1-Piperazineethanesulfonic Acid
ABE	Acetone-Butanol-Ethanol
ACN	Acetonitrile
Accc	Acetyl-Coa Carboxylase BC Subunit
FAB2,	Acyl-[Acyl-Carrier-Protein] Desaturase
SSI2, DESA1 ATP	Adenosine Triphosphate
ATCC	American Type Culture Collection
ACL	ATP Citrate Lyase
BLAST	Basic Local Alignment Search Tool
BAM	Beta-Amylase
PB	Binding Buffer
BBM	Bold's Basal Medium
H ₃ BO ₃	Boric Acid
BSA	Bovine Serum Albumin
CaCl ₂ .2H ₂ O	Calcium Chloride Dihydrate
CO ₂	Carbon Dioxide
CCMs	Carbon Dioxide Concentrating Mechanisms
СО	Carbon Monoxide
CA	Carbonic Anhydrase
CCD	Central Composite Design
ССВ	Centre For Chemical Biology
Co(NO ₃) ₂ .6H ₂ O	Cobalt (Ii) Nitrate Hexahydrate
cDNA	Complementary Deoxyribonucleic Acid
CuSO ₄ .5H ₂ O	Copper (Ii) Sulfate Pentahydrate
DNA	Deoxyribonucleic Acid
DGAT	Diacylglycerol Acyltransferase

DIL	Dilution
K ₂ HPO ₄	Dipotassium Hydrogen Phosphate
DTT	Dithiothreitol
EDTA	Ethylenediaminetetraacetic Acid
FDR	False Discovery Rate
FAD	Fatty Acid Desaturase
FAT	Fatty Acyl-Acp Thioesterase A
FPU	Filter Paper Units
FG	First Generation
DSMZ	German Collection Of Microorganisms And Cell Cultures
AGPase	Glucose-1-Phosphate Adenylyltransferase Small Subunit
G6PD	Glucose-6-Phosphate Dehydrogenase
3PGAL	Glyceraldehyde 3-Phosphate
GAPDH	Glyceraldehyde-3-Phosphate Dehydrogenase
G/L	Gram Per Liter
HPLC	High Performance Liquid Chromatography
HI&I	Household, Industrial, And Institutional
H2	Hydrogen
IAA	Indole-3-Acetic Acid
FeSO ₄ .7H ₂ O	Iron (Ii) Sulfate Heptahydrate
ISA	Isomaltase
LC-MS/MS	Liquid Chromatography Tandem Mass Spectrometry
ACSL	Long-Chain Acyl-Coa Synthetase
PL	Lysis Buffer
MgSO ₄ .7H ₂ O	Magnesium Sulphate
MCAT	Malonyl Coa-Acp Transacylase
MnCl ₂ .4H ₂ O	Manganese (Ii) Chloride Tetrahydrate
MnSO ₄ .4H ₂ O	Manganese Sulphate
m/z	Mass Over Charge Ratio
MJ/L	Megajoules Per Liter
mg/ L	Milligram Per Liter
MECR	Mitochondrial Trans-2-Enoyl-Coa Reductase
M-BPP	Modified Borax/ Polyvinvyl-Polypyrrolidone/ Phenol
М	Molarity

MoO ₃	Molybdenum Trioxide
MSA	Multiple Sequence Alignment
ME	NADP-Dependent Malic Enzyme
NCBI	National Center For Biotechnology Information
NADPH	Nicotinamide Adenine Dinucleotide Phosphate
N_2	Nitrogen
OPEFB	Oil Palm Empty Fruit Brunch
OD	Optical Density
O ₂	Oxygen
PMSF	Phenylmethylsulfonylfluoride
PEPase	Phosphoenolpyruvate Carboxylase
PGM	Phosphoglucomutase
PBR	Photobioreactor
PS II	Photosystem II
KH ₂ PO ₄	Potassium Dihydrogen Phosphate
КОН	Potassium Hydroxide
qRT-PCR	Quantitative Real-Time Polymerase Chain Reaction
RID	Refractive Index Detector
RC	Regenerated Cellulose
rpm	Revolutions Per Minute
RNA	Ribonucleic Acid
RuBP	Ribulose 1,5-Bisphosphate
RuBC	Ribulose Bisphosphate Carboxylase Oxygenase
SG	Second Generation
SHF	Separate Hydrolysis and Fermentation
SSF	Simultaneous Saccharification and Fermentation
SCP	Single Cell Picking
Na ₂ CO ₃	Sodium Carbonate
NaCl	Sodium Chloride
SDS	Sodium Dodecyl Sulfate
NaNO ₃	Sodium Nitrate
SG	Starch Granules
SP	Starch Phosphorylase
SS	Starch Synthase

H_2SO_4	Sulfuric Acid
TG	Third Generation
TEM	Transmission Electron Microscope
TCA	Tricarboxylic Acid Cycle
TYA	Tryptone-Yeast-Extract-Acetate
ZnSO ₄ .7H ₂ O	Zinc Sulfate Heptahydrate

LIST OF APPENDICES

Appendix A	Chemical composition (g/L) of BBM medium
Appendix B Appendix C	Sequence of pcr product Multiple sequence alignment (MSA) using Cluster X2.1 software
Appendix D Appendix E	The Ct value of genes based on rt-pcr analysis The seven points BSA standard calibration curve
Appendix F	List of detected proteins in microalgae cultivated under normal and elevated condition
Appendix G	Common proteins of microalgae expressed under normal and elevated conditions
Appendix H	The standard graph of <i>C. saccharoperbutylacetonicum</i> using cell dry weight (mg/ml) versus absorbance value (nm)

PEMERANGKAPAN CO2 DAN BIOSINTESIS KARBOHIDRAT UNTUK PENGHASILAN BIOBUTANOL DARIPADA MICROALGA ASIDOFILIK PENCILAN TEMPATAN MELALUI PROSES SAKARIFIKASI DAN FERMENTASI SERENTAK

ABSTRAK

Butanol adalah bahan kimia yang biasa digunakan sebagai tambahan untuk bahan api automotif. Antara kaedah pengeluaran, biobutanol yang disintesis melalui proses penapaian aseton-butanol-etanol (ABE). Penapaian ABE menggunakan biojisim mikroalga yang mengandungi karbohidrat tinggi dan kurang lignin, adalah sesuai untuk dijadikan sebagai bahan mentah biobutanol. Potensi mikroalga untuk pemerangkapan CO₂ secara biologi, menjadikannya sebagai nilai tambah berbanding dengan sumber bahan mentah yang lain. Di samping itu, kombinasi kaedah sakarifikasi dan fermentasi (SSF) semasa proses penapaian ABE, telah membuka ruangan baharu dalam kemajuan pengeluaran biobutanol secara berekonomi. Berdasarkan kajian ini, sebanyak dua mikroalga asidofilik telah berjaya dipencilkan dan dikenal pasti sebagai strain Coccomyxa dispar dan Scenedesmus parvus. C. dispar dan S. parvus telah mempamerkan nilai tertinggi dalam produktiviti biojisim, produktiviti karbohidrat, dan pemerangkapan CO₂ apabila dibiak bawah keadaan CO₂ yang tinggi. Selain itu, gen dan protein yang berkaitan dengan biosintesis karbohidrat juga telah dikaji dalam kajian ini. Berdasarkan analisis transkriptomi, keputusan menunjukkan bahawa kenaikan yang signifikan bagi gen berkaitan dengan biosintesis karbohidrat seperti AGB, SS, ISA, AGPase, ME, G6PD, Accc, RuBC, dan CA yang terlibat dalam C. dispar, manakala PGM, AGB, SS, AGPase, ME, DGAT, RuBC, dan CA terlibat dalam S. parvus. Seterusnya, pengekstrakan protein

telah dilakukan bagi kedua-dua strain mikroalga dan mendapati kaedah boraks/polyvinvyl-polypyrrolidone/phenol (M-BPP) yang diubahsuai telah menghasilkan kadar protein yang tinggi iaitu 2.717 ± 0.032 mg/mL (2.520 ± 0.030 mg/gbiomass) dan 1.346 \pm 0.011 mg/mL (1.299 \pm 0.011 mg/gbiomass) daripada biojisim C. dispar dan S. parvus. Kebanyakan protein yang diekstrak bertanggungjawab untuk metabolisme tenaga, metabolisme karbohidrat, fotosintesis, dan proses selular (sitokeleton). Kemudian, kajian ini juga mendedahkan bahawa strain C. dispar dan S. parvus menunjukkan prestasi yang lebih baik di tanaman luaran dengan pengeluaran biojisim yang lebih tinggi sebanyak 20.43% dan 8.79% dengan produktiviti karbohidrat 52.80% dan 24.64% berbanding tanaman dalaman. Selain itu, kajian ini juga melaporkan bahawa kadar pemerangkapan CO₂ untuk C. dispar dan S. parvus adalah lebih tinggi berada di tanaman luaran berbanding dalaman. Akhir sekali, pengeluaran biobutanol yang optimum ialah 54.00 \pm 3.25 dan 39.00 \pm 2.28 mg/gbiojisim dengan menggunakan biojisim daripada C. dispar dan S. parvus di bawah proses SSF. Hasil daripada kajian ini bermanfaat untuk mengurangkan pencemaran udara dan menghasilkan bahan kimia dengan menggunakan sumber bio boleh diperbaharui, yang boleh berguna untuk banyak aplikasi perindustrian.

CO2 BIOFIXATION AND CARBOHYDRATE BIOSYNTHESIS BY LOCALLY ISOALTED ACIDOPHILIC MICROALGAE FOR BIOBUTANOL PRODUCTION THROUGH SIMULTANEOUS SACCHARIFICATION AND FERMENTATION

ABSTRACT

Butanol is a common chemical that used as an additive for automotive fuel. Among the production methods, the biobutanol synthesised through acetone-butanolethanol (ABE) fermentation process. The ABE fermentation using microalgae biomass that contains high carbohydrate with less lignin, which is suitable to be feedstock. biobutanol The potential of microalgae for biological CO₂ biosequestration, making them value-added compared to other bioresources. In addition, the promising single-step saccharification and fermentation (SSF) process during ABE fermentation, has opened up a novel ground for advancement in economic biobutanol production. Based on this study, a total of two native acidophilic microalgae were successfully isolated and were identified as Coccomyxa dispar and Scenedesmus parvus strains. The C. dispar and S. parvus exhibited highest in terms of biomass productivity, carbohydrate productivity, and CO₂ biofixation when cultivated under the elevated condition. Apart from that, the carbohydrate-related genes and proteins were also been investigated in this study. Based on the transcriptomic analysis, the results showed that a significant upregulated of carbohydrate-related genes such as AGB, SS, ISA, AGPase, ME, G6PD, Accc, RuBC, and CA that involved in C. dispar, while PGM, AGB, SS, AGPase, ME, DGAT, RuBC, and CA involved in S. parvus. Next, the protein

extraction was performed for both microalgae strains and it found out that the modified borax/ polyvinvyl-polypyrrolidone/ phenol (M-BPP) method could extract the highest protein yield of 2.717 \pm 0.032 mg/mL (2.520 \pm 0.030 mg/g_{biomass}) and 1.346 ± 0.011 mg/mL (1.299 ± 0.011 mg/g_{biomass}) from C. dispar and S. parvus biomass respectively. Most of the detected proteins were responsible for energy metabolism, carbohydrate metabolism, photosynthesis, and cellular processes (cytoskeleton). Later, this study also revealed that C. dispar and S. parvus strains exhibited a better performance under outdoor cultivation, with higher biomass production of 20.43% and 8.79% with carbohydrate productivity of 52.80% and 24.64% respectively compared to indoor cultivation. Apart from that, this study also reported that the CO₂ biofixation rate for C. dispar and S. parvus was higher under outdoor compared to indoor condition. Lastly, the optimum biobutanol production was 54.00 \pm 3.25 and 39.00 \pm 2.28 mg/gbiomass using *C. dispar* and *S. parvus* biomass respectively under SSF process. The obtained value is higher compared to the previous studies. Hence, the outcome of this study was beneficial to reduce air pollution and producing fine chemicals using renewable bioresource, which could be useful for many industrial applications.

CHAPTER 1

INTRODUCTION

1.1 Research Background

The production of biofuels such as bioethanol, biogas, biohydrogen, and biobutanol from renewable feedstocks to meet the future energy demand, has gained the attention globally. Among of these biofuels mentioned, biobutanol has been identified as the next-generation transportation biofuel that has more advantages compared to bioethanol and biomethanol (Yeong et al., 2018a). The advantages of biobutanol include high octane number, high energy content, lower volatility, low vapor pressure, and flexible fuel blends. Apart from that, biobutanol is also has fewer ignition problems, possesses inter-solubility as well as higher viscosity and lubricity (Nanda et al., 2017; Trindade & Santos, 2017). Currently, butanol is produced through a chemical synthesis route as either oxo process from propylene (with H₂ and CO over a rhodium catalyst) or aldol process from acetaldehyde (Qureshi, 2009).

However, the traditional chemical synthesis of butanol has few major problems such as not cost-effective of unspecific catalyst using during the transformation process and resulting in low butanol yield. Apart from that, the application of high pressure and temperature up to 120-190 °C and 40-300 bar respectively during the large-scale butanol production also lead to the rising overall production cost (Zhang et al., 2022). Apart from that, the production of butanol via chemical reaction involved using petroleum-based feedstock which led to the continuous rising of the price. Unsatisfactory yield of butanol production has been the major driving factors for the increased interest in biological synthesis of biobutanol. Production of biobutanol via biological approach could reduce the price by using various renewable biomass such as sugarcane, sugar beet, sorghum, woody crops, wheat straw, corn husks and microalgae biomass as feedstock to replace the overall chemicals usage (Kolesinska et al., 2019; Kushwaha et al., 2019; Lee & Lavoie, 2013; Ndaba et al., 2015).

Among the renewable biomass, microalgae biomass has been widely seen discussed and considered as one of the potential sources for biobutanol production through acetone-butanol-ethanol (ABE) fermentation by Clostridium sp. (Kolesinska et al., 2019; Onay, 1930; Yeong et al., 2018a). The utilization of microalgae biomass as biobutanol feedstock is more attractive than other typical types of renewable feedstock as it contains less lignin and have a simple cell structure (Khan et al., 2018a). Less lignin contain in microalgae biomass could contribute to the recovery effectiveness of pretreatment and fermentation processes prior the biobutanol production. In addition, high carbohydrate content in microalgae biomass has added its value by making as a promising feedstock for the biobutanol production. The presence of high carbohydrate content could minimise the industrially established operations such as extraction, purification, and concentrations steps for subsequently upgrading to higher-value biobutanol production (Wiatrowski et al., 2022). Previous study on biobutanol by *Clostridium acetobutylicum* using *Chlorella* sp. biomass treated with acidic hydrolysis (1mole of H₂SO₄) and autoclaving induced biobutanol up to 6.23 ± 0.19 g/L (Onay, 1930). Therefore, it was believed the obtained data could extent the current insight into the potential capability of using carbohydrate rich microalgae for biobutanol production, and this will be beneficial as a platform for the industrial scale application.

On the other hand, another advantage of these photosynthetic microalgae utilise sunlight and carbon dioxide (CO₂) as key regulators to perform photosynthesis

for their growth that could facilitate minimizing the carbon footprint (Onyeaka et al., 2021). These microalgae have an ability to develop an inducible CO₂ concentrating mechanisms (CCMs) in during photosynthetic metabolism and allow them to optimize CO₂ sequestration. The regulation of CCMs is also depended on the colocalization of carbonic anhydrase (CA) activity that located near the Rubisco to catalyse dehydration of bicarbonate from atmospheric CO₂, and provide nearsaturating CO₂ concentrations for carboxylation of Ribulose 1,5-bisphosphate (RuBP) in Calvin cycle (Spalding, 2008). In addition, microalgae could exhibit higher nutrient uptake, which accumulate in cell vacuoles and promote a fast growth rate. This makes shorten the harvesting time compared to terrestrial plants that require more than 3 months before the biomass can be harvested (Dębowski et al., 2020; Harun & Danquah, 2011a; Paes et al., 2016a). Moreover, the biomass produced from cultivation contains valuable chemical compounds including carbohydrates, proteins, lipids, vitamins, pigments, and bioactive compounds (Khan et al., 2018a). All these chemical compounds can be subsequently be converted into high value-added products, like biofuel in which could be beneficial to many industry areas.

Dual CO₂ biofixation and biobutanol production are believed to be one of the potential approaches to achieve a sustainable biobutanol production. Cultivation of microalgae using CO₂ released from industrial activities to produce biomass for biobutanol fermentation could indirectly reduce the CO₂ concentration in atmosphere, resulting in reducing the greenhouse gas emissions. Unfortunately, this approach has caused the negative effect to the microalgae growth, as the presence of CO₂ in the cultivation medium could reduce the pH level. Then, the cultivation under the low pH condition could cause the alternation in carbohydrate polymer

biosynthesis mechanism at cellular level of certain species of microalgae. Cultivation using acidophilic microalgae could be an approach to overcome this limitation and ensure sustainable continuous biomass production.

To date, there are few studies have been conducted on the CO₂ biosequestration by different types of microalgae and its metabolites accumulation for biobutanol production. However, it is still remained unclear on carbohydrate biosynthesis mechanism in microalgae cultivated under CO₂ elevated condition. Also, there are limited information on the cultivation of extremophile microalgae strains in dual CO₂ biosequestration and biobutanol production. Therefore, this current study focuses on enhancing acidophilic microalgae on carbohydrate biosynthesis during cultivation process, and its potential as a feedstock for biobutanol production by *Clotridium* through ABE fermentation. The work is divided into three phases: the first phase focuses on the isolation of acidophilic microalgae from Bukit Katak and determination the best cultivation conditions such as pH, light intensity, temperature, and CO₂ concentration for maximal biomass production and carbohydrate accumulation. The investigation on the effect of CO2 towards carbohydrate biosynthesis was also evaluated based on gene expression and proteomic analysis at microalgae cellular level. The second phase focuses on the upscaling of the acidophilic microalgae using 20L photobioreactor (PBR) for maximum microalgae biomass production. Lastly, the biomass produced was used for biobutanol production via novel simultaneous saccharification and fermentation (SSF) process under anaerobic fermentation.

1.2 Research Scope and Objectives

Overall, this research focuses the on isolation of novel acidophilic microalgae from Frog Hill, Pulau Pinang. The isolated strains were identified using molecular identification 18sRNA and phylogenetic tree. Subsequently, the strain was characterised for high biomass production and carbohydrate productivity based on different cultivation parameters. The genes, proteins, and enzymes that control the carbohydrate accumulation during the cultivation under CO₂ elevated condition of the isolated microalgae were characterised. This was followed by the large-scale cultivation of the selected microalgae under 20L photobioreactor was conducted to enhance the microalgae biomass and carbohydrate productivity. Lastly, the microalgae biomass was used as carbon source to synthesis the biobutanol through ABE fermentation by *Clostridium saccharoperbutylacetonicum* (N1-4).

The objectives of this study were:

- I. To isolate the most tolerant with carbohydrate-rich acidophilic microalgae from Bukit Katak, Pulau Pinang.
- II. To characterise the growth and carbohydrate productivity of acidophilic microalgae using different abiotic factors such as pH, light intensity, temperature and CO₂ concentrations (v/v).
- III. To determine the correlation expression of key genes, enzymes, as well as level of metabolites implicated in carbohydrate biosynthesis pathways under elevated condition based on transcriptomic and proteomic analysis.

- IV. To compare the biomass production and carbohydrate accumulation of the selected strains cultivated in large scale application (20L PBR) under indoor and outdoor conditions.
- V. To optimise the pH, temperature, agitation speed, and solid loading on biobutanol production for *Clostridium saccharoperbutylacetonicum* (N1-4) using pretreated microalgae biomass as a carbon source.

CHAPTER 2

LITERATURE REVIEW

2.1 Classification of biofuel

Biofuels are a type of fuels that produced from renewable materials such as biomass, and potentially to be partially replaced the transportation fuel derived from petroleum-based feedstock. There are few examples of biofuels such as bioethanol, biobutanol, biodiesel, biohydrogen, and biomethane. Generally, biofuels can be produced from different feedstocks, which are first (FG), second (SG), and third generation (TG) of feedstock, depending on the types of biomass used (Figure 2.1).

Figure 2.1 Classification different generations of biofuel feedstock (Sikarwar et al. 2017)

Generally, the FG are produced from starch, sugar, vegetable oil, or animal fats using conventional technology. However, the issues of generating the biofuel using first generation food crop were raised in last decade due to the social, environmental, economic and ethical challenges for using food crop as a carbon source (Mohr & Raman, 2013). Opposition to FG is commonly about the conflict with

food security. Then, the trend of producing biofuel was started using non-food crops, like cellulosic energy crop, waste biomass including wheat stalks, corn, and wood, which referred as SG (Lee & Lavoie, 2013). The SG are widely seen as a sustainable response to the increasing controversy surrounding FG, and thus using a non-food biomass as a carbon source ensures a sustainable alternative for biofuel production. Although the SG maybe more economically affordable than FG, but the technical feasibility due to thick lignin of SG is questioned. The issue such as few energy and sustainability have been raised about the SG in which this method would not economically favourable enough to stand as an alternative for non-renewable energy resources. Previous study showed that the biofuel production using the SG biomass such as waste from food crop, agriculture residue, and wood chip that consisted of thick lignin content (25-35% dry weight) have impeded the downstream processing for biofuel production especially in the pretreatment process to unlock the sugar embedded in the biomass (Lee & Lavoie, 2013). Apparently, the sophisticated process such as pretreatment is compulsory applied during downstream process prior the biofuel production will cause the overall cost not effective for the commercial production.

TG on the other hand is believed could help to overcome the above situation. Generally, the TG are produced from photosynthetic micro-organisms such as algae. The potential of microalgae which could produce high biomass productivity, and able to cultivated on non-arable land, with not competing with food production system (Li-Beisson & Peltier, 2013). Another notable advantage of microalgae is this microorganism could reduce the carbon dioxide (CO₂) emission from the atmosphere and converted into usable macromolecule such as carbohydrates or lipids through the photosynthesis metabolism process (Li-Beisson & Peltier, 2013). Currently, TG are still under development and few studies have showed the potential of using microalgae biomass for biofuel production (Nagi et al., 2020; Walmsley et al., 2018; Zewdie & Ali, 2020). Therefore, further researches are needed to further minimize the microalgae cultivation time, nutrient cost and extraction process in order to make it economically competitive to petrodiesel, petroleum-based fuels, and fine chemicals production.

To date, there are few types of biofuels are available such as bioethanol, biobutanol, biodiesel, and bio-oil which derived from TG. Among the biofuel, the biobutanol showed the privilege than others, as an advanced for next-generation transportation biofuel. This was due to the characteristics of butanol have high energy content as gasoline and can used directly without modifying current internal combustion engines (Xue & Cheng, 2019b). At this stage, the production of butanol still below the satisfactory level, to sustain the estimated global market size demand around 6.17 million metric tons during year 2026 (Baron, 2022). Currently, the butanol production is still expensive due to the high cost of feedstock, process application, and undesirable selectivity. Hence, the considerable effort should be imposed to overcome this current issue.

2.2 Butanol as next generation biofuel

Butanol also known as butyl alcohol or n-butanol, is a four-carbon alcohol with a chemical formula of C₄H₉OH. Generally, butanol is a colourless liquid and miscible in organic solvent, while partially miscible in water. The characteristic of butanol is shown in Table 2.1.

Properties	Butanol
Chemical formula	C4H9OH
Molecular weight (g/mol)	74.12
Cetane number	15.92
Low heating value (MJ/kg)	42.16
Heat of evaporation (kJ/kg)	312
Stoichiometric air-fuel ratio	11.21
Auto-ignition temperature	421
Research Octane number	94
Calorific Value MJ/kg	42
Flash point °C	38
Density kg/m3 @20 °C	762

Table 2.1Properties of butanol (Gowtham et al., 2019)

This chemical is widely used in various industries especially in chemical industries. Butanol can be used as an organic solvent and also as an intermediate component in the manufacture of other organic chemicals such as butyl acetate and butyl glycol ethers. Both organic chemicals are specialty solvents in household, industrial, and institutional (HI&I) cleaning applications (Baker, 2015). Apart from that, butanol is also commonly used in pharmaceutical industry for manufacturing of antibiotics, hormones, and vitamins.

Butanol is considered superior to other biofuels such as ethanol as it comprises two times number of carbon atoms compared to ethanol, leading to its higher higher energy density (Ndaba et al., 2015). It can also be used as fuel addictive that can be blended directly with gasoline and used in the internal combustion engine without any modification (Bhatia, 2014). The high energy density of 29.2 MJ/L (compared to 19.5 MJ/L of ethanol and 16MJ/L of methanol), and can replace gasoline (energy density 32MJ/L). The butanol has less hygroscopic characteristic and less corrosive compared to ethanol, which is safer and transported easily in pipelines (Xue & Cheng, 2019a). The low volatility of butanol also makes it less explosive than ethanol (Liu et al., 2013). A comparison of fuel characteristics is shown in Table 2.2.

Characteristics	Gasoline	Butanol	Ethanol
Air-fuel ratio	14.70	11.10	9.00
Energy density	32.00	29.20	19.50
(MJ/kg)			
Specific energy	2.90	3.20	3.00
(MJ/kg air)			
Heat vaporisation	0.36	0.43	0.92
(MJ/kg)			

Table 2.2Comparison characteristics between gasoline, butanol, and ethanol
(Ndaba et al., 2015; Zhuang et al., 2013)

2.2.1 Butanol production technology

Butanol can be produced through the chemical and biological routes. In chemical synthesis, butanol is synthesised based on oxo synthesis, Reppe synthesis or crotonaldehyde hydrogenation. In biological conversion, it is produced through acetone-butanol-ethanol (ABE) fermentation using bioresource rich carbohydrate as a feedstock. In this process, the carbohydrate will be converted into monomer (sugar) by enzymatic hydrolysis prior fermented into biobutanol with the aid of bacteria *Clostridium* sp. under anaerobic condition (Guo et al., 2022).

2.2.1(a) Chemical synthesis of butanol

Generally, the oxo synthesis involves two steps of reactions. In the first step of reaction, the propylene (CH₃CH=CH₂) is reacted with carbon monoxide (CO) and hydrogen (H₂) in the presence of catalyst such as cobalt or rhodium. Mixture of n- and isobutyraldehyde is then hydrogenated to n- and isobutyl alcohols. This is followed by then further proceed with distillation step to recover butanol as shown in the Equation 2.1 and 2.2 (Ravichandra et al., 2019).

$$CH_{3}CH = CH_{2} \xrightarrow{yields} CH_{3}CH_{2}CH_{2}CHO + (CH_{3})_{2}CHCHO$$
Eq. 2.1
Propylene $CO + H_{2}$

$$CH_{3}CH_{2}CH_{2}CHO \xrightarrow{yields} CH_{3}CH_{2}CH_{2}CH_{2}OH$$
Eq. 2.2
$$\begin{array}{c} H_{2} \\ H_{2} \\ \end{array}$$
Butanol

In Reppe process or also known as carbonylation process, butanol is produced directly under low pressure and temperature condition. In this reaction, propylene is reacted with carbon monoxide and water under low pressure 0.5-2 x 106 Pa and of 100 °C in the presence of a catalyst. The common catalyst used in this process is iron carbonyls (Sons, 2000) as shown in the Equation 2.3. However, Reppe process was found not as famous as oxo synthesis due to the high cost processing technology is required and have limited in commercialization (Jain et al., 2014).

$$\begin{array}{c} CH_3CH = CH_2 \xrightarrow{yields} CH_3CH_2CH_2CH_2CH_2OH + (CH_3)_2CHCH_2OH + 2CO_2 \\ Propylene \\ Butanol \\ \end{array}$$
Eq. 2.3

In crotonaldehyde hydrogenation process, the reactions involved are aldol condensation, dehydration and hydrogenation. Different from other chemical synthesis that solely depend on petroleum, the crotonaldehyde hydrogenation process provides an alternative route for the butanol production from ethanol, which can be ubiquitously produced from biomass. In this process, the reaction is started with aldol condensation process of acetaldehyde (CH₃CHO), followed by hydrogenation to produce butanol. The dehydration process also been taken place in which induced by acidification, using an acid such as acetic acid or phosphoric acid Generally, this process is performed in a liquid phase under ambient temperature and pressure in the presence of an alkaline catalyst as shown in the equation 2.4 and 2.5.

$$2CH_{3}CHO_{2} + H_{2} \xrightarrow{yields} CH_{3}CH(OH)CH_{2}CHO \xrightarrow{yields} CH_{3}CH=CHCHO + H_{2}O$$

Acetaldehyde Eq. 2.4

$$CH_3CH=CHCHO + H_2 \xrightarrow{yields} CH_3CH_2CH_2OH$$
 Eq. 2.5
Hydrogenation Butanol

However, due to the economic and sustainability reasons, the butanol produced from the above methods cannot applied as alternative fuel components (Kolesinska et al., 2019). Hence, this led to the establishment of other alternative butanol approaches such as acetone-butanol-ethanol (ABE) fermentation to facilitate butanol production under cheaper and sustainable manner.

2.2.1(b) Biological approach for acetone-butanol-ethanol (ABE) fermentation of butanol

Another approach to produce butanol is through acetone-butanol-ethanol (ABE) fermentation. This process uses bacterial fermentation to produce solvents such as acetone, butanol, and ethanol from carbohydrates polymers such as starch and glucose under anaerobic condition. During this process, the bacteria will convert the fermentable sugar/glucose into the ABE products in a mass ratio of 3:6:1 which follow the Equation 2.6 below:

$$\begin{array}{cccc} (C_6H_{10}O_5)_{10} + 9H_2O & \xrightarrow{yields} & 3C_3H_6O + & 6C_4H_{10}O + & C_2H_6O + & 24CO_2 + & 16H_2 \\ & + & Biomass & & Eq. \ 2.6 \\ & & Starch & & Acetone & Butanol & Ethanol \end{array}$$

One of the most common bacteria used in the ABE fermentation is *Clostridium* sp. Generally, *Clostridium* is gram-positive, rod shaped, with cell size diameter varies from 0.3 to 2.0 um, while the lengths from 1.5 to 2.0 um (Liberato et al., 2019). The bacteria cells are normally arranged in pairs or in short chains with rounded or pointed ends. Most of the *Clostridium* species have sporulation capacity, which can be triggered and turned into spore in its growth cycle by presence of oxygen. However, the species of *Clostridium* species have different oxygen tolerance levels, has a capability to degrade a wide range of polysaccharides and converted it into solvents as well as organic acid, making it potential to be used for biobutanol production (Liberato et al., 2019).

Typically, ABE fermentation occurred in *Clostridium* sp. involves two different stages, (i) acidogenesis that responsible for sugar conversion into organic

acid, and (ii) solventogenesis that responsible for solvent production (Kolesinska et al., 2019) (Figure 2.2). During the acidogenesis phase, the bacteria grow drastically and producing acids (mostly acetate and butyrate). The accumulation of acid products in the medium will lead to a decrease in pH to around 4.5. However, towards the end of acidogenesis, the acid production rate falls due to the bacterial cells shift their metabolic activity from acidogenesis to solventogenesis (Daniel et al., 2011). In this phase, both acetate and butyrate are being consumed as substrates for the biosynthesis of acetone and butanol, and the bacteria will undergo stationary stage under this phase. At the end of solventogenesis phase, the concentrations of butanol and other products reaches a level which ceases all bacterial metabolism (Bowles & Ellefson, 1985).

Figure 2.2 Simplified acetone-butanol-ethanol metabolic pathway in solventogenic *Clostridia* sp. (Diallo et al., 2021)

2.3 ABE fermentation feedstocks

Feedstock selection is an important factor to ensure the economic feasibility for butanol production via fermentation process, where the substrate cost is typically equating to more than 60% of the overall biobutanol production cost (Dürre & Eikmanns, 2015). By selecting a low-cost substrate such as renewable bioresources are essential for this fermentation to occur. Several studies have been conducted to identify the suitable feedstock to produce biobutanol (Table 2.3). Based on the Table 2.3, it was found that different substrates could give different percentages of butanol production. For instance, Jerusalem artichoke, sago starch, wheat straw, barley straw, cassava chip able to produce a desirable amount of butanol concentration as 12.00 to 18.00 g/L. On the other hand, the lowest butanol concentration 2.80 g/L was produced using the oil palm empty fruit bunch as a substrate. From this analysis, the butanol production can be affected by the selection of substrate materials. The complexity of the cell wall, membrane, and chemical compositions of the substrates could affect the overall pretreatment process and hence affecting the butanol production.

Substrates	Bacteria	Butanol	References		
		concentration			
		(g/L)			
Soy molasses	Clostridium beijerinckii BA	8.00	(Li et al., 2020)		
	101				
Jerusalem	Clostridium acetobutylicum	14.80	(Li et al., 2020)		
artichoke	IFP 904				
Sago starch	Clostridium acetobutylicum	16.00	(Li et al., 2020)		
	P 262				
Domestic	Clostridium acetobutylicum	3.00	(Li et al., 2020)		
organic waste	ATCC 284				
Wheat straw	Clostridium beijerinckii P	12.00	(Li et al., 2020)		
	260				
Barley straw	Clostridium beijerinckii P	18.00	(Li et al., 2020)		
	260				
Glycerol and	Clostridium acetobutylicum	8.60	(Li et al., 2020)		
glucose	ATCC 4259				
Corn stover	Clostridium beijerinckii	8.98	(Qureshi et al.,		
	P260		2014)		
Oil palm	Clostridium acetobutylicum	2.80	(Ibrahim et al.,		
empty fruit	ATCC 824		2015)		
bunch					
Cassava chip	Clostridium	16.40	(Thang et al.,		
	saccharoperbutylacetonicum		2010)		
	N1-4				

Table 2.3Biobutanol production using different substrates

Even though most of the studies showed the potential of aforementioned substrates for butanol production, however the problems of this feedstock have been identified in which high in overall cost due to complexity of the lignocellulosic material and high energy are required to break down the complexity during pretreatment process. All these drawbacks have led to the new approach to explore a new type of alternative substrate. Currently, the biobutanol production from renewable biomass such as microalgae has been explored as butanol feedstock.

2.4 ABE fermentation using microalgae biomass

Microalgae biomass have been identified could be used as biobutanol feedstock. The utilisation of microalgae biomass that is not competing with the food applications, containing less lignin which are found could overcome the current limitations. The prime advantage for the microalgae biomass is this feedstock containing high carbon in carbohydrate polymer is beneficial for ABE fermentation process (Linacre et al., 2021). Apart from that, microalgae which are microscopic photosynthetic microorganisms can use sunlight and available carbon dioxide (CO₂) to conduct photosynthesis for their growth. This would make the microalgae to exhibit higher nutrient uptake, and accumulated the obtained nutrients in the cell vacuoles. Subsequently, the microalgae have a fast growth rate. Normally, the microalgae harvesting time is less than 15 days compared to terrestrial plants that require more than three months before the biomass can be harvested (Harun & Danquah, 2011b; Paes et al., 2016b). In addition, the most important criteria of selecting microalgae biomass as biobutanol feedstock is that the microalgae biomass produced during cultivation period contains valuable chemical compounds including carbohydrates, proteins, and lipids. Previous studies show the microalgae biomass contains 5.473.1% proteins, 1.5-52.0% carbohydrates, and 0.3-39.6% (dry weight basis) lipids depending on the microalgae species (Table 2.4). For the microalgae that possess high protein content can be converted into animal feed, cosmetic products, bio-fertiliser, and bioactive compounds, especially in the pharmaceutical industry (Milledge, 2011). Whereas, for the microalgae consists of high lipid content can be converted into biofuel, biodiesel, and bio-char. Lastly, the extracted microalgae carbohydrate was potential to be converted into bioethanol, bio-plastic, and fine chemicals production (Tan et al., 2021). Therefore, it can be concluded that the potential of high value-added products synthesised from microalgal biomass is totally dependent on the chemical composition within microalgae.

Microalgae species	Protein	Carbohydrate	Lipid	References
Anabaena cylindrical	43–56	25–30	4–7	(Um & Kim, 2009)
Aphanizomenon flosaquae	62	23	3	(Jayashree R et al., 2013)
Bellerochea sp.	14.2	3.01	9.87	(Costard et al., 2012)
Caulerpa lentillifera	10.41	38.66	1.11	(Tibbetts et al., 2015)
Chaetoceros sp.	10.5	1.50	3.73	(Costard et al., 2012)
Chlamydomonas rheinhardii	48	17	21	(Jayashree R et al., 2013)
Chlorella protothecoides (CS-41)	25.6	10.8	12.8	(Kumar et al., 2017)
Chlorella pyrenoidosa	57	26	2	(Um & Kim, 2009)
Chlorella sp.	6.07	7.09	1.82	(Costard et al., 2012)
Chlorella sp. (CS-247)	15.4	11	18.4	(Kumar et al., 2017)
Chlorella sp. (CS-195)	19	5.4	17	(Kumar et al., 2017)
Chlorella vulgaris	34.56	41.09	28.20	(Kumar et al., 2017)
Dunaliella salina	57	31.6	6.4	(Srinivasan et al.,

Table 2.4Chemical composition of different microalgae species on a dry matter
basis (%)

				2018)
Euglena gracilis	39–61	14-18	14-20	(Um & Kim, 2009)
Micromonas pusilla (temperate) (CS-98)	17.7	13.3	13.3	(Kumar et al., 2017)
Micromonas pusilla (tropical) (CS-170)	5.5	16.7	10.9	(Kumar et al., 2017)
Pyramimonas cordata (CS-140)	16.3	17	9.5	(Kumar et al., 2017)
Pycnococcus provasolii (CS-185)	17.3	13.8	16.7	(Kumar et al., 2017)
Rhodomonas sp.	44.9	8.60	39.2	(Costard et al., 2012)
Scenedesmus dimorphus	8–18	21–52	16–40	(Um & Kim, 2009)
Scenedesmus obliquus	50–56	10–17	12–14	(Um & Kim, 2009)
Stichococcus sp. (CS-92)	22.5	16.1	8.5	(Kumar et al., 2017)
Tetraselmis maculate	52	15	2.9	(Srinivasan et al., 2018)
Thalassiosira sp.	73.1	51.4	39.6	(Costard et al.,
Tetraselmis chui (CS-26)	18.1	13.9	13.9	(Kumar et al., 2017)

2.5 Microalgae biomass pretreatment

Microalgae are eukaryotic microorganisms that consists of a complex polymer cell wall structure that mainly made up from non-cellulosic polysaccharides, such as galactose, rhamnose, glucuronic acid, and glucosamine, whereas glucose is only a minor component (Yee-Keung & Kin-Chung, 2020). These components play an important role in the formation of rigid microalgae cell structure that allows microalgae to maintain cell bodies under harsh conditions. Apart from maintaining cell structure, the polysaccharides are also important energy storage in microalgae cell (Moreira et al., 2022). On the other hand, the polysaccharide can also be extracted for various industrial applications such as food, cosmetic, pharmaceutical, and fine chemicals industries (Udayan et al., 2017).

Among of the valuable products that extracted from microalgae polysaccharides, Yeong et al. (2018b) showed that the biobutanol from fine chemical industry, was potential biosynthesised using microalgae in industrial scale through advances in bioprocess technologies. Hence, in order to extract the carbohydrates or polysaccharides from intracellular microalgal cells for biobutanol production, pretreatment step is required for breaking down this rigid microalgal cell wall structure, prior to series of bioprocess technologies such as enzymatic saccharification and fermentation process (Figure 2.3).

Figure 2.3 Flow diagram for biobutanol production from renewable feedstocks

The main aim of pretreatment is to enhance the accessibility for enzymatic hydrolysis and improves the carbohydrates or polysaccharides digestibility that are available in the biomass (Kucharska et al., 2018). To date, several microalgal cell pretreatment methods have been proposed by previous studies, and can be categorised into three main groups: physical, chemical, and biological (El-Dalatony et al., 2017). Generally, the physical pretreatment is used to reduce the particle sizes of the microalgal biomass, and increase the specific surface area by reducing the cellulose crystallinity (El-Dalatony et al., 2017). Whereas, the chemical pretreatment is a process that involved chemicals, either acids or alkaline to degrade the ester and glycosidic side chains bonding. This will result in lignin structural alteration, cellulose

swelling, partial decrystallization, and hemicellulose solvation (Brodeur et al., 2011). Lastly, the biological pretreatment is emphasised on the utilisation of microbes and enzymes to break down the biomass and release the simple sugars for the subsequent fermentation (El-Dalatony et al., 2017). The detail description of advantages and limitations for different pretreatment methods were summarised in Table 2.5.

Table 2.5Types of pretreatment, advantages and limitations used to pretreat the microalgal biomass.

Types of Pretreatments	Advantages	Limitations	References
Physical	<u>v</u>		
Ultrasound	► Ultrasonic wave creates a series of	High energy consumption	(Silva et al., 2018;
	cell structure	 Non-specific reaction 	Kim et al., 2014a)
	 Environmentally friendly method Require a short period of time 	> Applicable for small biomass	
	 Require a short period of time Require low temperature 	volume, not feasible for	
	 Less chemicals usage 	industrial scale	
		Expensive cost for large scale	
Bead beating (milling)	> Milling disrupt the cell membrane through	High energy consumption	(Alaviiah at al
	grinding	Time-consuming process	2020; Kim et al.,
	 Could increase the surface area of the biomass Could reduce the crystallinity of cellulose for better hydrolysis 		2014a)
> Thormal	The heat introduced into the system	High energy consumption	
	Solubilise the cell wall of biomass	Less effective for microalgae	
	 Disrupt the whole microalgae structure Could increase the biomass load 	with a simple cell wall structure	(Mendez et al., 2014; Rincón-Pérez et al., 2020)
Chemical			
Acidic	> Concentrated acid disrupts the hydrogen	Involved the uses of chemicals	(Laurens et al.,
	bonds in the microalgal cell wall structure	➢ Non-environmentally friendly	2015)
	> Provide higher efficiency in converting		

	cellulosic materials.	Formation of inhibitors	
		 High costs of corrosive resistant equipment 	
		High costs for recovery process	
		High costs alkaline catalyst	
> Alkaline	Breaking the ester bond in the microalgal cell wall structure	 Alteration of lignin structure 	
	Effective on biomasses with low lignin		
	Enlarges the surface area of cellulose by biomass swelling		(Kassim & Bhattacharya, 2016;
	Reduced cellulose crystallinity by cleavage of carbohydrates glycosidic bond		Mahdy et al., 2014b; OK et al., 2013)
	Less inhibitors that hampered the end product formation		
	Environmentally friendly by using low concentration of alkali		
 Biological 	 Utilisation of microbes and enzymes that act as biocatalysts to degrade the microalgal cell wall Involved loss toxic chemicals 	 Required longer time Required high enzyme-to- substrate specificity 	(Eldalatony et al., 2016; Fu et al., 2010; Kassim & Bhattacharya, 2016;
	Involved less toxic chemicals		Laurens et al., 2015;

\triangleright	Not energy intensive	Involved costly enzyme	Mahdy	et	al.,
\triangleright	Involved specific reaction		2014a)		
\triangleright	Do not required expensive equipment				
\blacktriangleright	Easier for selective product recovery process				

2.6 Enzymatic saccharification

In order to recover the sugar from microalgae carbohydrate polymer, the pretreated biomass required to undergo enzymatic saccharification process. In this process, the microalgae carbohydrates contained in microalgal biomass are broken down into monomer sugars prior fermentation process. The utilisation enzymes for saccharification significantly depends on the microalgae cell wall composition, microalgae structure, and biochemical distribution. All these factors vary from each of the microalgae species (Tan et al., 2021).

The most common enzymes used in saccharification process are amylase and cellulase (Vasić et al., 2021; Vingiani et al., 2019). Several studies on enzymatic saccharification on different microalgae biomass such as *Scenedesmus* sp., *Chlorella* sp., *Nannochloropsis gaditana*, and *Tetraselmis suecica*, has been reported (Mahdy et al., 2016; Saleh et al., 2019; Ngamsirisomsakul et al., 2019). Amylase and cellulase are widely used to saccharify the intracellular cellulose and hemicellulose from cell wall structure in microalgal biomass and produce simple sugars for fermentation.

Theoretically, the efficiency of enzymatic saccharification of microalgal biomass for maximum sugar production prior to fermentation process are significantly depending on various saccharification parameters, including pH, temperature, enzyme loading, and biomass concentration (Choi et al., 2010; Vasić et al., 2021). Previous study found that the optimal enzymatic saccharification conditions of *Chlamydomonas reinhardtii* were achieved by employed 0.2% glucoamylase at temperature of 55°C and initial pH of 4.5. Another study also showed that the maximum sugars obtained up to 64% from *Chlamydomonas humicola* when applied the optimum saccharification process of 10 g/ L biomass at 40°C and an initial pH of 4.8 (Agbor et al., 2011).