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In this paper, we studied phenomenologically and numerically the ferromagnetic phase 
transition and dynamic responses of bulk ferromagnet. We used Landau free energy density 
expansion and applied the calculus of variations to formulate the second order 
ferromagnetic phase transition. Then these are combined with Landau-Lifshitz (LL) 
equation of motion in the study of chaotic dynamics of the bulk ferromagnet. The results 
are presented graphically by using several different applied fields and frequencies.   

 
 
I. INTRODUCTION 
 
 Since the beginning of the nineteenth century, 
ferromagnets have induced strong theoretical interests 
due to high application potentials. These important 
applications are magnetic recording process, cores for 
electromagnets, electric motors, transformers, generators 
and etc. [1]. In 1976, Sukiennick used the 
phenomelogical Ginzburg-Landau (GL) theory, which 
was combined with the scaling theory to review the 
magnetic phase transition in thin films [2]. Besides this, 
phenomenological study on ferromagnetic systems based 
on thermodynamic considerations was proposed by Jiles 
and Atherton in 1983 [3]. Arai et al. had reported the use 
of Yttrium Iron Garnet (YIG) as a thin film inductor and 
the range of frequency was examined up to 1 GHz for 
the first time in 1991. The sandwich type of YIG 
exhibited an inductance by forty times larger than a 
similar air core inductor [4]. In theoretical studies, 
Borisov et al. have discovered the chaotic motion of the 
magnetization in the ferromagnetic resonance region 
with various applied fields by using Landau-Lifshitz 
(LL) equation of motion [5]. In 2001, Garcia-Cervera 
and Weinan have compared the hysteresis loops from 
those effective dynamics simulations with LL equation 
of motion [6]. Recently, Liu and Garcia-Cervera have 
studied the effects of incorporating thermal noise into 
LL equation of motion for the ferromagnetic thin films. 
They have reported the relation between the thermal 
noise and switching fields in the hysteresis loop [7]. 
From the literature survey it seems that the researches on 
chaotic dynamics are still left behind. So, it is of interest 
to carry out a more significant study of the chaotic 
dynamics in ferromagnetic system. 
 In this paper, we carry out a phenomenological 
study of hysteresis and chaotic dynamics in 
ferromagnetic system. In this approach, we consider the 
system in its ferromagnetic phase can be represented 
solely by the Landau free energy density expansion in 
terms of its order parameter, i.e. M, its material 
constants and temperature. This means we have 
neglecting the microscopic effects, i.e. domain wall 
movements in the presence of applied field, and all the 
quantum mechanical interactions that usually considered 

in the research of ferromagnetic system. In these 
contexts, we have applied the calculus of variation on 
Landau free energy density expansion of the 
ferromagnetic system in order to formulate the second 
order ferromagnetic phase transition. The variations of 
Landau free energy density expansion are combined with 
LL equation of motion for the studies of dynamics in the 
ferromagnetic system. The results are solved numerically 
and presented graphically by using material constants of 
YIG in the presence of applied fields with various 
amplitudes and frequencies. Because of the frequencies 
of the applied field are much lower than the 
ferromagnetic resonance frequency, typically in the 
microwave region, the responses from the numerical 
simulations can be considered as quasi-dynamic, or 
quasi static. 
 
 
II. THEORETICAL MODELLING 
 
IIa.  Formalism 
 
 We begin with Landau free energy density 
expansion of the ferromagnetic system: 
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where 0F  is the free energy density other than the 
contribution of order parameter in ferromagnetic phase. 

2α , 4α  are Landau coefficients, M is magnetization, 
and B is applied field. In Eq. (1), the second order term 
in the right hand side is temperature dependent, and this 
is shown in its Landau coefficient: 
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respect to Curie temperature, exchange constant, 
saturation magnetization and lattice constant. The free 
energy density expansion in Eq. (1) is truncated at the 
forth order term, which is relevant to ferromagnetic 
system with second order phase transition [2,8,9]. In 
equilibrium, the variation of free energy is a minimum, 
i.e. 
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If the system is oriented such that kM z

ˆ=M . This yield 
a relation of the Landau coefficients 
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and the equation of state: 
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The graph of equation of state is shown in Fig. 1.  

Fig. 1 shows the saturation magnetization, ,SM  and 
coercive magnetic field, CB  for a few temperatures. 
Clearly, SM  and CB  are increased as temperature is 
decreased. In the following calculations, we adopt SM  
at 300=T K. 
 
IIb.  Dynamics Responses of Bulk Ferromagnet 
 
 To study the dynamic responses of bulk ferromagnet 
with respect to applied field, ),(tB  we considered the 
magnetization, M as 3-dimesional vector with Cartesian 
components ,ˆˆˆ kMjMiM zyx ++=M  where =|| M  

51039.1 ×=SM A/m at 300=T K [10]. In this case, the 
Landau free energy density expansion with )(tB  can be 
written in the following form: 
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FIG. 1. zM  versus zB  for bulk YIG with 275=T K (solid line), 300 K (dotted line), and 325 K (dash line). 
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The dynamic responses of the magnetization are 
described by the phenomenological LL equation of 
motion: 
 

][ effeffdt
d BMMBMM
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where 
em

ge
2

=γ  is the gyromagnetic ratio, 
sM

γη
=Γ  is 

the Gilbert-damping constant, 2≈g  is the Lande g-
factor for ferromagnetic system, e is the magnitude of 
the electron charge, em  is the electron mass and 

1.001.0 −≈η  is the dimensionless damping coefficient 
[6,7,10,11]. effeff HB 0μ=  is the effective field derived 
from the variation of the free energy density in Eq. (1), 
i.e. 
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Evaluation of Eq. (8) resulting the explicit relations of 
the effective field to the variation of the free energy 
density with respect to the ferromagnetic order 
parameter iM : 
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Since the free energy density do not contain iM& , the 
first term on the right of the Eq. (9) is zero. The effective 
field is simplified to 
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In component form, this is: 
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Substitution of Eqs. (11) and (12) into Eq. (7) yield 
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The three Cartesian components at the right hand side of 
Eq. (13) are independent of each others. This yields three 
coupled first order differential equations, which can be 
solved only numerically. 
 
 
III. NUMERICAL RESULTS AND DISCUSSION 
 
 In this study, we used the material parameter of YIG 
for the numerical simulations of Eq. (13). These are 

376.12=a Å, 11103.1 −×=exC  J/m, 51039.1 ×=SM  

A/m, 111076.1 ×=γ  T-1s-1, 560=CT  K [2,4,5,9], and 
the damping constant is assumed 01.0=η . The initial 
values of magnetization are assumed as 
 

φθ cossinSx MM =  
φθ sinsinSy MM =  (14) 

θcosSz MM =  
 
with =θ 30° and =φ 30°. We adopt the fourth-order 
Runge–Kutta method for the numerical simulations of 
the dynamics of magnetization with respect to applied 
field, )cos()( 0 tBtBz ω= . 0B  is the amplitude of the 
time dependent magnetic field and fπω 2=  is its 
angular frequency. In order to see frequency effects, we 
chose f = 25 Hertz, 50 Hertz, and 100 Hertz in the 
numerical simulations. The studies of magnetization 
dynamic behaviours are based on the numerical curves 

of iM  versus t, iM  versus )(tBz , and 
dt

dMi  versus 

iM , where ,, yxi = and z. 
 
IIIa.  Quasi-Periodic Response 
  
 The numerical graphs for different values of 0B  are 
shown in Figs. 2 to 5. Fig. 2 shows a full cycle of time 
dependent applied field for f = 25 Hertz, with amplitude 

20
0 100.1 −×=B  Tesla. This amplitude is changed for the 

observation of its influence on the dynamics in 
ferromagnetic system. The numerical simulations 
showed that there is no change in xM , yM  and zM  for 

18
0 100.3 −×≤B  Tesla, because of the applied field is 

too weak. This is followed by gradually increase the 
value of 0B . The graphs with significant effects of 0B  

are shown in Figs. 3 to 5. For 10
0 100.5 −×≤B  Tesla, the 

period of the dynamic responses of zM  are the same as 
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input frequencies. These are shown in Fig. 3(a) for three 
different input frequencies. The corresponding phasor 
diagrams are shown in Figs. 3(b) and 3(c). The dynamic 
behaviours of xM  and yM  are similar to zM , with 
differences in magnitude only. This means that the 
amplitude of this applied field is still too weak to excite 
any nonlinear behaviour. These quasi-periodic responses 
remain for the higher frequencies, i.e. chose f = 50 Hertz 
and 100 Hertz. However, the amplitudes of iM  decrease 
when the frequency increases. This verifies that for 
higher frequencies, the system has shorter time to fully 
response to the applied field. These are shown in Fig. 
3(a), with .)()()( 1005025 HzfzHzfzHzfz tMtMtM === >>  
The corresponding phasor diagrams in Figs. 3(b) and 
3(c) showed the same features, with the size of the loops 
decrease with increasing frequencies.  
 

IIIb.  Chaotic Responses 
 
 The onset of chaotic responses or non-periodicity 
are observed only in xM  and yM components for 

10
0 100.5 −×>B Tesla. The quasi-periodic response 

remains in zM  component. For 8
0 100.1 −×=B  Tesla, 

the periods of dynamic responses in xM  are being eight-
folded for f = 25 Hertz, five-folded for f = 50 Hertz, and 
three-folded for f = 100 Hertz. These are shown in 
Fig. 4(a). The corresponding phasor diagrams are shown 
in Figs. 4(b) and 4(c). These responses are chaotic 
because of their phasor diagrams are never repeating and 
overlapping. The dynamic responses of yM  are similar 

to xM . Further numerical simulations showed that when 

0B  is increased, the chaotic responses are getting more 
intense. These chaotic responses of xM  and yM  can be 

observed only for 7
0 1031543.3 −×<B  Tesla for f = 25 

Hertz, 7
0 103403.3 −×<B  Tesla for f = 50 Hertz, and 

7
0 103928.3 −×<B  Tesla for f = 100 Hertz. 

 

 
FIG. 2. A full cycle of )cos()( 0 tBtBz ω=  versus t. The amplitude is 20

0 100.1 −×=B  Tesla. 
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FIG. 3(a). zM  versus t for f = 25 Hertz (solid line), 50 Hertz (dotted line), and 100 Hertz (dash line) with 10

0 100.5 −×=B  Tesla. 
 
  

 
FIG. 3(b). zM  versus )(tBz  for f = 25 Hertz  (solid line), 50 Hertz (dotted line), and 100 Hertz (dash line) with  

10
0 100.5 −×=B  Tesla. 
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FIG. 3(c). 

dt
dM z  versus zM  for f = 25 Hertz (solid line), 50 Hertz (dotted line), and 100 Hertz (dash line) with  

10
0 100.5 −×=B  Tesla. 

 
 

 
FIG. 4(a). xM  versus t for f = 25 Hertz (solid line), 50 Hertz (dotted line), and 100 Hertz (dash line) with 8

0 100.1 −×=B  Tesla. 
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FIG. 4(b). xM  versus )(tBz  for f = 25 Hertz (solid line), 50 Hertz (dotted line), and 100 Hertz (dash line) with  

8
0 100.1 −×=B  Tesla. 

 

 
FIG. 4(c). 

dt
dM x  versus xM  for f = 25 Hertz (solid line), 50 Hertz (dotted line), and 100 Hertz (dash line) with  

8
0 100.1 −×=B  Tesla. 
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FIG. 5. zM  versus )(tBz  for f = 25 Hertz with 7

0 1031354.3 −×=B  Tesla  (solid line), for f = 25 Hertz with  
7

0 1033805.3 −×=B  Tesla (dotted line), and for f = 25 Hertz with 7
0 1038982.3 −×=B  Tesla (dash line). 

 
 
IIIc.  Dynamic Responses of zM  
 
 For 8

0 100.8 −×>B  Tesla, the quasi-periodic 
responses in zM  disappear. However, the range of 0B  
for zM  to show nonlinear responses is different if 
compare with xM  and yM  components. When 

7
0 1021.3 −×≥B  Tesla, the hysteresis effects become 

obvious. For f = 25 Hertz, the reversal of zM  occurs, the 

hysteresis loops can be observed for Tesla 103135.3 7−×  
7

0 1031543.3 −×<≤ B Tesla. For f  = 50 Hertz, the 

hysteresis loops can be observed for Tesla 10338.3 7−×   
7

0 103403.3 −×<≤ B Tesla, and for f  = 100 Hertz, the 

hysteresis loops can be observed for Tesla 103897.3 7−×   
7

0 103928.3 −×<≤ B Tesla. Complete hysteresis loop for 
three different frequencies are shown in Fig. 5 with 

7
0 1031354.3 −×=B  Tesla for f = 25 Hertz, =0B  

71033805.3 −× Tesla for f = 50 Hertz, and =0B  
71038982.3 −×  Tesla for f = 100 Hertz. 

 
 
 

IV. CONCLUSION 
 
 The main focus of this study is the formulation of 
dynamic equations of the magnetization vector of the 
ferromagnetic system by combining the Landau-Lifshitz 
equation of motion and variation of Landau free energy 
density expansion of the magnetization. The resulting 
equations of motion of the magnetization vector are 
three coupled first order nonlinear differential equations, 
which are corresponding to the three Cartesian 
components of the magnetization vector. These coupled 
nonlinear differential equations can be solved only 
numerically.  
 By using the forth-order Runge-Kutta method, the 
observation of chaotic responses in magnetization is 
determined by proper selection of initial conditions of 

iM . The simulated results show distinctive effects of the 
amplitudes and frequencies of the applied field to the 
dynamic responses of the magnetizations. For zM  
component, the analysis shows that the occurrences of 
hysteresis curve depend on the amplitudes and 
frequencies of the applied field, i.e. for f = 25 Hertz,     
50 Hertz, and 100 Hertz, the hysteresis effects can be 
observed for 0B  within the range −× −  Tesla 103135.3 7  

71031542.3 −× Tesla, −× − Tesla 10338.3 7 7103402.3 −×  
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Tesla, and 77 103927.3 Tesla 103897.3 −− ×−×  Tesla 
correspondingly. 
 The quasi-periodic response of all magnetization 
components can be observed with 10

0 100.5 −×≤B  Tesla 

for f = 25 Hertz, 9
0 100.1 −×≤B  Tesla for f = 50 Hertz, 

and 9
0 101.2 −×≤B  Tesla for f = 100 Hertz, whereas   

the bifurcations of the periods or non-periodicity 
responses of the x- and y- components of magnetization 
can be observed for 0B  within the range 

710 1031542.3 Tesla 101.5 −− ×−×  Tesla for f = 25 Hertz, 
79 103402.3Tesla 101.1 −− ×−× Tesla for f = 50 Hertz, 

and 79 103927.3 Tesla 102.2 −− ×−×  Tesla for f = 100 
Hertz. 
 From the numerical simulations, the results show 
that with the presence of low frequencies and low 
amplitudes of applied fields, which can be generated 
easily in laboratory, can excite various nonlinear 
responses in the ferromagnetic systems, e.g. multiple-
folded of input frequencies or period bifurcations, 
chaotic behaviours of the magnetizations, and hysteresis 
effects, which are strongly initial conditions dependent. 
We conclude that the Landau phenomenological model 
and classical approaches, i.e. Landau free energy 
expansion, calculus of variations, and LL torque 
equation of motion, exhibit the intrinsic rich nonlinear 
and chaotic phenomena in the ferromagnetic system. 
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