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MODEL PANEL KOINTEGRASI PECAHAN DENGAN KESAN TETAP

ABSTRAK

Beberapa penulis telah mengkaji kointegrasi pecahan dalam data siri masa, tetapi
sedikit atau tiada pertimbangan telah diperluaskan kepada tetapan data panel. Walau
bagaimanapun, ekonomi dan kewangan baru-baru ini seperti pulangan portfolio di se-
luruh firma, indeks harga dan kadar pertukaran di seluruh negara sering mempamerk-
an sifat ingatan panjang. Oleh itu, tesis ini bertujuan untuk membangunkan model
panel berkointegrasi pecahan dengan andaian kesan tetap. Objektif pertama adalah
untuk membandingkan tingkah laku sampel terhingga prosedur ujian siri masa kointe-
grasi pecahan sedia ada dalam tetapan data panel. Perbandingan ini dilakukan untuk
menentukan ujian terbaik yang boleh disesuaikan dengan kointegrasi pecahan dalam
tetapan data panel. Khususnya, kajian simulasi dan analisis data kehidupan sebenar
telah dilakukan untuk mengkaji perubahan dalam kadar ralat empirikal jenis I dan ku-
asa enam ujian kointegrasi pecahan semiberparameter dalam tetapan panel. Penemuan
analisis menunjukkan bahawa ujian berasaskan reja berguna untuk penyesuaian da-
lam persekitaran panel. Kedua, dua ujian kointegrasi pecahan siri masa berasaskan
reja terbaik yang diperhatikan telah dilaksanakan dalam tetapan panel menggunakan
eksperimen simulasi Monte-Carlo. Keputusan eksperimen menunjukkan bahawa salah
satu ujian adalah sah untuk tertib kointegrasi pecahan kurang daripada 0.5, yang lain
adalah teritlak dan menerima apa-apa tertib kointegrasi pecahan dalam julat [0, 1] pada
saiz sampel yang berbeza-beza. Akhirnya, pendekatan panel berkointegrasi pecahan
telah dibangunkan untuk menguji model Pariti Kuasa Pembelian (PPP) mutlak di ka-
langan 16 negara Afrika Barat menggunakan data yang merangkumi 49 tahun (1971 -

2019). Keputusan dari ujian kointegrasi pecahan yang baru dibangunkan mengesahkan

Xiv



kehadiran PPP relatif untuk negara-negara dalam jangka masa panjang, sementara ang-
garan pintasan biasa dan vektor kointegrasi mengesahkan ketiadaan PPP mutlak untuk
negara-negara. Penemuan keseluruhan dalam tesis ini menunjukkan bahawa adalah sa-
lah untuk menganggap kewujudan kointegrasi pecahan dalam tetapan panel berdasark-
an tertib pecahan siri dan reja seperti yang sering dilakukan dalam kajian sebelumnya.
Di samping itu, menggunakan pendekatan panel kointegrasi pecahan negara dan firma
adalah lebih bermaklumat dan berintuisi apabila objektifnya adalah untuk menentukan

perkembalian min jangka panjang bersama.
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A FRACTIONAL COINTEGRATION PANEL MODEL WITH FIXED

EFFECT

ABSTRACT

Several authors have studied fractional cointegration in time series data, but little
or no consideration has been extended to panel data settings. However, recent eco-
nomics and financial panel datasets such as portfolio returns across firms, price indices
and exchange rates across countries often exhibit long-memory properties. Therefore,
this thesis aims to develop a fractional cointegrated panel model with a fixed effect
assumption. The first objective was to compare the finite sample behaviour of ex-
isting fractional cointegration time-series test procedures in panel data settings. This
comparison is performed to determine the best tests that can be adapted to fractional
cointegration in panel data settings. Specifically, simulation studies and real-life data
analysis were performed to study the changes in the empirical type I error rate and
power of six semiparametric fractional cointegration tests in panel settings. The anal-
ysis findings revealed that the residual-based tests are useful for adaptation in a panel
setting. Secondly, the best two residual-based time series fractional cointegration tests
observed were implemented in panel settings using Monte-Carlo simulation experi-
ments. The results of the experiments showed that one of the tests is valid for fractional
cointegration order of less than 0.5, the other is generalized and accepts any fractional
cointegration order within the range [0, 1] at varying sample sizes. Finally, a fractional
cointegrated panel approach was developed for testing the absolute Purchasing Power
Parity (PPP) model among 16 West African countries using data that spans 49 years
(1971 —2019). The results from the newly developed fractional cointegration test con-

firm the presence of relative PPP for the countries in the long run, while the estimation

Xvi



of common intercepts and cointegration vector confirms the absence of the absolute
PPP for the countries. The overall findings in this thesis imply that it is wrong to as-
sume the existence of fractional cointegration in panel settings based on the fractional
orders of the series and residuals as often done in previous studies. In addition, using
a panel of countries or firms fractional cointegration approach is more informative and

intuitive when the objective is to determine the joint long-run mean reversion.
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CHAPTER 1

INTRODUCTION

1.1 Background of the study

In econometrics, whether a data is experimental or observational, it can be ma-
jorly classified into cross-sectional data, time-series data and panel data whereas the
panel data combines the attributes of both the cross-sectional data and the time series.
However, in macroeconomics and finance, variables are usually presented in panels
to describe the varying characteristics of the different entities such as currencies, as-
sets, countries, income, people, and so on. Since panel data allows for interactions
of cross-sections with each other, it leads to a more robust inference when correctly

specified.

A panel is a cross-section or group of entities that are surveyed periodically over
a given time span. Panel data can also be referred to as longitudinal data or cross-
sectional time series data. These longitudinal data contain “observations on the same
units across multiple time periods” (Purba and Bimantara, 2020). A panel data set
consists of multiple entities, each of which has repeated measurements at various time
intervals. Panel data analysis is a method of studying a specific entity within multiple
sites that is observed on a regular basis over a set time period. Importantly, panel
analysis allows researchers to study the dynamics of change using short time series
and can provide a rich and powerful study of a set of subjects by taking into account

both the space and time dimensions of the data.



Li et al. (2020) works thoroughly on panel data analysis and concludes that it is an
essential method for analyzing longitudinal data and allows for a complex set of regres-
sion analyses in both geographical and temporal dimensions. Also, it was added that
Panel data analysis might be the only approach to longitudinally analyze data when it
comes from multiple sites and the time series is too short for independent time series
analysis because even if the series are too short for separate analysis, panel data anal-
ysis offers a diverse set of approaches for examining change over time in a certain sort
of cross-sectional unit. An illustration of a panel data set is a grouping of five countries
that all have the same economic variables, such as personal expenditures, personal and
median disposable income, per capita income, population size, unemployment, and
employment. With data collected every year for ten years. This pooled data set, also
known as time series-cross sectional data, contains 5 * 10 = 50 observations. In other
words, the five countries are followed for ten years and sampled on an annual basis. A
panel data’s structure confers two dimensions. They have a cross-sectional unit of n
observation, which could be a country, as well as a temporal reference, T which could
be a year. There are two dimensions to the error term: one for the cross-sectional unit
and one for the time period. In some cases, the cross-sections can be nested within

time.

Bandi et al. (2021); Phillips and Moon (1999) made a significant contribution to
panel literature by thoroughly distinguishing the various limit ideas and clarifying link-
ages between them. Most crucially, it discovers adequate circumstances for the sequen-
tial and joint limits to coincide and these circumstances necessitate some uniformity
requirements, as well as limitations on the relative pace at which n and T increases

to infinity. There are several advantages of panel data and the first is that Panel data



ensures that individual heterogeneity is considered and study the elements of changes.
Individual entities are heterogeneous, according to panel data, and failing to account
for this heterogeneity leads to serious misspecification. Time-series and cross-section
studies that do not account for this heterogeneity risk producing biased results. This is
where the strength of panel data analysis lies such that it can control for these state- and
time-invariant variables. Lyatuu et al. (2021) stated that, in contrast to cross-sectional
data analysis, panel dataset produces information on individual entity changes. Sec-
ond, unlike time-series studies, which are afflicted by multicollinearity, panel data pro-
vide more informative data, more variability, less collinearity among variables, more
degrees of freedom, and more efficiency because more data can produce more reliable
parameter estimates. Also, panel data analysis accommodates behavioral models and
tests when compared to time-series and cross-sectional data analysis.This is because
they can uncover and evaluate effects that are simply not observable in pure cross-
section or time-series data. In fact, Koop et al. (2001) agrees, claiming that panels are
preferable for studying and modelling technical efficiency and quite similarly, Hsiao
(2014) claims that in panels on a distributed lag model, less limits can be imposed
compared to a pure time series analysis. For other advantages of panel data see Hsiao

(2014).

There are also disadvantages of using panel data and the most important one is the
design and data collection problems. One of the issues is indequacy in covering the
target population. Others include non-response issue whihc arises as a results of lack
of cooperation from the respondent and or interviewer error, frequency of interviews,
reference period, usage of bounds, measurement error, and time-in-sample bias are ex-

amples of design and data collection issues. Non-response occurs in cross-sectional



studies as well, but it is more severe in panels because non-response occurs in subse-

quent waves of the panel Bai et al. (2009).

However, Baltagi (2021) concludes that although panel data has numerous advan-
tages, it is not a cure-all. The ability of panel data to isolate the impacts of individ-
ual actions, treatments, or more general policies is highly dependent on the statisti-
cal tools’ assumptions being compatible with the data collection procedure. Hsiao
(2014) added that it may be useful to keep in mind when using panel data ways to in-
crease the efficiency of parameter estimates and the reliability of statistical inference,
and how the assumptions underlying the statistical inference procedures and the data-
generating process are compatible when choosing a proper method for exploiting the
richness and unique properties of the panel. Since panel data combines the strengths
and weaknesses of time series data which includes non-stationarity of individual se-
ries across panels, series across panels may also be cointegrated. Cointegration occurs
when the linear combination of two non-stationary series is stationary (Ahsan et al.,

2020; Gjelsvik et al., 2020; Zhang et al., 2021).

The growing availability of panel data with large T dimension (i.e. where the
number of time series observations is large) has stimulated a growth in research, both
empirical and theoretical, which discusses time series issues in panel data models. Of
particular interest are issues relating to nonstationarity and cointegration. The impor-
tance of this area of research is evidenced by the increasing tendency for researchers
to employ panels of nonstationary processes in empirical studies in macroeconomics
and international economics. Baltagi et al. (2021) identifies many areas of application,

including purchasing power parity (PPP), growth convergence and international R&D



spillovers. To give one example which illustrates the issues which can be addressed
through the use of panel data consider Jacobson et al. (2002). These authors use a mul-
tivariate panel cointegration model and demonstrate that, although strong purchasing
power parity restrictions are rejected, the location of the cointegrating space is similar
for all countries considered. This provides some evidence in support of PPP. There
have been a range of methods proposed to obtain inference relating to cointegration in

panel data models.

Among many others, we note that residual-based, LM and likelihood based tests
have been proposed by McCoskey and Kao (1998), Kao (1999), Larsson et al. (2001a),
Groen and Kleibergen (2003), Pedroni (2004) and Rahman and Velayutham (2020).
These papers use a variety of estimation methods, ranging from OLS to maximum
likelihood and generalized method of moments. In recent years, fractional cointegra-
tion has piqued interest in time series econometrics (see, for example, Baltagi (2021)).
Cointegrating relationships between non-stationary economic variables can exist with-
out observable processes being unit root (1) processes or cointegrating errors being
1(0) processes, according to fractional cointegration analysis. Although both fractional
and standard cointegration were defined at the same time in Engle and Granger (1987),
standard cointegration has received more attention. The memory parameter in standard
cointegration can only have integer values, and tests for the existence of cointegration
rely on unit root theory.Because the memory parameter can take fractional values and
be any positive real number, the fractional cointegration framework is more general.
Engle and Granger (1987) and Skare et al. (2020) assumed that the cointegrating vec-
tor(s) do not change over time in their standard approach. When structural breaks and

regime shifts are taken into account, however, the assumption of fixed cointegrating



vector(s) becomes quite restrictive.

1.2 Fractional cointegration and cointegrated panels

Fractional cointegration refers to a statistical method used to analyze the long-
run relationship between two or more time series data. In traditional cointegration
analysis, the time series data is assumed to have a fixed integration order, whereas
in fractional cointegration, the integration order is allowed to be a fractional number.
Fractional cointegration was first introduced by Granger and Joyeux (1980) and further
developed by Hosking (1985) as also reported in Miyandoab et al. (2023). Since then,

it has become an important tool for analyzing economic and financial time series data.

The concept of fractional integration was introduced by Granger (1980) and Hosk-
ing (1981), who showed that many macroeconomic and financial time series exhibit
long memory. This means that the autocorrelation function of the series decays slowly,
indicating that the series has a long-term dependence on its past values. Fractional
integration models allow for the incorporation of this long-term dependence into the
analysis. Fractional cointegration builds on the concept of fractional integration by
allowing for the analysis of the long-run relationship between two or more time series
that exhibit long memory. The seminal paper on fractional cointegration was written
by Engle and Granger (1991), in which they introduced the concept and developed
a testing procedure for it. Since then, fractional cointegration has been widely used
in various fields, including economics, finance, and engineering. For example, frac-
tional cointegration has been used to analyze the relationship between interest rates

and inflation (Ghysels et al., 1996), the relationship between oil prices and stock prices



(Baumeister and Kilian, 2014), and the relationship between exchange rates and stock

prices (Chen et al., 2022).

Cointegrated panels, on the other hand, refer to a specific type of cointegration
analysis that is used when there are multiple non-stationary time series variables that
are observed across multiple individuals or entities (i.e., a panel data set). One of the
key challenges in cointegrated panel analysis is that the cointegrating vectors may dif-
fer across individuals (Baltagi, 2021). However, fractional cointegrated panels refer to
a class of panel data models that allow for non-integer (fractional) integration and coin-
tegration relationships among the variables in the panel. These models have become
increasingly popular in econometric research, as they can better capture the long-term
dynamics and persistence of economic variables over time (Baltagi, 2021). The frac-
tional cointegrated panel model idea was first formalized by Johansen and Nielsen

(2010,1) in the context of a panel of time series with a common factor structure.

One of the most widely used models for fractional cointegrated panels is the com-
mon factor model, which was first proposed by Harris and Tzavalis (1999). In this
model, the panel data are decomposed into a common factor component and an id-
iosyncratic component, and the common factor is assumed to be fractionally integrated.
This allows for the possibility of fractional cointegration between the variables in the
panel. The model has been extended in various ways, such as by including lagged
dependent variables (Pesaran et al., 2006) or allowing for individual-specific short-run
dynamics (Chudik and Pesaran, 2015). Another important contribution to the litera-
ture on fractional cointegrated panels is the work of Breitung and Hassler (2002), who

proposed a panel version of the Dickey-Fuller test for fractional integration. This test



has become a standard tool for empirical research on fractional cointegration in panel

data.

1.3 Statement of problem

Evidence from studies, such as Skare et al. (2020), Yaya et al. (2021) and Kalym-
betova et al. (2021) suggested that the equilibrium error may react to shocks more
slowly than a stationary 7(0) process, making deviations from equilibrium more per-
sistent. Indeed, as demonstrated by the technique suggested by Engle and Granger
(1987) there is no requirement that the equilibrium error in a cointegration relationship
mimic a I(0) process. Granger and Joyeux (1980) and Hosking (1981) were the first
to used the fractional integration in testing the purchasing power parity (PPP) theory.
In a similar study by Cheung and Lai (1993), they modeled the equilibrium error as a

fractionally-integrated I(d) process.

A two-step testing procedure is often required for all subsequent applications of so-
called fractional cointegration, including those cited in Gil-Alana and Hualde (2009),Tan
et al. (2021) and Oloko et al. (2021) among others. They performed an OLS estima-
tion of a fractional cointegrating vector based on the assumption that the variables do
share common integrated processes (typically (1)), and then check to see if the resid-
uals from the OLS are /(d) and d is a real number less than one. The main variations
between those applications are how the fractional difference parameter d is estimated
either using the semi-nonparametric method of Geweke and Porter-Hudak (1983) or
the conditional sum of squares (CSS) estimator (CSS) of Chung and Baillie (1993) or

the maximum likelihood estimator (MLE) of Sowell (1992). However, one major flaw



with the empirical studies applications include the impossibility of testing a hypothesis

regarding an economic relationship due to the fractional cointegration vector.

The points above show that a lot has been done on fractional cointegration and
cointegrated panel data model. However, none of the authors has jointly considered
the occurrence of the two problems simultaneously. Also, we are only aware of only
one paper that considered fractionally integrated panel data model but not fractional
cointegrated. Ergemen (2019); Ergemen and Velasco (2017) considered fractionally
integrated panels with fixed effect and cross-sectional dependence. The author con-
sidered the fractional integration of individual vector within the panel model and not
cointegration of two or more vectors. An empirical illustration of fractionally cointe-
grated panel model can be deduced by extending the fractional cointegrated model of
Cheung and Lai (1993) on modelling foreign and domestic price indices to capture dif-
ferent countries or cross-sectional units. Thus, in this thesis, we present and estimate

the fractional cointegration model for modelling panels of price indices.

1.4 Aim and Objectives

This study aims to propose and estimate the fractional cointegration model useful
for modelling and testing its existence in panels data. Thus, the following objectives

will be considered:

1. Investigate the finite sample behaviour of existing fractional cointegration time-

series test procedures in panel data settings.

2. Extend the Chen and Hurvich (2006) and Wang et al. (2015) tests to accomodate



panel data structure.

3. Test the absolute purchasing power parity (PPP) theory using the fractional coin-

tegration panel approach.

1.5 Significance of the study

The models and methods developed in this study are useful in two ways for the time
series experts when modelling long memory panel data. Firstly, the new tests devel-
oped are useful for testing the existence of fractional cointegration in panel settings.
These test procedures are expected to erase the era of arbitrarily assuming the exis-
tence of fractional cointegration in panel data based on the estimate of long memory
parameters. Secondly, the new estimation method will be handy in modelling bivariate
fractionally cointegrated panel data. Furthermore, the developed model is useful for
the economist and government in testing the purchasing power parity theory and when

comparing individual stock and market share values.

1.6 Scope and limitation

This study is limited in scope to fractional cointegration in panel data with spe-
cific application to the fixed-effect panel model. In addition, both residual-based and

spectral density based fractional cointegration tests are considered.

1.7 Organization of the thesis

Chapter 1 introduces the problem and gap: testing and modelling fractional cointe-

gration in panel settings. Chapter 2 reviews relevant literature on fractional cointegra-
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tion tests and models in time series settings. Chapter 3 presents the methods used in
this thesis: the fractional cointegration test and model for time series data. Chapter 4
presents the comparative analysis of residual-based and spectral based fractional coin-
tegration for time series and panel data. Chapter 5 presents the modified residual-based
fractional cointegration test for panel data developed in this thesis. Chapter 6 presents
a generalized residual-based fractional cointegration test for panel data. Chapter 7
presents the estimation of the fractional cointegrated panel model with application in
testing the absolute purchasing power parity theory. Chapter 8 present the summary,

conclusion, recommendation and policy implication of the thesis.
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CHAPTER 2

LITERATURE REVIEW

2.1 Introduction

Recent advancements in the field of panel data, such as nonlinear panels, high-
dimensional data, factor models in economics and finance, and pseudo-panels, to name
a few, have provided motivation for focusing on, collecting, and critically reviewing
publications on fractional panel cointegration because there has been little extensive
research on fractional cointegration in panel data, unlike fractional cointegration in

time series.

2.2 Cointegration analysis

Cointegration, as defined by Engle and Granger (1987), means that there exists a
cointegrating vector (1 — '), such that the linear combinations y, — x;’8 are station-
ary or are I(0) processes. However, Granger (2004) simplified it by explaining that
the difference between two integrated series can be stationary, and it is referred to as

"cointegration".

Cointegration analyses are often applied to time series data and panel data. Various
cointegration methods have been developed over the years to solve particular problems
and used with various models and short and long-run dynamics. There are several
cointegration tests, but the popular ones are Engle-Granger, Johansen and Phillips-

Ouliaris cointegration test (Khattab, 2021). The novel Johansen cointegration process
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can be used to estimate many Cointegration/Integration (CI) vectors, but it can also be

utilized to generate a test statistic for determining the number of CI vectors.

Some recent research on cointegration analysis, aside from the conventional re-
search that forms its basis, includes the study of Mousavi and Gandomi (2021) to train
a Recurrent Neural Network (RNN), a portion of the acquired signals from Variational
Mode Decomposition (VMD), as well as a portion of the Johansen Cointegration resid-
uals is utilized as training features and targets, respectively. The remaining portions
of the features were examined on both long and short term monitoring tasks and then
utilized to forecast future CI residuals using the trained RNN. The suggested method
can monitor structures for deterioration even when the Johansen algorithm fails to find

a linear CI relationship among the frequency signals.

Cointegration Analysis (CA) is based on the extracted long-term equilibrium rela-
tionships. Thus, monitoring relationships based on cointegration analysis can be ap-
plied with fewer model updates. However, if the cointegration relationship changes, the
previously developed CA model will no longer be able to describe the status of future
nonstationary processes effectively. Hence, Yu et al. (2020) proposed a recursive CA-
based adaptive monitoring scheme by successfully developing a recursive technique to
update the monitoring model. After that, three monitoring statistics were created to
indicate the operation status of the industrial process, with representation of both static
deviation and dynamic fluctuation. Finally, according to the experimental data from
two genuine industrial processes, an adaptive monitoring approach was built based on
the suggested recursive CA that may efficiently respond to normal process variations

without frequent model updates. However, Pedroni (2019) did a review of the consid-
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erable literature on CA starting from strategies for dealing with cross-sectional hetero-
geneity in cointegration testing and inference, to dealing with heterogeneity in residual
based tests for cointegration. They compared residual-based and error correction-based
testing to study cointegrating relationships in heterogeneous panels. In addition, they
also developed nonparametric direction testing of long-run causality in heterogeneous

cointegrated panels.

The Engle-Granger test, Johansen test and Phillips-Ouliaris tests that are mentioned
above as traditional cointegration testing have restrictions that cause issues when con-
ducting Cointegration Analysis with mixed ordering of variables. In such situations,
researchers may either change the variables into stationary form, obviating the need
for cointegration, or eliminate some variables incorrectly. However, in the early mil-
lennium, Pesaran in Persyn and Westerlund (2008) and others identified as PSS make
some assumptions when creating the limits for an Augmented Autoregressive Dis-
tributed Lagged bound test. The Augmented Autoregressive Distributed Lag (ARDL)
bounds test for cointegration uses an additional F-test on the lagged levels of the inde-
pendent variable(s) in the ARDL equation, which does not require the assumption of a

I(1) dependent variable.

In addition, the augmented ARDL bounds test was demonstrated in Sam et al.
(2019) by first using an empirical study on government spending and taxes to provide
both the small sample and asymptotic critical values for simpler test implementation.
An application of the Autoregressive Distributed Lag cointegration approach to real
life data set is the work of Mostafa (2021) which explores the impact of government

initiatives on Malaysian housing prices. The role of the gross domestic product, in-
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terest rate, and total population, as emphasized by the Life Cycle and Overlapping
Generation Models, is also included in this study. From 1988 through 2017, annual
time series data was used in this investigation. Developing a model of housing price
determination with a focus on government policy using the autoregressive distributed
lag (ARDL) framework. The research concludes that PRIMA has a favorable rela-
tionship with house prices and MM2H, on the other hand, is not a major driver of

Malaysian housing prices.

As seen in several of the aforementioned literature applications, the extended ARDL
bounds test sheds more light on the cointegration state and integration order of the
tested variables. In the case of degenerate lagged independent variable(s), the ARDL
equation is reduced to the Dickey-Fuller unit root equation, and the dependent variable
is represented as 1(0); otherwise, it is I(1). If the testing indicates a degenerate de-
pendent variable or non-cointegration, it means the dependent variable is not included
in the ARDL equation’s cointegrating equation. Therefore, the dependent variable’s
movement is unresponsive to the movement of the independent variables, showing

non-coherence.

2.3 Panel cointegration

In the empirical literature, the use of cointegration techniques to test for the pres-
ence of long-run relationships among integrated variables is gaining popularity. Unfor-
tunately, the inherently low power of many of these tests when applied to datasets with
both time series and cross-sectional data has been a common source of consternation

for practitioners. However, pooling time series has traditionally required a significant
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amount of sacrifice in terms of the permissible heterogeneity of the individual time
series. In ensuring broad applicability for panel cointegration tests, it is necessary to

allow for as much heterogeneity among the individual members of the panel.

Persyn and Westerlund (2008) implemented the Westerlund (2007) four error cor-
rection based panel cointegration tests. They found that the tests are broad enough to
accommodate a wide range of heterogeneity in the long-run cointegrating relationship
and short-run dynamics and dependencies within and between cross-sectional units.
Droge and Orsal (2009) compared Larsson et al. (2001b) standardized LR-bar statis-
tic in the same line. It was concluded that panel-t and standardized LR-bar statistics
had the best size and power properties among the five panel cointegration test statistics
assessed. Also, Banerjee and Carrion-i Silvestre (2017) designed a panel cointegra-
tion test statistic that takes cross-sectional dependence into account. It demonstrated
that consistent estimation of the long-run average parameter is possible when cross-
sectional dependency is controlled for using cross-section averages as described in

Pesaran et al. (2013).

Kao et al. (1999) is one of the earliest works on panel cointegration. The study pro-
vided two approaches for panel cointegration. The first part involves spurious regres-
sions in panel data where the asymptotic properties of the least-squares dummy vari-
able (LSDV) estimator and other conventional statistics are investigated. The LSDV
estimator for the time series model differs from the spurious regression because the
null distribution of residual-based cointegration tests depends on the estimator. This
was found to impact residual-based cointegration tests in panel data significantly. On

the other hand, Kao (1999) established a pooled version of the panel Dickey-Fuller test,
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which is applied to the residuals of a panel data regression estimate. The tests’ asymp-
totic distributions with long-run parameters are derived, and Monte Carlo experiments

are performed to evaluate the finite sample properties of the proposed tests.

Similarly, Pedroni (2004) investigated residual-based tests for the null hypothesis
of no cointegration for dynamic panels with diverse short-run dynamics and long-run
slope coefficients across individual panel members. Individual heterogeneous fixed
effects, trend terms, and other variables are also allowed in the tests, considering both
the group mean and the pooled within-dimension tests. Their limiting distributions are
calculated, which proves that they are valid. The study also presented Monte Carlo
data to establish their limiting sample size and power performance and their usage in

assessing purchasing power parity for the post—Bretton Woods period.

Furthermore, Westerlund (2005) proposed two new simple residual-based panel
data tests for the null of no cointegration. The tests are straightforward because they do
not require any correction for the data’s temporal dependencies. They are, however, ca-
pable of accommodating individual-specific short-run dynamics, intercept, trend terms,
and slope parameters. The tests’ limiting distributions are derived and shown to be free
of nuisance parameters. The Monte Carlo results presented in the research paper indi-
cated that the asymptotic results are well supported even in very small samples. While
the Westerlund (2005) tests are in the middle, requiring both parametric modelling
and semi-parametric adjustments to account for cross-sectional dependency, Pedroni
(2004) test is semi-parametric in terms of the data’s temporal dependencies and uses

kernel estimation to reduce the nuisance parameters.
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Panel cointegration tests were also tried on real-life data sets and for the first time in
literature by Narayan (2010) to investigate the Purchasing Power Parity (PPP) evidence
for a group of six Asian countries, including Malaysia, Thailand, India, Pakistan, Sri
Lanka, and the Philippines. Narayan (2010) used three panel cointegration tests which
include Westerlund (2006) which allows for the incorporation of multiple structural
breaks, Gregory and Hansen (1996) residual-based test and Pedroni (1999) test with-
out structural breaks. The results provided weak evidence of cointegration between
nominal exchange rates vis-a-vis the US dollar and relative prices but when the La-
grange multiplier panel structural break cointegration test was used, strong evidence

of panel cointegration, indicating PPP was found.

In the same vein, Pala (2020) empirically explores the relationship between energy
use and economic development for a panel of G20 countries. Panel cointegration and
vector error correction models were used, and a long-run equilibrium relationship was
established. A Fully Modified OLS (FMOLS) and Dynamic OLS (DOLS) are used
to assess the long-run relationship. The Panel Granger causality and Vector Error
Correction Model (VECM) demonstrated that energy consumption and GDP have a

bidirectional link. It shows that the "feedback hypothesis" holds for G20 countries.

Dithmer and Abdulai (2020) further investigated the effect of trade openness on
child health using a panel data analysis of 66 countries over the period of 1960 to
2013. To account for the time-series properties of the data and potential cross-country
heterogeneity in the impact of trade openness, the study used heterogeneous panel
cointegration techniques that are resilient to omitted variables and endogeneity issues.

Furthermore, the study showed that trade has a significant long-term potential to lower
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child mortality rates by decreasing trade openness and child health.

Other related studies on the application of panel cointegration to real-life datasets
for various specific countries include; Cuestas and Harrison (2010) that provided infor-
mation on the patterns of inflation in a panel of Central and Eastern European nations,
Zhang (2011) worked on the relationship among inflation persistence, inflation expec-
tations, and monetary policy in China and showed that the structural change is mostly
due to better monetary policy conduct and the resulting better anchored inflation ex-
pectations using a counterfactual simulation method. Gerlach and Tillmann (2012) tar-
geted inflation in Asia using a median unbiased estimator and bootstrapped confidence
bounds by assessing the sum of the coefficients in an autoregressive model. Canarella
and Miller (2017) also researched on inflation persistency and structural breaks in tar-
geted 13 OECD countries and the USA. Lovcha and Perez-Laborda (2020) worked on
monetary policy and the persistence of inflation in the US by modelling their relation-

ship.

2.4 Fractional cointegration

Standard cointegration has received significantly more attention. As a result, there
has been a need to focus heavily on fractional cointegration in recent years due to the
paucity of research, particularly for panel data as opposed to time series data. Unlike
standard cointegration, that only allows integer values for the memory parameters, the
fractional cointegration framework is more general because it enables fractional values
for the memory parameter and any positive real number for d — 7. As indicated by the

work of Chen and Hurvich (2006); Marinucci and Robinson (2001); Robinson (2008),
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fractional cointegration has gotten a lot of attention recently. All of these publications
assume that the observed series is either bivariate or that the cointegrating rank is one

for time series data.

According to a search on the Science Direct database on 28/02/2022, research on
fractional cointegration began around 1998. Hence, for all the cases reviewed in sec-
tion 2.2 and 2.3, the cointegrated values of the processes are integer-valued and that
is why it is standard cointegration. However, we have fractional cointegration when
the processes are non-integer value cointegrated. Since fractional cointegration has
the same economic ramifications as integer-valued cointegration in the sense that the
variables have long-run equilibrium, it is theoretically possible to permit errors with a
fractional integration order in a broad setting. This is a crucial generalization. The sole
difference is that the convergence rate to equilibrium in the fractional is slower than in

the standard cointegration.

One of the earliest works on fractional cointegration that has formed the body of
most literature includes the work of Dueker and Startz (1998) which presented a coin-
tegration testing approach based on joint estimations of a cointegrating vector that has
a fractional integration order and its initial series. For the case with known fractional
cointgeration order, Berg and Lyhagen (1998) presented a method in this case in terms
of determining the approximate distribution of the trace test using an Error Correction
Model (ECM) that allows fractional order. The assumption that the order of cointe-
gration is known is quite restrictive, and in the case of misspecification, it may have

unintended consequences on the test’s power, necessitating modification.
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Andersson and Gredenhoff (1999) presented the a likelihood ratio test for testing
the null of no cointgeration for which the alternatives is fractional. The simulated
power of the test showed that a fractional order is indeed present. The usual ML
technique for fractional cointegrated systems, on the other hand, produces a significant
bias and substantial mean square errors for the n impact matrix. As a result, ignoring
fractional cointegration is far more serious than including it when it is not present.
Then, Marinucci and Robinson (2001) studied the narrowband frequency domain and

least-squares estimate of cointegrating vectors in regression models.

The research of Davidson (2002) concentrated on approaches for employing a para-
metric bootstrap to evaluate the existence of cointegrating correlations. Breitung and
Hassler (2002) proposed a variant of the efficient score test for determining the coin-
tegration rank of fractionally integrated series with fractionally integrated error cor-
rection terms. Velasco (2003) presented a consistent semiparametric approach for es-
timating the memory parameters for a fractionally cointegrated nonstationary series.
Marmol and Velasco (2004) suggested Wald statistics for OLS coefficients in testing
the null hypothesis of no cointegration in series with unknown fractional order. In a
similar study by Gil-Alana and Hualde (2009), an investigation of a two-stage test-
ing approach was presented for fractional cointegration in time-series macroeconomic
data. The approach utilized the efficient testing procedure implemented in Robinson

(1994).

In the recent time, Nielsen and Frederiksen (2011) worked on estimating a cointe-
grating relationship of less than half (difference in memory parameters) which is a case

of a weak fractional cointegration model just like the stationary fractional cointegrat-
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ing model by introducing a completely modified Narrow Band Least Square (NBLS)
estimator that eliminates bias, and has a faster convergence rate than generic NBLS.
Furthermore, it was shown that local Whittle integration error order estimates could
be carried out consistently based on NBLS residuals, but the estimator has the same
asymptotic distribution as if the errors were only seen under the nonstationary condi-
tion. The development of asymptotic distribution theory of Nielsen and Frederiksen
(2011) is based upon an alternative representation of spectral density, which is appli-
cable for multivariate fractional integrated processes, compared to other previous re-
search, with the result that lower asymptotic distortions and variations in narrowband
estimators are applied. Simulation evidence and several empirical cases were used to

demonstrate the practicality and applicability.

However, prior to this asymptotic distribution theory, Nielsen and Shimotsu (2007)
studied a stationary, fractionally cointegrated model by proposing the local Whittle
quasi maximum likelihood estimator which is a semiparametric that estimates jointly
the integration orders, the integration order of the errors and the cointegration vector
such that it uses local assumptions on the joint spectral density matrix and errors close
to null frequency. Under mild regularity conditions, the proposed estimator for the
additional local orthogonality between regressors and cointegration errors was found
to be consistent based on evidence from a Monte-Carlo simulation. In the same vein,
Hualde and Velasco (2008) used a GLS-type estimator, similar to Robinson (2008)
who developed a Wald statistic that is chi-squared distributed under the null hypothesis
of no cointegration. Furthermore in /(1)/I(0) cointegration setting, the possibility of
fractional parameter are ignored posing an error that often leads to an incorrectly spec-

ified likelihood function, potentially implying a significant loss of power for fractional
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cointegration tests. In many situations, the existing classical analysis of cointegration
only considers equilibrium deviations integration of order 0, which often results in a
significant loss of power in the fractional case. Hence, for situations where fractional
cointegration is allowed under the alternative, Lasak (2010) considered two likelihood
ratio tests for the null hypothesis of no cointegration. The test generalizes the maxi-
mum eigenvalue and trace tests under the fractional alternative. The tests’ power and
size observed in the asymptotic distribution’s finite sample revealed that the test is

optimal when the order of integration is known.

Other related works on fractional cointegration include Nielsen and Frederiksen
(2011) model-based inference of a fractionally cointegrated vector autoregressive Gaus-
sian likelihood conditional on initial values with restriction on the parameters the pro-
cess X; is of fractional order d and cointegration of order d — b. This implies there exist
vectors for which X; is of fractional order d — b, and no other fractionality order is pos-
sible. The main contributions are the demonstration of the MLE weak convergence of
the conditional likelihood as a continuous stochastic process in the parameters when
errors are independent and identically distributed with appropriate moment conditions

and constrained initial values.

Bayer and Hanck (2013) proposed comprehensive tests that put together informa-
tion from different cointegration tests. The test employs the distribution of aggregators
of the underlying tests it adopts, runs multiple tests, and draws inferences from the
most rejecting test with the power properties established using asymptotic and Monte
Carlo results. The tests’ practicality is confirmed by their application to a broad and

current set of research, producing an unambiguous test conclusion in circumstances of
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conflicting individual tests. Similarly, Boubaker et al. (2017) proposed a new stochas-
tic long memory model that evolves non-linearly according to a Logistic Smooth Tran-
sition Autoregressive (LSTAR) specification and contains a time-varying fractional
integration parameter. To calculate the fractional integration parameter that varies over
time, Gil-Alana et al. (2018) investigated the persistence of income inequality and its
major determinants in 26 OECD countries using fractional integration and selected
GDP per capita, inflation, and employment as major macroeconomic determinants of
income inequality. It finds that income inequality is highly persistent in all the coun-
tries examined and that there is a significant long-run equilibrium relationship between

GDP growth and income inequality.

2.5 Fractional Cointegration in panel data and other related works

Several works have been done on panel data analysis and cointegration separately
or both are considered together i.e., panel cointegration with various residual based
tests and spectral based tests derived to solve peculiar problems with different prop-
erties like unit roots, cross sectional dependence, heterogeneity and the likes. In fact,
Westerlund (2007) reported that in recent years, a great deal of attention had been paid
to the problem of unit roots in panel data and the eventual occurrence of cointegration
relationships between these variables. Hence, there is a need to look into fractional
cointegration in panel data parlance. Existing research focused on fractional cointe-
gration in time series or panel cointegration but not on fractional panel cointegration.
Therefore, recent research on fractional cointegration related to this work will be re-

viewed in this section.
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