
CHAPTER 1

CLASSICAL THEOREMS AND RESULTS IN GEOMETRIC
FUNCTION THEORY

Geometric function theory has a lengthy history in complex analysis. It all started

in the early 1900s. The study of geometric properties of complex-valued functions,

known as function theory, uses several analytical tools. This first chapter introduces

important terms and outcomes that will be used later in the thesis. These are the results

of the analytic and harmonic mapping studies.

1.1 Analytic Univalent Maps

The complex plane is denoted by C in this thesis. Also, let

Ur(z0) =: {z ∈ C, |z− z0|< r} (r > 0),

be the neighborhood of point z0. In particular, when r = 1 and z0 = 0, we write U1(0) =

U which denotes the open unit disk centered at the origin. Let H (U) be the class of

analytic functions f : U → C. Further, let A represent the class of all normalized

analytic functions f ∈ H (U) of the form

f (z) = z+
∞

∑
n=2

anzn. (1.1)

Definition 1.1.1. [1, p. 5] A function f ∈ H (U) is said to be univalent (one-to-one)

if f takes different points in U to different values, that is, for any two distinct points z1
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Figure 1.1: Image of U under Koebe map k(z).

and z2 in U with z1 ̸= z2, f (z1) ̸= f (z2).

The property of “locally univalent" in the function f ∈H (U) implies its univalent

in some neighborhoods at an arbitrary point in U . The condition that f ′(z) ̸= 0 in U

is both necessary and sufficient for local univalence. We are interested to study the

following class of functions:

S =:
{

f ∈ A : f is analytic and one-to one, f (0) = f ′(0)−1 = 0
}
.

The class S is the main aspect of the classical mathematics branch known as the

univalent functions theory. A good example of the functions that belong to the class

S is the Koebe function

k(z) =
z

(1− z)2 =
∞

∑
n=1

nzn = z+2z2 +3z3 + ... . (1.2)

This Koebe function maps U onto C\(−∞,−1
4 ], see figure (1.1). The Koebe function is

an extremal function for the class S . The origin of this discipline of mathematics may
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be traced back to 1914, with Gronwall’s demonstration of the Area theorem [2, P. 57-

59]. In 1916, the Bieberbach Conjecture served as the subject’s cornerstone. Numerous

mathematicians attempted to solve this Conjecture somewhat, and the summary of the

attempts is given in Table 1.1 D. Horowit [8] yielded the best result by proving that

Table 1.1: Coefficients Bound for f ∈ S

Bieberbach [3] |a2|< 2
Lowner [4] |a3|< 3
Garabedian and Schiffer[5] |a4|< 4
Pederson and Schiffer [6] |a5|< 5
Ozawa [7] |a6|< 6

|an|< 1.0657n using Carl FitzGerald’s [9] deep technique. Finally, in 1985, Louis de

Branges proved the Bieberbach’s conjecture:

Theorem 1.1.1. [10, Theorem 3] For each f ∈ S , the coefficients satisfy |an| ≤ n for

all n. Equality holds for any rotated Koebe function.

1.2 Convex in One Direction

It should be recalled that a function g on U is convex in the horizontal direction

CHD (R-convex) if every line parallel to the real axis has a connected intersection with

g(U), and a function g is convex in the imaginary direction CID if every line parallel

to the imaginary axis has a connected intersection with g(U). Furthermore, a function

g is convex in the direction eiθ if for every z0 in C the set g(U)∩
{

z0 + seiθ : s ∈ R
}

is

either connected or empty. Figure 1.2 shows how the lines would be if the domain was

convex towards the horizontal and imaginary axis, respectively.
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Figure 1.2: Regions convex in the horizontal and imaginary directions, respectively

In [11], Robertson has proved that the function g on U is convex in one direction if and

only if zg′(z) is starlike in one direction. An improvement on Robertson’s result was

done by Royster and Ziegler [12] by referring to [13]:

Theorem 1.2.1. [12] Let f be a non-constant function analytic in U. The function f

maps U univalent onto a domain D convex in the direction of the imaginary axis if and

only if there are numbers µ and ν , 0 ≤ µ ≤ 2π and 0 ≤ ν ≤ π , such that

Re{−ieiµ(1−2cosν e−iµz+ e−2iµz2) f ′(z)} ≥ 0, z ∈U. (1.3)

Furthermore, f (ei(µ−ν)) and f (ei(µ+ν)) are the right and left extremes, respectively, of

D, that is,

f (ei(µ−ν)) = sup
|z|<1

Re f (z) and f (ei(µ+ν)) = inf
|z|<1

Re f (z).
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The parameters µ and ν in (1.3) determine the orientation, stretching, and curve

of the convex domain. The inequality restriction also further restricts the shape of the

mapped domain by requiring it to lie on one side of the imaginary axis. This may

reduce the range of µ and ν that give possible mappings satisfying the inequality. It is

worth noting that if we set µ = ν = π/2, the inequality (1.3) reduce to

Re{(1− z2) f ′(z)} ≥ 0, z ∈U,

On the other hand, if g is a R-convex function, then ig is a function convex in the

direction of the imaginary axis. By letting f = ig and µ = ν = 0, the inequality (1.3)

reduces to

Re{(1− z)2g′(z)} ≥ 0, z ∈U, (1.4)

where f (1) = ig(1) is both the right and left extreme. Indeed, it is simple to prove that

g is R-convex if g satisfies (1.4) by utilizing the ideas from [13]. When equality holds

in (1.4) for some z ∈ U , then g(U) is a horizontal strip. Suppose that (1.4) has strict

inequality. That strict inequality then corresponds to

Im
{
(1− z)2 f ′(z)

}
> 0, for all z ∈U . (1.5)

Now, for t > 1/2, consider the circle

Ct =

{
z ∈ C : z(s) = 1− 1

t + is
, −∞ < s < ∞

}
,
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which lies in the unit disk U and tangent to 1. If z ∈Ct , then

z′(s) =
i

(t + is)2 = i(1− z(s))2.

Thus, by (1.5),

∂

∂ s
Im {g(z(s))}= Im

{
(i(1− z(s))2)g′(z(s))

}
= Im

{
(1− z(s))2 f ′(z(s))

}
> 0.

This implies that g(Ct)’s are non-intersecting analytic arcs that can be represented as

functions of a single variable. Using prime end theory, it can be said f (U) is R-convex

(see [13] for details).

Lemma 1.2.1. [14, Theorem 4.87] Suppose g is a non-constant analytic function in U

that satisfies the condition g(0) = 0 and g′(0) ̸= 0, and let

ϕ(z) =
z

(1+ zeiθ1)(1+ ze−iθ2)
, (θi, i = 1,2 ∈ R).

Then g is R-convex if

Re
(

zg′(z)
ϕ(z)

)
> 0, (∀z ∈U). (1.6)
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1.3 Harmonic Univalent Maps

A complex-valued function f defined on a domain Ω ⊂C is said to be harmonic if

∆ f = 4
(

∂

∂ z

(
∂ f
∂ z

))
= 0, (1.7)

where

∂

∂ z
=

1
2

(
∂

∂x
− i

∂

∂y

)
,

∂

∂ z
=

1
2

(
∂

∂x
+ i

∂

∂y

)
. (1.8)

The differential operators in (1.8) are known as Wirtinger derivatives, For further de-

tails, we refer to [14, Also see [15]].

The following canonical representation of a harmonic function is also important

Theorem 1.3.1. [15, Canonical Representation] The harmonic mapping f of U has

canonical representation f = h+g, such that h and g are analytic in U. The represen-

tation is unique up to an additive constant.

Note that the canonical representation gives a series representation of f in terms of

h and g,

f (z) = h(z)+g(z) =
∞

∑
n=0

anzn +
∞

∑
n=1

bnzn, (1.9)

where h and g are known as the analytic part and co-analytic part of f , respectively.

The Jacobian of the complex-valued function f (x,y) = u(x,y)+ iv(x,y) at any point
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z = x+ iy in U , is given by

J f (z) =:

∣∣∣∣∣∣∣∣
ux(z) vx(z)

uy(z) vy(z)

∣∣∣∣∣∣∣∣= ux(z)vy(z)− vx(z)uy(z),

assuming that all of the partial derivatives exist at z. We can express the Jacobian in

terms of z and z derivatives

J f (z) = |h′|2 −|g′|2. (1.10)

If J f (z) > 0 for all z ∈ U , then f is said to be sense-preserving, and if J f (z) < 0, it is

said to be sense-reversing for all z in U . For more result on J f (z), one may refer to

[16, 17]. Furthermore, the second complex dilatation of the function f at an arbitrary

point z in U is an analytic function ω f : U → C given by

ω f (z) =
g′(z)
h′(z)

, z ∈U, (1.11)

that represents a ratio between the real part of f and the imaginary part of f . This

means it measures how much the mapping f stretches or shrinks angles locally around

z. In the other direction, it measures how much the conformal function distorts. Recall

that the mapping f is said to be conformal if it maps an infinitesimal square in its base

domain to an infinitesimal square in its range. If the |ω f | lies in the unit disk, then the

J f > 0 implies that the |g′/h′|< 1 subsequently f is sense-preserving (conformal).

The class H (U) is closed under the product and composition rule, but this is not

true for the class of harmonic functions. We have the following result:
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Theorem 1.3.2. [18, Proposition 2]

(I) Let f : Ω → C be analytic, and g : U → Ω be harmonic. Then f ◦g : U → C, is

harmonic.

(II) Let Let f : Ω →C be harmonic, and g : U → Ω be analytic. Then f ◦g : U →C,

need not be harmonic.

Proof. (I) Letting h = f ◦g where g is an analytic function with ζ = g(z) and f is a

harmonic. Since

hz =
dh
dz

=
d f (ζ )

dz
=

d f (ζ )
dζ

dg(z)
dz

,

it follows that

hzz =
d
dz

(
dh
dz

)
=

d f (ζ )
dζ

d
dz

(
dg(z)

dz

)
+

d
dz

(
d f (ζ )

dz

)
dg(z)

dz

= 0+
d
dz

(
d f (ζ )

dz

)
dg(z)

dz
(since g is analytic)

=
d
dz

(
d f (ζ )

dz

)
dg(z)

dz
= 0 (since f is harmonic).

(II) Let f (z) = z+(1/4)z be a harmonic function and g(z) = z2 be another analytic

function. Thus, it obvious that fzz = 0, but (g◦ f )zz = 1/2. Hence, (g◦ f ) is not

a harmonic function.
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Suppose that the mapping f = h+g is harmonic on domain Ω ⊂ C. According to

the Riemann mapping theorem, there exists a bijective function ϕ : D → Ω. Since f is

harmonic and ϕ is analytic one can infer that the composed f ◦ϕ maps the unit disc U

harmonically onto the region Ω of the complex plane C. If f = h+g, h′(0) = fz(0) ̸= 0

is a sense-preserving harmonic in D , then the normalized form of f given by

f (z)− f (0)
fz(0)

.

Hence, a normalized harmonic function f has the following series representation:

f (z) = h(z)+g(z) = z+
∞

∑
n=2

anzn +
∞

∑
n=1

bnzn. (1.12)

Let SH denote the class of all normalized sense-preserving one-to-one harmonic map-

pings f defined on U of the form (1.12). Similarly, let S 0
H denote the class of all

normalized sense-preserving one-to-one harmonic mappings f of the form (1.12) with

b1 = 0. Then we have

S ⊂ S 0
H ⊂ SH .

Note that a sense-preserving harmonic function f ∈ SH (or f ∈ S 0
H) is in class KH

(orK 0
H ) if it maps U onto a convex domain. Likewise, a sense-preserving harmonic

function f ∈ SH (or f ∈ S 0
H) is in class SCHD (orS 0

CHD) if its range is convex in the

direction of the real axis, and it will be in the class SCID (orS 0
CID) if its range is convex

in the direction of the imaginary axis. More can be found in [19–21].
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1.4 Harmonic Shears

Clunie and Sheil-Small developed the “shear construction" for producing harmonic

mappings. The procedure “shears" a conformal mapping along parallel lines to con-

struct a harmonic mapping with a predetermined dilation onto a region that is convex

in one direction. The following result contains the shear construction.

Theorem 1.4.1. [19, Theorem 5.3 ] If h,g are holomorphic functions on U, such that

|g′(z)/h′(z)| < 1 for all z ∈ U, then the harmonic mapping of the form f = h+ g is

univalent and maps U onto a R-convex domain if and only if the analytic mapping

h−g = ϕ is univalent and maps U onto a domain that is convex in the same direction.

To use the shearing construction, assume ϕ is a conformal mapping that maps U

onto a domain convex in the horizontal direction. The harmonic shear f = h+g of ϕ

is given by the solution of differential equations


h′−g′ = ϕ ′

g′ = ω f h′,

for a given complex dilatation ω f . As a result of solving the preceding set of equations,

it follows that

h(z) =
∫ z

0

ϕ ′(ζ )

1−ω f (ζ )
dζ . (1.13)

For the co-analytic part g, we obtain

g(z) =
∫ z

0

ω f (ζ )ϕ
′(ζ )

1−ω f (ζ )
dζ . (1.14)
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Note that

f (z) = h(z)+g(z) =
∫ z

0

ϕ ′(ζ )

1−ω f (ζ )
dζ +

∫ z

0

ω f (ζ )ϕ ′(ζ )

1−ω f (ζ )
dζ

=
∫ z

0

ϕ ′(ζ )

1−ω f (ζ )
dζ +

∫ z

0

ϕ ′(ζ )

1−ω f (ζ )
dζ −

∫ z

0
ϕ ′(ζ )dζ

=
∫ z

0

ϕ ′(ζ )

1−ω f (ζ )
dζ +

∫ z

0

ϕ ′(ζ )

1−ω f (ζ )
dζ −ϕ(z).

Hence, it is obvious that harmonic mapping can be expressed as

f (z) = 2Re
{∫ z

0

ϕ ′(ζ )

1−ω f (ζ )
dζ

}
−ϕ(z). (1.15)

The last equation is only applicable if the conformal mapping ϕ is known. Next, we

have examples for some univalent harmonic functions mapped onto the R−convex

domain with the given second complex dilatation ω f .

Example 1. Let ϕ = z/(1− z) be a univalent analytic map of the unit disk U onto

a convex domain; see Figure 1.3(a). We will build a univalent harmonic function

f = h+ g with second complex dilatation ω f (z) = z (|ω(z)| < 1). Using (1.15), it

follows that

f (z) = 2Re
{∫ z

0

1
(1−ζ )2(1−ζ )

dζ

}
−
(

z
1− z

)
= Re

{
2z− z2

(1− z)2

}
−
(

z
1− z

)
.

Example 2. Let ϕ = z/(1 − z) be a univalent convex function. We are going to

construct a univalent harmonic function f = h + g with second complex dilatation

ω f (z) = z2. Then f will be univalent harmonic and sense-preserving with |ω(z)|< 1.
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Using (1.15), it follows that

f (z) = 2Re
{∫ z

0

1
(1−ζ )2(1−ζ 2)

dζ

}
−
(

z
1− z2

)
=

1
4

Re
{(

6z−4z2

(1− z)2 +
1
2

log
(

1+ z
1− z

))}
−
(

z
1− z

)

Figures (b) and (c) in Figure 1.3 show that applying different dilatations to the same

(a) Image of ϕ(U) (b) Image of f (U) when ω f = z (c) Image of f (U) when ω f = z2

Figure 1.3: Image of U under ϕ , and f that is shear of z/(1− z) with diffrent dilata-
tions.

harmonic function can lead to very different ranges.

Theorem 1.4.2. [22, Theorem 1.2] Let θ ∈ [0,π). A harmonic f = h+ ḡ locally uni-

valent in U is a univalent mapping of U onto a domain convex in the direction of θ for

some 0 ≤ θ < 2π if and only if h− e2iθ g = ϕ is a conformal univalent mapping of U

onto a domain convex in the direction of θ .

Clearly, when θ = 0, h = ϕ +g as well as leads to f = ϕ +2Re{g} . As a result,

one can assert that f is not equal to ϕ by the addition 2Re{g}. Geometrically, this

can be represented by cutting ϕ into horizontal slices and continuously translating or

scaling each slice to obtain f . This matches the “shear" name in the theorem. As can
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be seen from [23–45], the harmonic shear is a focus of the latest researches.

1.5 Harmonic Convolutions

The convolution of harmonic mappings can be regarded as a generalization of

the convolution of conformal mappings. This has piqued the interest of complex

researchers, and many interesting theorems have been published [46–66]. However,

there is no equivalent consequence to the harmonic convolution results. For example,

Ruschewey and Sheil show that convexity is preserved under analytic convolution but

not preserved under harmonic convolution.

Definition 1.5.1. [14, Convolutions] Let f and F be analytic function on U given by

f (z) =
∞

∑
n=1

anzn, and F(z) =
∞

∑
n=1

Anzn.

Then the Hadamard product (convolution) of f and F is defined as

f (z)∗F(z) =
∞

∑
n=1

anAnzn.

For any analytic function F(z) = ∑
∞
n=1 anzn with F(0) = 0, we have

F(z)∗ z
(1− z)

=
∞

∑
n=1

anzn ∗
∞

∑
n=1

zn =
∞

∑
n=1

anzn = F(z),

F(z)∗ z
(1− z)2 =

∞

∑
n=1

anzn ∗
∞

∑
n=1

nzn = z
∞

∑
n=1

nanzn−1 = zF ′(z). (1.16)
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Also,

F(z)∗ log
(

1+ z
1− z

)
=
∫ z

0

F(ζ )−F(−ζ )

ζ
dζ . (1.17)

To see how (1.17) constructed, note that

log(1+ z) =
∫ 1

1+ z
dz =

∫ ( ∞

∑
n=1

(−1)n−1zn−1

)
dz =

∞

∑
n=1

(−1)n−1

n
zn,

and

log(1− z) =
∫ −1

1− z
dz =−

∫ ( ∞

∑
n=1

zn−1

)
dz =−

∞

∑
n=1

1
n

zn.

Summing both equations will then give

log
(

1+ z
1− z

)
= log(1+ z)− log(1− z) =

∞

∑
n=1

(1+(−1)n−1)

n
zn.

Therefore,

F(z)∗ log
(

1+ z
1− z

)
=

∞

∑
n=1

anzn ∗
∞

∑
n=1

(1+(−1)n−1)

n
zn =

∞

∑
n=1

(1+(−1)n−1)

n
anzn

=
∞

∑
n=1

1
n

anzn +
∞

∑
n=1

(−1)n−1

n
anzn =

∞

∑
n=1

1
n

anzn −
∞

∑
n=1

(−1)n

n
anzn

=
∫ z

0

F(ζ )

ζ
dζ −

∫ z

0

F(−ζ )

ζ
dζ .

In the end, we will obtain (1.17). Using the same approach, we obtain

F(z)∗ log
(

1+ iz
1− iz

)
=
∫ z

0

F(−iζ )−F(iζ )
ζ

dζ . (1.18)
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The concept of convolution can be generalized to planar harmonic mappings.

Definition 1.5.2. [14, Definition 4.120] For harmonic univalent functions

f = h+g = z+
∞

∑
n=2

anzn +
∞

∑
n=1

bnzn

F = H +G = z+
∞

∑
n=2

Anzn +
∞

∑
n=1

Bnzn,

their harmonic convolution is given by

( f ∗̃F)(z) = (h∗H)(z)+(g∗G)(z) = z+
∞

∑
n=2

anAnzn +
∞

∑
n=1

bnBnzn (1.19)

Example 3. Let the mapping f1 = h1 +g1 where h1 +g1 = z and ω1 = z . Then

h1 = log(1+ z) and g1 = z− log(1+ z).

Also, let the mapping f2 = h2 +g2 where h2 +g2 = 1/2log((1+ z)/(1− z)) and ω2 =

z2. Then

h2(z) =
1
4

(
log
(

1+ z
1− z

)
− i log

(
1+ iz
1− iz

))
,

g2(z) =
1
4

(
log
(

1+ z
1− z

)
+ i log

(
1+ iz
1− iz

))
.

By definition (1.5.1) and equation (1.19), we have f1 ∗ f2 = h1 ∗h2 +g1 ∗g2 where

h1 ∗h2 = log(1+ z)∗ 1
4

(
log
(

1+ z
1− z

)
− i log

(
1+ iz
1− iz

))
, (1.20)

g1 ∗g2 = (z− log(1+ z))∗ 1
4

(
log
(

1+ z
1− z

)
+ i log

(
1+ iz
1− iz

))
. (1.21)
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By making use of equations (1.17) and (1.18), respectively, we obtain

h1 ∗h2 =
1
4

∫ z

0

log
(

1+ζ

1−ζ

)
ζ

dζ + i
∫ z

0

log
(1+iz

1−iz

)
ζ

dζ


g1 ∗g2 =

1
4

∫ z

0

2ζ − log
(

1+ζ

1−ζ

)
ζ

dζ + i
∫ z

0

2iζ − log
(

1+iζ
1−iζ

)
ζ

dζ

 .

(a) Image of f1(U) (b) Image of f2(U) (c) Image of ( f1 ∗ f2)(U)

Figure 1.4: Image of U under f1, f2, and f1 ∗ f2.

1.6 Minimal Surfaces and Harmonic Maps

A fundamental connection between the harmonic maps and the minimal surfaces

exists because the Euclidean coordinates of the minimal surface are harmonic. The

projection of a minimal surface onto its base plane is known as harmonic mapping,

and there is an exact formula for each harmonic mapping that may be used to obtain

the surface associated with it. Due to that fact, the harmonic mappings can be used to

study minimal surfaces and vice versa.
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1.6.1 Minimal Surface

The minimal surfaces in three-dimensional Euclidean space have their early history

in the calculus of variations developed by Euler and Lagrange in the 18th century, as

well as in later studies by Enneper, Scherk, Schwarz, Riemann, and Weierstrass in

the 19th century. Besides the 19th-century contributors, other mathematicians like

Osserman, W Hengartner, G Schober, Peter Duren, Michael Dorff, Stacey Muir, S

Ponnusamy, and A Rasila have contributed to the minimal surface theory. By setting

0 ≤ u ≤ 2π and −2π/3 ≤ v ≤ 2π/3 for the equation given in the Table 1.2 and using

the Wolfram Mathematica software, we are able to draw the minimal surfaces shown

in Figure 1.5.

Table 1.2: Numerous parametrizations of well-known minimal surfaces.

The surface’s name The surface’s parametrization X(u,v)

Helicoid (asinhvcosu,asinhvsinu,au)

Catenoid (acoshvcosu,acoshvsinu,av)

Catalan
(
1− cosucoshv,sin u

2 sinh v
2 ,u− sinucoshv

)
Enneper

(
u− 1

3u3 +uv2,v2 − 1
3v3 +u2v,u2 − v2)

Scherk’s singly periodic
(
sinh−1 u,sinh−1 v,sinuv

)
Scherk’s doubly periodic

(
u,v, ln cosu

cosv

)
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(a) Helicoid surface (b) Catenoid surface

(c) Catalan surface (d) Enneper’s surface

(e) Scherk’s singly periodic surface (f) Scherk’s doubly periodic surface

Figure 1.5: Examples of minimal surfaces
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Definition 1.6.1. [67, Definition 2] The minimal surface S is one that has a mean

curvature that is zero at any arbitrary point on it.

Observe that the vanishing mean curvature on a minimal surface X = Φ(U), where

U = (u,v) and X = (x,y,z) are points in R2 and R3 is based on the idea that a surface

is a saddle surface with positive curvature in one direction being matched by negative

curvature in the opposite direction. For the study of minimal surfaces, we must choose

parameters that reflect the surface geometry. Thus, parameterizations of isothermal

are therefore required. These parametrizations send small squares to small squares.

Geometrically, isothermal parametrization requires that Xu ⊥ Xv. This condition can

be expressed using the coefficients of the surface’s first fundamental form:

E = Xu ·Xu = Xv ·Xv = G = η
2, and F = Xu ·Xv = 0 η = η(u,v)> 0. (1.22)

Also, main curvature H and Gauss curvature K are given by

H =
1
2

(
N +L

η2

)
, K =

LN −M2

η4 . (1.23)

Accordingly, the Gaussian curvature K can be expressed as follows:

K =− 1
η2 ∆(log(η)). (1.24)

This is known as Gauss’s theorema egregium. Further details are contained in a book

by Peter Duren [15, P. 173-175]. From (1.23), it is clear that if S is the regular minimal

surface in isothermal parameters, then 2η2H = L+N. However, minimal surfaces
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have vanishing mean curvature. Given the relation ±(L+N) =∥ ∆X ∥, we have

∆X = 0 ⇐⇒ H = 0.

Based on the above procedures, one can derive the following theorem:

Theorem 1.6.1. [15, Page 165] Let X = (x1,x2,x3) be a regular surface equipped with

the first fundamental form

∥ dX ∥2= η
2(du2 +dv2), η > 0.

Then x1,x2,x3 are harmonic functions if and only if X is a minimal.

1.6.2 Enneper-Weierstrass Representation

In the 19th century, German mathematicians Alfred Enneper and Karl Weierstrass

introduced the Enneper-Weierstrass representation of a minimal surface in R3, which

presented an intriguing bridge between geometry and complex analysis. The Enneper-

Weierstrass representation has been compulsory to the study of minimal surfaces in

R3. The information in this section comes from the books [15] and [14].

Let S be a surface in R3 parametrized by X(u,v) = (x(u,v),y(u,v),z(u,v)). For

k = 1,2,3, let ϕk be a real valued function define on U given by

ϕ
2
k = 4

(
∂xk

∂w

)2

.
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Make use of squaring the complex differential operator given in (1.8), we obtain

ϕ
2
k =

((
∂xk

∂u

)2

−
(

∂xk

∂v

)2

−2i
(

∂xk

∂u

)(
∂xk

∂v

))
,

which gives

|ϕk|2 = 4
∣∣∣∣∂xk

∂w

∣∣∣∣2 =
((

∂xk

∂u

)2

+

(
∂xk

∂v

)2
)
.

Furthermore, it is obvious

E = Xu ·Xu =

(
∂x1

∂u

)2

+

(
∂x2

∂u

)2

+

(
∂x3

∂u

)2

=
3

∑
k=1

(
∂xk

∂u

)2

,

G = Xv ·Xv =

(
∂x1

∂v

)2

+

(
∂x2

∂v

)2

+

(
∂x3

∂v

)2

=
3

∑
k=1

(
∂xk

∂v

)2

,

F = Xu ·Xv =

(
∂x1

∂u

)(
∂x1

∂v

)
+

(
∂x2

∂u

)(
∂x2

∂v

)
+

(
∂x3

∂u

)(
∂x3

∂v

)
=

3

∑
k=1

(
∂xk

∂u
∂xk

∂v

)
,

and,

3

∑
k=1

(ϕk)
2 =

3

∑
k=1

((
∂xk

∂u

)2

−
(

∂xk

∂v

)2

−2i
(

∂xk

∂u

)(
∂xk

∂v

))

= (Xu ·Xu −Xv ·Xv −2i(Xu ·Xv)) .

Hence,

3

∑
k=1

(ϕk)
2 = (E −G−2iF).

22



Suppose X is given by isothermal parameters, it follows from (1.22) that

3

∑
k=1

(ϕk)
2 = 0.

Also,

3

∑
k=1

|ϕk|2 = (Xu ·Xu +Xv ·Xv) = (E +G) = 2η
2 > 0. (1.25)

If S is a regular minimal surface, according to Theorem 1.6.1, the coordinate xk is

harmonic, thus

∆xk = 4
∂

∂w

(
∂xk

∂w

)
= 4

(
∂ϕk

∂w

)
= 0.

Hence, the functions ϕk are analytic. It results in the following theorem, which we can

now describe:

Theorem 1.6.2. Let X =: (x1(u,v),x2(u,v),x3(u,v)) be an isothermal parametrization

of a regular minimal surface S and let w = u+ iv. Then the functions

ϕk = 2
∂xk

∂w
, k = 1,2,3,

satisfy the conditions

3

∑
k=1

ϕ
2
k = 0,

3

∑
k=1

|ϕ1|2 > 0, (1.26)

and analytic.

Remember that xk,k = 1,2,3 is a parametrization of S given in Theorem 1.6.3, so
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determining xk will be useful. To do so, let w = u+ iv, w = u− iv, then dw = du+ idv

and dw = du− idv. it follows

ϕkdw =
1
2

(
∂xk

∂u
− i

∂xk

∂v

)
(du+ idv)

=
1
2

((
∂xk

∂u
du+

∂xk

∂v
dv
)
+ i
(

∂xk

∂u
dv− ∂xk

∂v
du
))

,

similarly,

ϕkdw =
1
2

(
∂xk

∂u
+ i

∂xk

∂v

)
(du− idv)

=
1
2

((
∂xk

∂u
du+

∂xk

∂v
dv
)
− i
(

∂xk

∂u
dv− ∂xk

∂v
du
))

.

This brings us to the next step

dxk =
∂xk

∂u
du+

∂xk

∂v
dv = ϕkdw+ϕkdw = 2Re(ϕk dw).

Therefore, integrating both sides yields to

xk = 2Re
∫

ϕk(ζ )dζ + ck. (1.27)

Since the scaling and shift do not affect the geometric shape of the surface. The con-

stants ck and 2 could be omitted, which leads to

xk = Re
∫

ϕk(ζ )dζ . (1.28)

Consequently, we have the following theorem:
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