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PERMODELAN DAN PENGESAN NILAI TERPENCIL DALAM 

PERTUKARAN SAHAM SAUDI 

ABSTRAK 

Tesis ini memfokuskan kepada masalah mengesan dan membetulkan nilai 

terpencil dalam set data pasaran saham Arab Saudi (Tadawul). Matlamatnya adalah 

untuk mengenal pasti outliers tersebut dengan menggunakan dua pendekatan. 

Pendekatan pertama adalah berdasarkan transformasi MODWT dan diterokai dalam 

dua cara berbeza: pertama transformasi digunakan pada siri asal, kemudian outlier 

dikesan dalam butiran yang diperoleh menggunakan pagar Tukey dan sama ada 

digantikan dengan median atau dikeluarkan. Dalam aplikasi kedua MODWT, kami 

mula-mula memodelkan pulangan dengan model seperti GARCH. Kemudian 

pertimbangkan pekali wavelet bagi sisa untuk mengesan outlier yang dikenal pasti 

sebagai nilai yang berada di luar set ambang kuantil wavelet dan yang disimulasikan 

buat kali pertama. Siri bersih diperoleh melalui songsangan MODWT dan dimodelkan 

menggunakan kesesuaian model yang sesuai. Prestasi prosedur yang baik dari segi 

pengesanan outlier yang betul ditunjukkan, dan digunakan pada harga penutupan 

pasaran Saham Saudi dan indeks S&P 500. Dalam pendekatan kedua kami meneroka 

rangkaian saraf MLP, dan kemudian RBFNN. MLP pertama kali digunakan, dan 

outlier dikelaskan berdasarkan kadar repo pembolehubah ekonomi, kadar inflasi, dan 

logaritma harga minyak. Dengan cara yang sama, RBFNN digunakan untuk mengesan 

dan mengklasifikasikan outlier berdasarkan pembolehubah ini. Tetapan optimum 

RBFNN diperoleh dengan bantuan algoritma PSO. Kedua-dua algoritma pengelasan 

terbukti berjaya dan dinilai oleh pelbagai metrik, yang menunjukkan prestasi yang 

baik. Prestasi keseluruhan kaedah berasaskan MLP nampaknya sama baik dengan 
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kaedah MODWT seperti yang ditunjukkan dan disokong oleh kadar positif sebenar ke 

atas set data ujian sampel. 
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MODELING AND DETECTING OF OUTLIER VALUES IN THE SAUDI 

STOCK EXCHANGE 

ABSTRACT 

This thesis focuses on the problem of detecting and correcting outliers in the 

Saudi Arabia stock market (Tadawul) datasets. The aim is to identify such outliers by 

adopting two approaches. The first approach is based on the MODWT transform and 

explored in two different ways: first the transform is applied to the original series, then 

outliers are detected in the obtained details using the Tukey fences and are either 

replaced by the median or removed.  In the second application of the MODWT, we 

first model the returns with a GARCH-like model. Then consider the wavelet 

coefficients of residuals to detect outliers which are identified as values that fall 

outside a set of wavelet quantile thresholds that are simulated for the first time. The 

clean series is obtained through the inverse of the MODWT and modelled using an 

appropriate model fit. The good performance of the procedure in term of correct 

detection of outliers is demonstrated, and applied to the close price of the Saudi Stock 

market and the S&P 500 index.  In the second approach we explore the MLP neural 

network, and then the RBFNN. The MLP is first applied, and outliers are classified 

based on the economic variables repo rate, inflation rate, and logarithm of oil price. In 

similar manner the RBFNN is applied to detect and classify outliers based on these 

variables. The optimal setting of the RBFNN is obtained with the help of the PSO 

algorithm. Both classification algorithms proved to successful and are evaluated by 

various metrics that show good performance.  The overall performance of the MLP 

based method seems to be as good as the MODWT method as shown and supported 

by the true positive rates over the sample test dataset. 
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CHAPTER 1  
 

INTRODUCTION 

 

1.1 Introduction 

The development of time series analysis focused on two specific areas or 

applications. The first one was spectral analysis in the frequency domain of 

communications engineering, and the second one was the analysis of correlation in the 

time domain of mathematical statistics and finance. This current study being 

undertaken focuses largely on the decomposition in time and scale of the random 

behaviour of the stock market data. The analysis will be based on the wavelet 

transform applied to the stock market data. 

According to Elfouly et al. (2006), the discrete wavelet transform, especially 

the Maximum Overlapping Discrete Wavelet Transform  (MODWT), has been a 

popular and widely used methodology for the past twenty years. It has been used in 

various fields, such as finance, mathematical statistics, medicine, and engineering. 

This method systematically analyzes a time series by decomposing the series in time 

and scale domains. The MODWT has several properties that can perform various 

functions. For instance, it is able to adapt itself to capture features across a large range 

of frequencies and hence can be used to extract components of time series such as 

trend, seasonality, business cycle, and noise. Therefore, the MODWT method can 

capture events in the stock market data and identify or associate these events with 

specific time horizons and locations. In the field of trade, finance, and industry, the 

stock market's behaviour plays a crucial role. Researchers have introduced various 

methodologies and theories to explain and analyze stock market data. However, the 

stock market is driven by complex dynamics. This complexity increases the difficulty 
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of making any hypothesis or assumptions about the market data. For instance, the 

linear time series models used for simplifying stock market data rarely produce 

satisfactory results. 

This study will be about the application of MODWT on stock market data. In 

doing so, this study hopes to acquire a better understanding of the outlier values 

detections, removable and predictions. In addition, this study aims to improve 

forecasting accuracy by exploring the Neural Network models. 

1.2 Maximum Overlapping Discrete Wavelet Transform (MODWT) 

The research related to wavelet transforms (WT) is a challenging research topic 

since the theory of wavelet transforms was established through numerous overlapping 

theories in the areas of mathematics and statistics. WT appeared in the literature in the 

1980s, with many applications in signal and image processing. While the Fourier 

transform creates a representation of a signal in the frequency domain, the wavelet 

transform creates a representation of the signal in both the time and frequency domain, 

thereby allowing efficient access to localized information about the signal and 

overcoming the limitations of the Fourier transforms. 

The main idea of wavelets is to extend a function of interest in terms of a basic 

function called the mother wavelet by using dilation and translation process. Often, the 

scale of the dilation is chosen to be a power of two, and the sample size of the discrete-

time signal to be a power of two as well. However, the MODWT, which is a modified 

form of the traditional DWT, can be used for any sample size Gençay et al. (2001); 

DWT is a powerful multiresolution tool for time-scale analysis of time series and has 

been used to break down an original time series into different components, each of 
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which may carry meaningful clues from the original time series Pual Addison (2017) 

and Bhatnagar (2020). 

Any financial market is typically described as a complex dynamic system and 

consists of a large number of shareholders. These shareholders encounter an unlimited 

number of economic factors that affect their behaviour. The main objective of the 

shareholders is to obtain ideal performances by responding to the system based on their 

past experiences and future expectations.  Because of the complexity of the financial 

market, the analysis of financial data is very difficult, and the MODWT could be an 

efficient tool to extract information from such data. The MODWT has attractive 

properties that are discussed in chapter two and provide great tools to understand how 

the information is processed in time and scale domains. 

1.3 Stock Prices 

A company’s ownership is divided into identical numbers of shares that 

investors can purchase are called shareholders. The market price index is a 

combination of the share prices of a set of companies. New York, Chicago, Frankfurt, 

London, Bombay, and Saudi Arabia have well-known stock markets. A company that 

needs funds to build a new factory or develop a new product can acquire capital by 

issuing its shares to investors. If the company makes a profit, part of this profit may be 

paid out to shareholders as a dividend per share. Share market values reflect investors’ 

expectations about the future dividend and capital growth of the company. A stock 

index is a mathematical measurement of a company's performance or a number of 

companies as a group. The major stock market index in the American Stock Exchange, 

which tracks 30% of the most vital industrial shares quoted, is the New York Stock 

Exchange (Tariq S. Al Shammary et al. 2020). At the same time, the Standard and 



4 

Poor’s 500 Index (S&P 500) represents the average price of the biggest 500 shares 

quoted on the New York Stock Exchange, American Stock Exchange, and the United 

States over-the-counter market. 

Stock closing price refers to the last price at which a stock trades during a 

regular trading session. For many markets, regular trading sessions run from 9:30 a.m. 

to 4:00 p.m.  However, a number of stock markets offer after-hours trading. Some 

financial publications and market data vendors use the last trade in these after-hours 

markets as the closing price for the day. Others, however, publish the 4:00 p.m. price 

as the closing price and display prices for after-hours trading separately.  

1.4 Problem Statement 

The Tadawul was established in 2007, and it has been trading ever since. The 

amount of traded stocks was referred to as unweighted, and it has been developing 

significantly. However, the market data has been experiencing considerable 

anomalies, such as outlier values and structural breaks in stock prices. As a result, there 

is a high level of risk in data modelling misfitting and uncertainties. This may 

practically affect the decision-makers because of a lack of accuracy in forecasting 

when using standard forecasting methods. Therefore, in order to attract investors and 

provide a conducive and stable investment environment, which is important for any 

stock market to be successful, more efficient methods to detect and predict outlier 

values are needed.  This help to identify uncertainty and volatility patterns, isolate 

structural breaks, and achieve a high level of accuracy in forecasting. There is no doubt 

that forecasting stock prices have an important role in making the decision whether to 

invest or not. The role of forecasting is to reduce uncertainty in the future by giving a 

scientific vision of what the stock price will look like in the near future.  
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Time series forecasting is greatly affected by the choice of the appropriate 

model for the time series data, as it directly affects the accuracy of the predictions. 

Until obtaining prediction models for the time-series data that have the ability to 

understand the reality of the stock and provide high accuracy in the forecasting, these 

models must take into account all considerations related to data, whether linear or non-

linear models are applied. 

1.5 Objectives of the study 

This study aims to apply mathematical method to detect and improve the 

forecasting accuracy of outlier values in stock prices. More specifically, in the Saudi  

Stock Exchange (Tadawul). The main goals of this study are: 

1) To use the MODWT in detecting the outlier values by directly applying the 

transform to the original series. 

2) To use the MODWT in detecting outliers in the residuals from GARCH-like 

models. 

3) To explore the MLP neural network models to predict outlier values. 

4)  To develop RBFNN neural network model to detect the outlier values. 

1.6 Significance of the study 

Since Tadawul is a rapidly developing financial market, it still experiences 

difficulties in data analysis which negatively impacts its performance and affects the 

authorities' efforts to provide an attractive investment environment. Hence, this study 

suggests a method of detecting, removing, and predicting the outlier values. This will 

improve data analysis in Tadawul and help to improve its investment environment. 

One of the main contributions of this study is to demonstrate the use of the MODWT 
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as a mathematical tool that can decompose time series data and, hence, help detect and 

remove outlier values in the stock market data. 

In this study, the exploration of the Artificial Neural Network models is 

considered as well. These methods have been successfully applied in time series 

forecasting and are promising in anomaly detection. The significance of this study is 

furthermore justified by the fact that, as far as known, no research work focuses on the 

application of the MODWT and MLP in detecting outliers in the Tadawul returns. This 

study aims to contribute effectively to solving some of the financial problems in 

Tadawul, particularly in detecting outlier data points, which then help in forecasting 

accuracy. This, in turn, helps Tadawul to attract more investors. 

1.7 Scope of the study 

The scope of this study is limited to investigating the discrete wavelet methods, 

particularly the MODWT transform firstly applied directly to the original series 

without making any assumption on the underlying model and secondly applied to 

residuals from a class of GARCH-like models. Also, the application of machine 

learning algorithms is investigated, namely the MLP neural network. The dataset that 

is used for this study will be limited to data based on the Tadawul, but the proposed 

methodologies can be easily applied to other datasets. 

1.8 Organization of the Thesis 

This thesis comprises 8 chapters and is organized in the following manner. 

Chapter 1 introduces the context within which this study is being carried out, followed 

by the objectives and methodology of the study, and finally, the significance and the 

main contribution of this study.  
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In chapter 2, a literature review of the MODWT will be presented together with 

a detailed discussion of their respective advantages and disadvantages. This chapter 

highlights where and when this method of the transform will be used in the study and 

how the concept can be applied to any financial data time series. Also, some of the 

neural network models and algorithms used to detect outlier values are reviewed. The 

chapter will also conclude with a brief discussion of the Tadawul dataset. 

Chapter 3 introduces the mathematical framework, which presents the 

mathematical methods and the statistical models, namely the Tukey method, WT, 

MODWT, Neural Network models, and other related models. 

Chapters 4 and 5 are dedicated to the problem of detecting and removal of 

outlier values in Saudi Stock Market data using mainly the MODWT transform. In 

chapter 4, the MODWT is applied directly to the original return series, and then the 

Tukey method is applied to the reconstructed series. In chapter 5, the MODWT is 

applied to the residuals computed from GARCH-like models, and outliers are detected 

using simulated wavelets quantiles thresholds. 

In chapters 6 and 7, the neural network models are explored in detecting 

outliers; namely, the MLP neural network algorithm is applied in Chapter 6, and the 

application of radial basis function neural network is applied in chapter 7. 

Finally, chapter 8 concludes this study by highlighting the significance and the 

main contribution of this study to the analysis of stock market datainTadawul. It shows 

that these results can be applied to any stock market data in general. Also, it suggests 

areas for further future research based on the findings of this study.
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CHAPTER 2  
 

LITERATURE REVIEW OF WAVELET TRANSFORMS AND OTHER 

FILTERING METHODS 

 

2.1 Introduction and Definitions 

In this chapter, several important concepts related to the presence of outliers in 

financial time series data are discussed. In general, outliers data are abnormal values 

that are not consistent with the overall distribution of the underlying data. The presence 

of outliers in data reduces data quality and has adverse effects on the performance of 

the analysis models. The problem of outlier detection can be found in a wide variety of 

domains, such as machine monitoring, financial markets, and social network analysis. 

Time series can be defined in econometrics and mathematical finance as a set of 

observations or random numbers that have been collected and arranged sequentially in 

time.  Robert and David (2000) refer to these collections of observations indexed by 

time as a stochastic process. Discrete-time series is a sequence of observations taken at 

specific time periods, such as hourly,  daily, or weekly. When the data can be recorded 

continuously, this time series is said to be a continuous-time series, such as electronic 

signals. Schuster (1906) was one of the earliest researchers to record time-series data, 

and that was monthly time-series data, as mentioned by Brockwell and Davis (2002). 

Stationary time series is defined as a series which fluctuates around a constant 

mean, constant variance and time-independent covariances. Conversely, the non-

stationary time series is defined as a series that fluctuates around a non-constant mean 

and\or non-constant variance over time Brockwell and Davis (2002). Most of the 

probability theories focus on the stationary time series, and often non-stationary time 

series are subject to different kinds of transformations, such as considering the first or 
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second difference and eliminating trends. Transformation is widely used in financial 

time series. There are several methods to distinguish between stationary and non-

stationary time series, such as examining the data graphically, running a unit root test 

(Dickey-Fuller test), and examining the autocorrelation function (ACF). However, it 

should be noted that most of the financial data are non-stationary time series. Thus, the 

series needs to be transformed before any model fits Mills and Markelloo (2008). 

Time series analysis, including data model fitting, aims to extract essential 

characteristics and obtain meaningful statistical information that can be used along with 

past values to predict future data values before they are measured. Many models, such 

as the ARIMA model, GARCH models, Artificial Neural Network algorithms and fuzzy 

models,   were proposed in the forecasting techniques by Brockwell and Davis (2002), 

Qu et al. (2006), Chen et al. (2006). 

Nobre and Neves (2019)  explored in the financial data a combination of the 

Principal Component Analysis (PCA), DWT  and XGBoost in an attempt to create a 

safer system that allows achieving high returns with lower risks. The PCA is used to 

reduce dimensions, whereas the DWT is used to reduce noise without losing the main 

structure of the data.  Their results show that they were able to identify buying and 

selling strategies and achieved an average return (49.26%).  

2.1.1 Outliers in Time Series 

Outliers in time series are data points where unexpected values arise and are 

associated with an important change in the data that can cause problems in applying 

standard statistical procedures  Chandola et al. (2009)  and  Hawkings (1980). Outliers 

occur in many real-life data. For example, Vishwakarma et al. (2020) considered in their 

study the detection of outliers in two real-time series data of TCS stock price and 
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Aluminum trading prices for the period January 2, 2006, to April 12, 2015. Also, Van 

de Wiel et al. (2019)  considered the outlier detection problem in real-time series data 

of water sensors from the Dutch water authority “Aa en Maas” where they used the 

water heights on the upper part of the weirs for the analysis. 

The problem of detecting outliers is considered in a variety of fields, including 

personalised marketing, credit card fraud detection, and financial applications (loan 

approval, stock market data). The existence of outliers may be due to several causes, 

such as poor data quality and low-quality measurements Hoaglin et al.(1986). Detecting 

outlier values is useful because these values might hold important information in many 

applications, see Bruno and Garza (2010), Fileto et al. (2015) Giacometti and 

Soulet(2016), Rasheed and Alhajj (2014), but they may as well negatively bias the entire 

result of an analysis.  In financial data such as price index, outliers are defined as 

extreme observations that are far away from the average value. Barnet and Lewis (1994) 

define outlier observations as the observations that deviate significantly from other 

members of the sample. Similarly, Johnson (1992) defines an outlier as an observation 

in a data set that seems to be inconsistent with other observations of that set of data. 

Outlier detection methods can be divided into univariate methods proposed by 

earlier works in this field, and multivariate methods, that form most of the current 

research.  The detection methods can also be divided into parametric and nonparametric 

methods Williams et al. (2002). Parametric methods require a known underlying 

distribution of the observations Hawkins (1980), Rousseeuw and Leory (1987), Barnett 

and Lewis (1994). The nonparametric methods are based on statistical estimates of 

unknown distribution parameters Hadi (1992), Caussinus and Roiz (1990), and these 

methods are usually unsuitable for data in high-dimension. 
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Data from financial periods are often disturbed by outliers due to the impact of 

rare and recurring events. Therefore, before modelling such data, cleaning the data and 

checking for the existence of outlier values is often started. Financial data often contain 

volatility which can be broadly defined as anything that is highly variable. It can also 

be defined as the movements of the variable under certain circumstances.; the more 

intense the volatility, the more the variable fluctuates over time. Volatility is connected 

to unpredictability, uncertainty and high risk. Generally speaking, the term volatility is 

associated with risk; hence high volatility is linked to poor market and disruption, thus, 

unfair security pricing.  

Within the class of non-parametric, outlier detection methods can set apart the 

data mining methods, also called distance-based methods. These methods are usually 

based on local distance measures and are capable of handling large databases Knorr and 

Ng (1997), Williams and Huang (1997), DuMouchel and Schonlau(1998), Jin et al. 

(2001), Williams et al. (2002), Bay and Schwabacher (2003).  

Another class of outlier detection methods is founded on clustering techniques, 

where a cluster of small sizes can be considered a clustered outliers Kaufman and 

Rousseeuw (1990), Ng and Han (1994), Barbara and Chen (2000), Acuna and 

Rodriguez (2004). Hu and Sung (2003) proposed a method to identify both high and 

low-density pattern clustering, further partitioning this class into hard and soft 

classifiers. The former partition the data into two non-overlapping sets: outliers and 

non-outliers. The latter offers a data outlyingness ranking Schiffman et al. (1981), Ng 

and Han (1994), Shekhar et al. (2001), Shekhar and Chawla (2002), Lu et al. (2003). 

Yuan (2018) applied machine learning methods to financial data and aimed to 

predict stock by comparing the long short-term memory (LSTM), gated recurrent units 

(GRU), support vector machine (SVM), and extreme gradient boosting (XGBoost). The 
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results show that the recurrent neural network outperforms in time-series prediction. 

Both LSTM and GRU show higher accuracy rates than the other two classification 

methods. Especially for gated recurrent units, its accuracy rate is around 5% higher than 

SVM and XGBoost. 

2.1.2 Time Series Filtering  

The concept of filtering was developed in engineering, and it aims to eliminate 

and reduce the random variations in low and high-frequency data without changing the 

true pattern of the data. The filtering method has been applied in the decomposition and 

forecasting of time series. In forecasting, the filtering methods involve one or more 

parameters that are used to weigh historical values or residuals in the series. More 

generally, filters are used in economics and financial series to eliminate and extract a 

time series component such as business cycle, noises, trends, and seasonality 

Makridakis et al. (1998); Hamliton (1994). A linear time series filter converts the input 

time series into another time series  (output). The series is regarded as the output of the 

convolution of the linear filter used by Gencay et al. (2002). 

There are many types of filtering methods that have been introduced in finance 

and economic time series. Gencay et al. (2002) introduce the Hodrick-Prescott Filter 

(HP). This filter is widely used to identify the business cycle component of a 

macroeconomic time series. The most common filtering techniques used are the Infinite 

Impulse Response Filters (IIF) and the  Non-Causal Infinite Impulse Response Filters 

(IIF), which are also linear filters commonly used in the analysis of prices in the 

financial market. There are as well the Low-Pass, High-Pass and Band Pass Filters that 

are used. The Fourier Transform Filter is one of the most prominent filters in the 

frequency domain and time series analysis. The Wavelet Transform is another powerful 
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filtering method that focuses on the time-frequency domain and is widely used to 

decompose discrete-time series data. 

2.2 Spectral Analysis 

Spectral analysis can be defined as a transformation function that transforms the 

time series data into a components series, i.e. new time series. In particular, it is a 

variance analysis tool that shows the time series as a sum of sines and cosines of 

different frequencies and amplitudes. The spectral density function has several 

applications in applied mathematics and engineering Ding li (2003). 

Percival and Walden (1993)  explored the time series analysis in the spectral 

domain on the basis of the spectral density function and statistical properties of the 

autocorrelation function. The spectral analysis aims to estimate and study the spectrum. 

Under the stationarity assumption, the Fourier transform is the best example among 

spectral analysis techniques since it has the property of time-shift invariant. Since 

(2008) several research works have been published on spectral analysis. Empirical 

research has been examined for the foreign exchange market based on the 

multidimensional time series and spectral distances Sato (2008). Moreover, using 

German data, Uebele and Ritschl (2009) used the spectral analysis method to examine 

the movement of the national income and financial markets. In addition, Jouini (2009) 

applied the spectral density method to detect structural breaks or regime shifts with their 

locations using Tunisian financial time series data and found that the unconditional 

volatility of the series does not appear to be constant. 
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2.3 Fourier Transform 

Joseph Fourier showed that any 2 -periodic function could be written as a sum 

of sinusoidal components with suitable coefficients. This space of square-integrable 

functions on the interval [0, 2 ], denoted by 2[0,2 ]L  , was later introduced by Henri 

Lebesgue. For example 

sin( )x

 ,  

cos(2 )
,

x



sin(2 )
,

x



cos(2 )
...

x

  

is an orthonormal basis for this space Gencay et al., (2002); Briggs and Henson, (1995) 

and Vuorenmaa(2004). 

       The expression f  means a function :f R R→ , 2[ , ]rL  −  and 1[ , ]rL  −   

denote the subspaces of real-valued elements of 2[ , ]rL  −  and 1[ , ]rL  −   

respectively. 

 Suppose that 1[ , ]rf L   −  then, it can be approximated by its trigonometric 

form of the Fourier series, (the superscript r  refers to real-valued elements of 1[ , ]rL  −

, Bachman et al., (2000). 
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na  and nb  are the sine and cosine Fourier coefficients respectively, , .n Z t R   

Fourier transform is a special kind of filtering method that approximate 

functions defined for all real numbers t  instead of the closed interval  [ , ] −  for any 
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1( ).f L R  Bachman et al. (2004) explored some of the main properties of the Fourier 

transform, such as energy preservation. Moreover, it is a linear isometric function from

2( )L R to 2( ).L R  Isometric function is a linear map :A X Y→  (where X  and Y are 

normed space) satisfying the condition of Bachman et al.(2004): 

AX X=  For every .x X     (2.2) 

Because it contains imaginary numbers, 1i = − , Fourier transforms have a 

strong relationship with complex numbers. 

This filter consists of Fourier transform equation of tx  and inverse Fourier 

transform equation. These two equations constitute the Fourier representation of the 

sequence tx , and, together, are called the Fourier transform pair.  

When non-stationary series are used, as with data from financial time series, the 

data are divided into short sections and then treated as quasi-stationary data. In this case, 

the spectral power cannot be accessed directly, and the Fourier transform estimations 

through spectral analysis can be applied, with Periodograms being a widely used 

approach. This technique relies on the data while not returning to the first estimates of 

the autocovariance sequence. According to Kokoszkaa and Mikosch (2000), the 

periodograms for a finite sequence 1,...,( )t t nx =  can be defined as follows:  

2 2
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In practice, much non-stationary time series can be transformed into stationary 

series through mathematical transformations such as differencing and eliminating 

trends. There are significant issues that arise when unsuitable transformation methods 

are applied. Serious problems may occur if an inappropriate method is used to detrend 

data, as described in depth by Enders (1995). 

One drawback of the Fourier transform particularly lies in its unsuitability for 

use in particular decomposing characteristics of stock market data, including 

discontinuity and sudden change, as well as various locally occurring time series 

abnormalities. Mainly because the Fourier transform assumes that the signal is 

stationary and that the signal in the sample continues into infinity. The Fourier 

transform performs poorly when this is not the case. 

When a time series is not completely stationary, this means that applying Fourier 

transform as an analytical tool forces localized components with irregularities to change 

frequency, meaning that energy from sudden change will be partially redistributed to 

other frequencies, and in the process of synthesis, decomposing the time series cannot 

identify localized volatility from the original signal. For financial time series, this is 

highly relevant due to the non-stationarity of the majority of time series in this area.  For 

this reason, the researchers are looking into other methods, such as the wavelet 

transform. 

2.4 Wavelet Transform 

In the previous century, research across several disciplines attempted to address 

the constraints and drawbacks of  Fourier transformation. Approaches to resolve these 

issues and achieving a more flexible approach included the introduction of an 

innovative idea combining information on time and frequency, known as wavelets.  
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Unlike Fourier analysis, in which signals are analyzed using sines and cosines. 

When a signal is analyzed in time for its frequency content, a wavelet function is used. 

This function is fundamental in any wavelet transform, defined as a mathematical tool 

when applied in the analysis of a time series that produces multiple series over various 

resolutions Rioul and Vetterli (1991). The wavelet analysis is based on the concept of 

analyzing time-series data to form other series using a collection of wave-like functions. 

Applications have been found for wavelet transforms across various disciplines, 

including the computer sciences, compressed images/speech and applied mathematics, 

with more recent applications in economics and finance. In general, wavelet transforms 

are divided into either discrete or continuous wavelet transforms. 

Grossmann and Morlet (1984) were the first to put forward the “Wavelet” notion 

in (1983), describing the way in which an arbitrary square-integrable real-valued 

function of any type is suitable for decomposition to form easily managed families 

containing square integrable wavelets with a constant form. This means that it is 

possible to capture square-integrable real-valued functions through dilation and 

translation of the wavelet.  For a function to be a wavelet, it must fulfil the admission 

condition: be self-reciprocal and isometric. For a wavelet function to satisfy the 

admission condition, it must meet two conditions: integrate to zero and must have a unit 

energy condition. A function’s energy is found by integrating the squared function over 

its domain.  

A Wavelet is a wave-like function that oscillates and is localized in time. 

Wavelets have two basic parameters: scale (or dilation)  and location. Scale defines how 

“stretched” or “squished” a wavelet is. This property is related to frequency as defined 

for waves. Location defines where the wavelet is positioned in time (or space). 
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Dilation and translation are used in signal analysis and can manage 

discrete/discontinuous signals  Cascio (2007).  Wavelet transform is implemented as an 

efficient algorithm allowing extremely rapid and simple transform calculation. 

Wavelet transform is based on the so-called mother wavelet  𝜓(𝑡) ∈ 𝐿2(𝑅) as a 

basic function. Dilations and  translations of this function are defined as an orthogonal 

basis for the space of real values square-integrable functions 𝐿2(𝑅): 

𝜓𝑠,𝑙(𝑥) = 2
−𝑠
2 𝜓(2−𝑠𝑥 − 𝑙) 

The variables s and l are integers that scale and dilate the mother function 𝜓(𝑡) 

to generate wavelets, such as a Daubechies wavelet family. The mother wavelet  is 

required to meet a set of mathematical conditions Gencayet al.(2002): 

a) Zero mean and square-integrable to one. 

b) Regularity, which is vital for smooth reconstructions. 

c) Related filters exist 

d) Orthogonality 

e) Compact support. 

There are many possible mother wavelets Meyer (1993), which generate such a 

representation. Most of them cannot be written in terms of explicit functions but can be 

defined by the equation 

  𝜓(𝑥) = √2∑ 𝑐𝑙
∞
𝑖=−∞ 𝜑(2𝑥 − 𝑙)     (2.4) 

where 𝜑(𝑡)  is the scaling function Daubechies (1992) and is the solution of the 

dilation equation, e.g., Kaiser (1994); Strang and Nguyen (1995): 

𝜑(𝑥) = √2∑ 𝑔𝑙
∞
𝑙=−∞ 𝜑(2𝑥 − 𝑙)                       (2.5) 

In contrast to the short-time Fourier transform, which requires chopping up a 

signal into segments and performing a Fourier Transform over each segment, the 



 

19 

 

wavelet transform can extract the local spectral and temporal information 

simultaneously. In addition to that, if the characteristic shape that is being tried to 

extract from a signal is known, then there is a wide variety of wavelets to choose from 

to best match that shape. 

It should be noted that the frequency and scale are inversely related in wavelet 

transform. As the scale reduces, the frequency increases. This means that moving to a 

higher frequency with lower time support, while an increase in the scale parameter leads 

to  moving toward lower frequencies Gencay et al. (2002) 

The DWT diagram below illustrates the process involved in the discrete wavelet 

transform  decomposition up to level 2  Aggarwal et al. (2008): 

 

Figure 2.1 DWT diagram Wavelet transform decomposition up to level 2 

In the first stage or level, one of the wavelet transforms, approximation A1 and 

detail D1 of the series are obtained X such that  𝑋 = 𝐷1 + 𝐴1.  The approximations are 

the high-scale, low-frequency components of signal X. The details are the low-scale, 

high-frequency components. For many signals, the low-frequency content is the most 

important part. In the subsequent level, the approximation A1 is decomposed into A2, 

and D2 to obtain the additive decomposition up to level 2 Aggarwal et al.(2008): 
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𝑋 = 𝐷1 + 𝐴1 = 𝐷1+ 𝐷2 + 𝐴2 

This latest equation defines a simple multiresolution analysis of  X. The 𝐷𝑗  are 

called the jth level detail and the 𝐴𝑗  is the jth level wavelet smooth for X. 

After decomposition, the reconstruction of the series X can be done through the 

inverse wavelet transform to form the initial signal in the time domain with no loss of 

information. Figure 2.2 shows how the series X is decomposed Yu et al. (2000): 

 

Figure 2.2 First-level wavelet signal decomposition. 

First level or scale one wavelet signal decomposition of X  into 𝐴1, and 𝐷1 is 

given in Figure 2.2. The reconstruction of the original signal is possible through 

approximation and detailed coefficients as specified below 

𝐴𝐽−1 = 𝐷𝐽 + 𝐴𝐽,           𝐴𝐽−2 = 𝐷𝐽−1 + 𝐴𝐽−1, …. 

                       𝑋 = 𝐷1 + 𝐴1      (2.6) 
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2.4.1 DWT and MODWT 

There are two types of wavelet transforms: the continuous wavelet transform 

(CWT) and the discrete wavelet transform (DWT). Orthogonal wavelet transforms, 

such as the standard DWT, require that the sample size N  to be a power of  2. The 

limitation here is focused on frequency location and time bands. A modification of the 

standard DWT called the Maximum Overlap Discrete Wavelet Transform (MODWT) 

forms another wavelet transform, capable of processing any sample size N, and this 

does not need to be a power of  2. It should be noted that the MODWT is a  redundant 

nonorthogonal transform that can be used as an alternative to the standard DWT. In fact, 

as shown in Percival and Walden (2000),  the MODWT forms the same multiresolution 

analysis as the DWT and allows the processing of a series of any sample size. As is true 

for the DWT, the MODWT can be used to form an analysis of variance based on the 

wavelet and scaling coefficients but cannot be used to form such an analysis based on 

the details and smooths as in the DWT transform. 

In general, wavelet transforms have numerous attractive properties, and these 

are essential when analyzing time series. These properties can be simplified and 

summarized as given below Ding li. (2003): 

a) Effective algorithm. 

b) Adequate filter. 

c) Localized in frequency and time domain 

d) Excellent reconstruction. 

e) Decorrelate signals    
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Other advantages of wavelet transform can be summarized as follows by 

Gencayet al. (2002): 

a) Wavelet transforms can be effectively applied to study data from non-

linear, non-stationary time series. 

b) They can capture numerous features or behaviours, including transients, 

sharp features, and spikey or discontinuous features. 

c) They are ideal for modelling compressed observation, with this type of 

analysis producing sparsely represented observations. 

d) They can be used in noise reduction and de-trending based on the multi-

resolution application of the wavelet analysis. 

In addition, wavelet transforms can be effective in studying almost all-time 

series, including financial time series data. Due to the non-stationarity in the majority 

of financial time series, wavelet transforms to offer a convenient tool for studying 

localized and time-limited features of financial data. 

Various types of wavelet analysis have been put forward by authors in different 

fields of applications. For example, Mallat (1989) considered pyramidal algorithms in 

studying how multiple resolution representations of compressed data could be applied 

when processing images. He also describes the features of a number of wavelets.  

2.4.2 Wavelet Filters 

The discrete wavelet transform can be regarded as a special linear filtering 

operation with wavelet filters of finite length  ℎ𝑙 , 𝑙 = 0,1, …𝐿  Percival and Walden 

(2000), pages 69-71. These wavelets filters must satisfy three basic conditions: 

1. The wavelet filter must sum the zero ∑ ℎ𝑙
𝐿
𝑙=0 = 0 

2. Their square must sum to one ∑ ℎ𝑙
2𝐿

𝑙=0 = 1 
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3. The filter is orthogonal to its even shifts ∑ℎ𝑙ℎ𝑙+2𝑛 = 0. 

The first level wavelets coefficients of a signal X are obtained by circularly 

filtering the series X with the filter ℎ𝑙 , 𝑙 = 0,… , 𝐿. The corresponding scaling filter to 

the wavelet filter, known as the quadrature mirror filter, is used to obtain the details and 

satisfies similar conditions, except that it must not sum to zero.  

2.4.3 Continuous Wavelet Transform 

The continuous wavelet transform (CWT) is a very useful tool for many 

applications and is well-established for engineering applications. Let denote by 

( , )W u s the CWT transform of a signal x(t) at a scale (u>0) and translational value s. 

The ( , )W u s is obtained by computing a convolution of the signal x(t)  with the scaled 

wavelet. ( , )W u s is the time and frequency representation of the signal and the 

parameters u and s of the wavelet are allowed to vary continuously. Thus the CWT 

maps the signal under study into a two-dimensional function of time and frequency and 

therefore provides true time-frequency representations 

The major distinctions separating Fourier transform from the continuous 

wavelet transform include, firstly, the 2-parameter characteristic (time and frequency) 

of CWT, in comparison to the single-parameter indexing of Fourier transform 

(frequency only). Second, for CWT, the window is used to widen or narrow depending 

on the frequency used, but Fourier transform uses multiplication of the windowed signal 

by window function and integral in a continuous manner over time. An important 

limitation of the FFT is its inability to provide the time dependence of the signal 

spectrum. 
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The continuous wavelet transformation of a function of one variable is a 

function of two variables. Clearly, the transformation is redundant; there is extra 

information above what is needed for ideal reconstruction. To minimize the redundancy 

of the transformation, one can select discrete values of u and s and still have a 

transformation that is invertible. Discretizing in CWT presents a highly effective 

approach to minimizing wavelet coefficient numbers and preserving every part of the 

function information. Discretization is achieved by applying critical sampling, which 

for CWT can be presented as follows: 

2 js −=    and     2 .ju k −=  

Discrete Wavelet Transform (DWT) is then achieved  Gencay et al. (2002), with 

the determination of the critical sample through time and frequency resolution. The 

CWT is reversible such that signal reconstruction can occur after filtering or 

manipulating wavelet coefficients. 

2.4.4 Discrete Wavelet Transform 

Discrete wavelet transform offers a number of benefits in signal reconstruction 

localized at various levels in time and frequency. DWT reconstruction makes use of 

high- and low-pass filters, known as wavelet and scaling filters. These filters are derived 

using the two-scale equation and the mother wavelet function and are mainly used in 

the first instance to run the DWT. 

The current work focuses particularly on discrete rather than continuous wavelet 

transform due to the multiple resolutions offered for time-frequency analysis and the 

excessive computation time and memory required by CWT Percival and Walden, 

(2000). Another factor which influences the selection of DWT over CWT is the choice 

of values for the parameters u and s, in which case the choice is constrained in the DWT 


