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MANIK HIDROGEL SELULOSA NANOHABLUR-ALGINAT BERFUNGSI 

DARIPADA PELEPAH KELAPA SAWIT BAGI PENJERAPAN 4-

KLOROFENOL DALAM LARUTAN AKUEUS 

ABSTRAK  

 

4-klorofenol (4-CP) sebagai bahan kimia pengganggu endokrin fenolik (EDC) 

merupakan salah satu bahan cemar yang paling biasa dikesan dalam sumber air, yang 

juga terkenal dengan ketoksikan tinggi dan kekarsinogenan. Klorofenol telah 

dieksploitasi secara meluas sebagai pengawet dalam industri kayu, gentian, cat, dan 

industri kulit, digunakan sebagai pembasmi kuman, serta digunakan dalam 

penghasilan industri pengawet, racun herba, racun perosak dan pewarna, yang 

seterusnya berakhir di dalam air. Oleh itu, kajian ini bertujuan untuk membangunkan 

manik hidrogel berasaskan nanohablur selulosa yang cekap dalam merawat air sisa 

simulasi yang tercemar dengan 4-klorofenol. Pada mulanya, nanohablur selulosa 

(CNC) telah diekstrak daripada pelepah kelapa sawit (OPF) menggunakan kaedah 

hidrolisis asid sulfurik bersama-sama dengan pelbagai prarawatan. CNC yang 

diekstrak telah dicirikan melibatkan pelbagai teknik pelengkap, seperti FTIR, keadaan 

pepejal 13C NMR, TGA, DSC, XRD, SEM-EDX, TEM dan analisis BET bagi 

mengesahkan ketulenannya. CNC kemudiannya dirumuskan dalam bentuk manik 

hidrogel menggunakan matriks biopolimer alginat. Di samping itu, dua bentuk manik 

hidrogel alginat berasaskan CNC yang diubah suai telah dihasilkan, iaitu 

setiltrimetilamonium klorida (CTAC)-terubah suai CNC dan CNC terubah suai 

kuprum. Bahan ini telah dicantumkan pada asas alginat (ALG) bagi meningkatkan 

kecekapan, julat pH terpakai dan kapasiti penjerapan. Manik hidrogel CNC/ALG 

bentuk yang tidak diubah suai dan diubah suai telah dicirikan oleh pelbagai teknik 

pelengkap, termasuk FTIR, SEM, XPS, TGA, ukuran luas permukaan/keliangan, 
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potensi zeta dan analisis pHpzc. Keputusan pencirian menunjukkan rangkaian liang 

yang dipertingkatkan dan kestabilan strukturnya. Penyingkiran penjerap 4-CP telah 

dioptimumkan dengan mengubah pelbagai keadaan eksperimen, seperti masa silangan, 

saiz manik, dos penjerap, kepekatan awal 4-CP, pH sederhana, kelajuan pengacauan, 

masa sentuhan, suhu, keupayaan penjanaan semula dan kebolehgunaan semula. 

Keputusan yang diperoleh menunjukkan bahawa persamaan dengan kadar tertib 

pseudo-kedua dan isoterma penjerapan Langmuir telah digambarkan penjerapan 4-CP 

pada manik hidrogel ALG berasaskan CNC. Kapasiti penjerapan maksimum yang 

dicapai bagi sampel tidak diubah suai, CTAC-CNC diubah suai dan tembaga-CNC 

diubah suai masing-masing ialah 19.168, 64.935 dan 66.667 mg g-1. Kajian 

kebolehgunaan semula mendedahkan bahawa manik hidrogel berasaskan CNC yang 

diubah suai boleh digunakan semula sehingga lima kitaran berulang. Kajian 

termodinamik menunjukkan bahawa proses penjerapan adalah eksotermik, spontan 

dan boleh diterbalikkan dalam julat suhu yang dianalisis 303 hingga 323 K. Model 

Weber-Morris mendedahkan bahawa resapan intrapartikel bukanlah langkah 

pengawalan kadar tunggal dalam proses penjerapan. Mekanisme penjerapan yang 

membawa kepada proses penjerapan yang berkesan ialah penjerapan pengisi liang, 

ikatan hidrogen, interaksi elektrostatik, anion-π dan π-π tindanan. Keputusan 

menunjukkan bahawa manik hidrogel CNC/ALG berfungsi boleh digunakan sebagai 

penjerap yang mampan dan berkesan bagi pemulihan 4-CP. 

 

 

 

 

 



xxix 
 

FUNCTIONAL CELLULOSE NANOCRYSTAL-ALGINATE HYDROGEL 

BEADS PREPARED FROM OIL PALM FRONDS FOR THE ADSORPTION 

OF 4-CHLOROPHENOL IN AQUEOUS SOLUTION 

 

ABSTRACT 

 

4-chlorophenol (4-CP), being a phenolic endocrine-disrupting chemical 

(EDC), which is well known for its high toxicity and carcinogenicity, is one of the 

most commonly detected pollutants in water resources. Chlorophenols have been 

extensively exploited as preservatives in wood, fibers, paints, and leather industries, 

used as disinfectants, as well as utilized in the industrial production of preservatives, 

herbicides, pesticides, and dyes, which consequently end up in water bodies. Hence, 

the present study aimed to develop efficient cellulose nanocrystal-based hydrogel 

beads in treating simulated wastewater contaminated with 4-chlorophenol. Initially, 

cellulose nanocrystals (CNCs) were extracted from oil palm fronds (OPF) employing 

the sulphuric acid hydrolysis method along with various pretreatments. Extracted 

CNCs were characterized by using numerous complementary techniques, such as 

FTIR, solid-state 13C NMR, TGA, DSC, XRD, SEM-EDX, TEM and BET analyses 

which affirmed the purity. CNCs were then formulated in the form of hydrogel beads 

using alginate biopolymer matrix. In addition, two modified forms of CNC-based 

alginate hydrogel beads were prepared, which are cetyltrimethylammonium chloride 

(CTAC)-modified CNC and copper-modified CNC. They were grafted onto the 

backbone of alginate (ALG) in order to enhance the efficiency, applicable pH range 

and adsorption capacity. The unmodified and modified forms of CNC/ALG hydrogel 

beads were characterized by various complementary techniques, including FTIR, 

SEM, XPS, TGA, surface area/porosity measurement, zeta potential and pHpzc 
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analyses. Characterization results revealed the enhanced pore network and its 

structural stability. The adsorptive removal of 4-CP was optimized by altering various 

experimental conditions, which are crosslinking time, bead size, adsorbent dosage, 

initial 4-CP concentration, medium pH, stirring speed, contact time, temperature, 

regeneration capability and reusability. Obtained results revealed that the pseudo-

second-order rate equation and the Langmuir adsorption isotherm best described the 

adsorption of 4-CP onto CNC-based ALG hydrogel beads. The maximum adsorption 

capacities achieved for unmodified, CTAC-CNC modified, and copper-CNC modified 

were 19.168, 64.935 and 66.667 mg g-1, respectively. The reusability study revealed 

that modified forms of CNC-based hydrogel beads could be reused up to five repeated 

cycles. The thermodynamic study indicated that the adsorption process was 

exothermic, spontaneous, and reversible within the analyzed temperature range of 303 

to 323 K. The Weber-Morris model revealed that intraparticle diffusion was not the 

sole rate-controlling step in the adsorption process. The adsorption mechanisms 

leading to an effective adsorption process were adsorptive pore-filling, hydrogen-

bonding, electrostatic interaction, anion-π and π-π stacking. The results revealed that 

functional CNC/ALG hydrogel beads could be employed as sustainable and effective 

adsorbents for 4-CP remediation.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Research background   

Owing to the ever-growing human population, unskilled usage of natural water 

resources (De Gisi et al., 2016), climate change (Diyanilla et al., 2020), and rapid 

urbanization, which is indispensable for all aspects of human life, the quality of water 

has deteriorated significantly over the past few decades causing water a scarce source 

(Putro et al., 2017). According to United Nations Sustainable Development Goals 

2019 report, over 2 billion people live in countries experiencing high water stress, and 

by 2030, 700 million people could be displaced by intense water scarcity (Ismail & 

Go, 2021). Moreover, since the past few decades have witnessed staggering growth in 

industrialization, agricultural and domestic activities globally, it has posed a severe 

menace to the environment and human health, especially the detrimental effects 

provoked on flora and fauna. The main cause of these detrimental effects is due to the 

direct discharge of a wide array of hazardous contaminants or pollutants, for instance, 

toxic inorganic anions, synthetic dyes, pesticides, micropollutants and organics into 

natural waterbodies (Beyki et al., 2016).  

 

Chlorophenols are used broadly as dyes, preservatives, fungicides, herbicides, 

algicides, insecticides, and pharmaceuticals. Usually, most chlorophenolic compounds 

are persistent toxic substances, which threaten human health through direct contact 

and bio-accumulation. Contamination by chlorophenols in air, soils, natural waters, 

and other waterbodies has caused widespread concern. It has been reported that long-

term consumption of chlorophenol-adulterated water stimulates particularly anemia 
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and dizziness among other symptoms, and can even affect the central nervous system 

and liver (Lei et al., 2021). Despite most of the chlorophenols being bio-refractory 

pollutants, they have been extensively exploited as preservatives in wood, fibers, 

paints, and leather industries, used as disinfectants, as well as utilized in the industrial 

production of herbicides, pesticides, phenolic resins and dyes, which consequently end 

up in groundwater (Wen et al., 2013). Thus, the advancement of competent techniques 

to remove chlorophenols in water treatment is essential (Peng et al., 2017). 

  

Wastewater treatment refers to a process of separating or removing 

contaminants from effluent by employing chemical or physical methods ahead of 

discharging them into the environment (Jain et al., 2021). Introducing strongly sorptive 

and/or reactive solids into aquifers is a widely used engineering scheme for in situ 

remedies of groundwater systems contaminated with toxic organic and inorganic 

chemicals. These solids not only are highly reactive but also can remain suspended 

and can travel along with groundwater in polluted aquifers over extended periods of 

operating time. Therefore, searching for innovative nanomaterials that meet the two 

criteria has long remained a top priority in the field of groundwater remediation (Chen 

et al., 2017). Adsorption-based water purification technology is attractive because it is 

amenable to various contaminant concentrations and contaminant feeding conditions 

without affecting the contaminant removal efficiency. Given that the cost of adsorption 

technology is mainly associated with the adsorbent, a proper adsorbent should be 

selected to realize an economically viable treatment process. Therefore, the 

development of low-cost adsorbents that can yield high removal efficiency is 

important (Kumar et al., 2018). However, most natural wastes do not offer high 

adsorption performance due to relatively low specific surface area and undesirable 

uptake capacity. During the last decade, nanomaterials have emerged as potential 
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adsorbents for environmental remediation and wastewater treatment and have aroused 

increasing attention to face environmental issues (Mahfoudhi & Boufi, 2016). 

   

Moreover, the current practice of passive dumping and open burning of 

unwanted matured oil palm fronds in large plantations is aesthetically displeasing 

(Onoja et al., 2019) and contributes to degraded regional air quality along with 

increased health problems (Jain et al., 2014). Such methods for disposing of enormous 

quantities of agricultural biomass are environmentally challenging as well as 

unsustainable in the long run. Moreover, the full benefits of oil palm biomass are not 

fully explored, representing a valuable source of renewable cellulosic materials, viz., 

cellulose, hemicelluloses, and lignin (Elias et al., 2018). Nanocellulose refers to 

materials with a diameter of 5-20 nm obtained from cellulose (Manna et al., 2018). 

Nanocelluloses are used in various applications due to their low density, low cost, 

abundance, renewability, high mechanical properties, large surface area and aspect 

ratio, considerable flexibility, specific barrier properties and low thermal expansion 

(Abdul Khalil et al., 2016). In addition, it has been proved that nanocellulose can be 

classified as a non-toxic material (Vartiainen et al., 2011), 100% biodegradable and 

has no side effects on the environment (Bhatnagar et al., 2015). It is well known that 

nanocellulose-based beads provide considerable benefits over commercial adsorbents 

for water pollution control, including ease of separation, availability of abundant 

functional groups, biodegradability and eco-friendly (Abou-Zeid et al., 2021; 

Mohammed et al., 2015; Zhao et al., 2021). 
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1.2 Problem statements 

Most of the phenolic compounds present in the waste streams of a wide variety 

of industrial operations are toxic, and some are carcinogens. They get into the food 

chain and pose serious environmental threats. Chlorinated phenols (CPs) are widely 

used in chemical, petrochemical, plastic, leather, paint, pharmaceutical, and steel 

industries. The increasing use of these compounds leads to environmental pollution 

because of their high solubility and low biodegradability. Chlorophenols with two or 

more chlorines are often used as pesticides or derivatized to convert them into 

pesticides. Sometimes they are also used as antiseptic agents. Moreover, 

chlorophenols, especially 4-chlorophenol, have been used as antiseptics. They are also 

used as wood preservatives (Manna, 2018; Yousef & El-Eswed, 2009). Thus, there are 

several diverse ways in which people can get exposed to chlorophenols. On the whole, 

4-chlorophenol was desired as the target contaminant for specific reasons that it is 

highly poisonous to aquatic life, humans, and plants even at low concentration levels, 

persistent in the environment due to stability of its structure, widespread use in 

numerous industries (including in producing textile dyes, polymeric resins, wood 

preservatives, fungicides, biocides, pesticides) and is typically found in drinking water 

(Garba & Rahim, 2016). Besides, based on the past literature, a minimal number of 

studies have been carried out on the removal of 4-chlorophenol in particular as 

opposed to other environmental pollutants, including heavy metal ions and dyes. 

   

The most widely used method to treat phenols contaminated wastewater is 

adsorption onto the surface of activated carbon. However, the high cost associated with 

activated carbon in terms of initial and regeneration costs makes it undesirable to be 

employed on a large scale (Chen et al., 2017). Thus, there is a need for more 
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economical and environmentally friendly methods for improved adsorption rate of 

chlorophenols. Moreover, most of the industrial adsorbents engaged currently are in 

the form of porous macro-sized particles to increase the surface area and enhance the 

adsorption capacity (Mahfoudhi & Boufi, 2017). However, diffusion within the 

particles has limitations and can lead to a decrease in the adsorption capacity and rate. 

Moreover, adsorbents must be easily separated from the effluent and should be easily 

regenerated with a minimum loss in the adsorption capacity. This issue is even more 

amplified for nanosized adsorbents. Hence, the preparation methods and the influence 

of experimental conditions need to be optimized to achieve high adsorption capacity. 

  

Malaysia, an agricultural country, which serves as the world’s second-largest 

palm oil producer and exporter after Indonesia, confronts the challenges of disposing 

of waste generated from palm oil production. The oil palm biomass by-products are 

overage and abandoned as wastes, which are stacked to rot, impacting environmental 

pollution. Despite the high energy-producing ability of oil palm fronds (OPF), it is the 

least utilized out of all the biomass produced. Thus, valorization of these wastes and 

converting them into viable products and sustaining cost are essential and 

economically beneficial to the nation, which could promote Malaysia’s contribution 

to settling the global pollution crisis. Moreover, in view of the major drawbacks in 

current methods for disposing of OPF biomass, the development of new technological 

applications has widened the utilization of OPF, which has caught much attention 

among the scientific community. In addition, it also conforms with the “Zero Waste” 

initiative illustrated by the Malaysian Palm Oil Board (Ng et al., 2012). The “Zero 

Waste” initiative can be practiced to convert the widely available undesirable biomass 

into functional materials with potential industrial applications (Elias et al., 2018).   
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1.3 Research objectives 

 

In order to address the shortcomings mentioned above, this study aims to 

propose a facile method for the preparation of environmentally friendly and efficient 

cellulose nanocrystals-based hydrogel beads with minimum chemical usage, short 

reaction time and low temperature. The following research objectives were targeted to 

be accomplished in this research study: 

 

1) To isolate cellulose nanocrystals from oil palm fronds and characterize using 

various techniques.  

2) To functionalize cellulose nanocrystals and prepare them in the form of hydrogel 

beads, characterize hydrogel bead adsorbents and enhance their porosity.  

3) To optimize the adsorption parameters of the unmodified/modified hydrogel 

beads towards 4-chlorophenol. 

4) To characterize experimental data with adsorption isotherm models, investigate 

the kinetics of adsorption based on 4-chlorophenol’s uptake performance, probe 

various thermodynamic parameters at different temperatures, such as enthalpy 

(∆H⁰), Gibbs free energy (∆G⁰) and entropy (∆S⁰) changes through 

thermodynamic study, to elucidate mechanisms involved in the adsorption of 4-

chlorophenol, and to infer the reusability of modified cellulose nanocrystal-

alginate hydrogel beads through adsorption-desorption cycles.  

 

 

1.4 Scope of study 

 

This study consists of investigating the potentials of cellulose nanocrystals 

(CNCs) and two of their functionalized forms (quaternary ammonium salt 

modification and copper modification) as fillers for the preparation of hydrogel beads 
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from oil palm fronds using sodium alginate (ALG) as the biopolymer matrix. Cellulose 

nanocrystals will be extracted from oil palm fronds using a three-step process, which 

involves alkali treatment, bleaching and acid hydrolysis. Isolated cellulose 

nanocrystals will be characterized using various complementary techniques to affirm 

their purity. An ionotropic gelation method involving a Ca2+ crosslinker will be used 

to fabricate CNC-based hydrogel beads. Modified and unmodified hydrogel beads will 

be optimized with the aid of preparation conditions, especially CNC: ALG ratio and 

various experimental conditions. The efficacy of the optimal hydrogel beads will also 

be investigated by the adsorption of 4-chlorophenol. The optimized hydrogel beads 

will be characterized to ascertain the functional groups present, specific surface area, 

thermal stability, elemental composition, binding energy, and surface morphology.   

 

The study covers single batch adsorption experiments, which will focus on 

investigating the effects of agitation speed (50-500 rpm), hydrogel bead size (2.1, 2.9 

and 3.8 mm), crosslinking time (15-120 min), solution pH (2-12), temperature (30-50 

℃), initial 4-chlorophenol solution concentration (50-1000 mg L-1) and adsorbent 

dosage (0.25-5.0 g). Langmuir (type I-IV), Freundlich, Temkin and Dubinin-

Radushkevich adsorption isotherm mathematical models, as well as kinetic models 

(pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion), will be 

employed to investigate the equilibrium and kinetics data. Thermodynamic parameters 

(Gibbs free energy, enthalpy, and entropy) will also be determined, and their influence 

on the adsorption processes will be assessed. Regeneration of the spent hydrogel beads 

will be experimented with repeated adsorption cycles. 
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1.5 Gap of knowledge  

The application of cellulose nanocrystal/alginate hydrogel beads in the field of 

adsorption for the removal of 4-chlorophenol is yet to be explored to the best of our 

knowledge. In addition, most industrial adsorbents employed currently are in the form 

of porous macro-sized particles, which limit their application for the detoxification of 

contaminants present in low concentration. Hence, the primary goal of the present 

research study is to prepare functional mesoporous cellulose nanocrystal/alginate 

hydrogel beads with high porosity for the adsorptive removal of 4-chlorophenol in 

aqueous media. 

 

1.6 Thesis outline 

 

The thesis is structured into five chapters and a section for references and 

appendices. The summarized thesis organization is as follows: 

 

 Chapter 1 includes the background of the study, problem statement, research 

objectives and scope of the study. Chapter 2 reviews literature pertaining to the 

challenges faced with water pollution and various methods used in tackling wastewater 

with emphasis on adsorption from its fundamental principles. Advancements and 

challenges in the use of adsorption for wastewater treatment are discussed. Batch 

adsorption systems with their various forms of analysis such as isotherms, kinetics, 

mechanism, and thermodynamics are also highlighted in this chapter. Chapter 3 

comprises all the materials and equipment used in the present study and a detailed 

description of the experimental setup and experimental procedure. This includes the 

extraction of cellulose nanocrystals and characterization, preparation of unmodified 
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and functional cellulose nanocrystal/alginate hydrogel beads, characterization of 

hydrogel beads, and design of experiments as well as batch adsorption and 

regeneration studies.  

 

 Chapter 4 presents the collated results of chapter 3 experimental work and 

elaborated discussion. The chapter is divided into four sections which are (i) 

experimental design and optimization results, (ii) characterization results, (iii) batch 

adsorption studies, and (iv) desorption and regeneration studies. Detailed analysis of 

adsorption isotherms, kinetic models, mechanism, and adsorption thermodynamics are 

also presented. The capability of using cellulose nanocrystal/alginate-based hydrogel 

beads is also presented and discussed. Chapter 5 concludes the findings from the 

present study concerning the objectives of this study and recommendations drawn 

from the research work.  
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1  Oil palm biomass   

 

Oil palm (Elaeis guineensis Jacquin) tree, an agricultural plant, has succeeded 

in becoming one of the commodity oil crops that insure Malaysia's economic 

development (Lamaming et al., 2015). In 2015, the annual production of crude palm 

oil in Malaysia stood at 20.5 million metric tons (Lee et al., 2020) in terms of global 

palm oil supply, in which 90% corresponded to the generation of a range of oil palm 

biomass wastes (Ahmad et al., 2016; Lee et al., 2020; Loh, 2017), including oil palm 

fronds (OPF), oil palm empty fruit bunch (OPEFB), oil palm leaves (OPL), oil palm 

mesocarp fiber (OPMF), also known as palm pressed fiber (PPF), oil palm bark (OPB), 

palm kernel shell (PKS), palm oil mill effluent (POME), also known as oil palm 

sewage sludge (OPSS), oil palm fresh fruit bunches (OPFFB), and oil palm trunk 

(OPT) (Brito et al., 2018; Chan et al., 2018; Dungani et al., 2017; Lee et al., 2018; 

Loh, 2017; Onoja et al., 2019). Figure 2.1 depicts the most generated co-products of 

oil palm biomass. Dungani et al. (2017) noted that OPF contributes to 70% (wt.) of 

total oil palm biomass waste. Tahir et al. (2018) reported that annual oil palm 

production in Malaysia is expected to increase up to 50 million tons by 2030. Since 

the oil palm industry is the largest contributor of biomass in Malaysia (Abnisa et al., 

2013), annually, large amounts of oil palm biomass wastes are air burnt or discarded 

at the plantations without proper utilization upon pruning during oil palm trees 

replantation and milling processes (Onoja et al., 2019). It is alarming to report that the 

imprudent disposal of oil palm biomass wastes causes severe environmental impact, 
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for instance, the unceasing aggregation of OPF at plantation sites potentially threatens 

the ecosystem owing to the formation of greenhouse gases amid microbial degradation 

(Dungani et al., 2017).   

                                                                                                                                                    

 

Figure 2.1: Major oil palm biomass residues (adapted from Diyanilla et al. (2020))  
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Therefore, researchers have come up with the idea of converting the 

underutilized oil palm bio-fiber into profitable value-added products (Onoja et al., 

2019). As oil palm biomass are lignocellulosic materials, they mainly comprise lignin 

and cellulose. The potential exploitation of oil palm fibers as a source to extract 

cellulose would uplift the economy of farmers and stamp out the imprudent disposal 

of oil palm biomass wastes. These cellulose fibers can be utilized to produce cellulose 

nanocrystals (CNCs) (Dungani et al., 2017). Hamzah et al. (2019) reported that the 

total oil palm biomass residues (dry weight basis) available for pruning, replanting, 

and milling activities in Malaysia in 2017 (Figure 2.2) accounted for 51.19 metric tons 

(Mt) based on 101.02 Mt of oil palm fresh fruit bunches (OPFFB) processed. 

According to Figure 2.2, OPF is the most significant oil palm biomass residue. 

 

 

 

Figure 2.2: Availability of major oil palm biomass residues in Malaysia in 2017 

(adapted from Diyanilla et al. (2020))  
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 Table 2.1 outlines the lignocellulosic composition and extractives content 

based on different components of the oil palm tree.   

Table 2.1: Lignocellulosic composition and extractives content of oil palm fronds 

based on previous research studies   

 

Extractives 

(%) 

Lignin (%) Cellulose (%) Hemicellulose  

(%) 

References 

4.27 

 

- 

 

3.50 

 

- 

 

20.60 

 

- 

 

11.33 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

 

- 

 

20.00 

 

17.72 

 

20.15 

 

15.20 

 

19.70 

 

25.00 

 

19.53 

 

21.70 

 

26.00 

 

24.62 

 

23.30 

 

18.42 

 

18.07 

 

17.80 

 

40.03 

 

54.66 

 

47.76 

 

32.70 

 

42.80 

 

31.00 

 

44.80 

 

50.33 

 

26.40 

 

35.73 

 

39.50 

 

41.25 

 

39.84 

 

41.40 

27.08 

 

23.52 

 

35.37 

 

22.50 

 

- 

 

24.00 

 

- 

 

23.18 

 

47.60 

 

28.39 

 

23.60 

 

23.95 

 

21.83 

 

20.10 

Azani et al. (2020) 

 

Saurabh et al. (2016) 

 

Hashim et al. (2011) 

 

Zakaria et al. (2015) 

 

Tan et al. (2016) 

 

Wan Omar and Amin (2016) 

 

New et al. (2019) 

 

Abnisa et al. (2013) 

 

Mahmood et al. (2016) 

 

Hussin et al. (2016) 

 

Lawal et al. (2021) 

 

Ong et al. (2021) 

 

Lee et al. (2021) 

 

Tnah et al. (2022) 

 

 

 

OPF residue is currently used in various industries such as the production of 

brooms. The low energy density of oil palm residues (especially OPF and PKS) has 

made possible today’s advancement in the briquetting process to produce better fuel 

for future power generation (Kaniapan et al., 2021). OPF is also used as mulches for 
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soil erosion control and nutrients conservation (Tang & Qahtani, 2020). Ironically, 

discovery in alternative uses or values of oil palm biomass wastes is often translated 

as evidence for sustainability of oil palms though still at research and development 

stage. In the recent past, many attempts have been undertaken to unravel the potential 

utilization of OPF, including butanol production as a fuel alternative (Mahmud & 

Rosentrater, 2022), bio-oil and biochar production (Chantanumat et al., 2022), clean 

syngas (H2+CO) production (Inayat et al., 2021), as a reinforcing filler (CNC-OPF) for 

mild steel corrosion protection (Azani et al., 2020), for solid biofuels (Kongto et al., 

2022), nonsevere furfural production (Lee et al., 2021), activated carbon production 

(Maulina et al., 2020), and for the development of fertilizers (Phoochinda, 2020).  

These are some evidence of technological progress in the valorization of oil palm frond 

biomass as the main feedstock for value-added bioproducts. Hence, it is evident that 

OPF biomass generated has attracted great interest from researchers due to the 

abundance of this valuable material which can be converted into value-added materials 

such as bioelectricity, biofuels, biohydrogen, bioplastics, biosugars, and nanocellulose 

(Norrrahim et al., 2022).             

 

 

2.2 Overview of nanocellulose 

 

Cellulose is the most ubiquitous naturally occurring biopolymer on the planet 

earth, produced mainly by plants, algae, fungi, bacteria, and tunicates (Buffiere et al., 

2017; George & Sabapathi, 2015; Rodríguez et al., 2011), is renewable, biologically 

degradable, non-toxic (Dufresne, 2013) as well as water-insoluble (Trache et al., 

2020). The word “cellulose” has been derived from a French word, “cellule”, which 

refers to a living cell and glucose (Olivera et al., 2016). The promising features of 
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cellulose make it to be employed as an alternative to non-degradable fossil-fuel-based 

polymers (George & Sabapathi, 2015). It is a high molecular weight linear 

homopolymer of 1,4-β-glucose unit linked by glycosidic oxygen bridges (Figure 2.3a), 

comprised of microfibrils of nano-size diameter and surrounded by lignin and 

hemicellulose (Mahfoudhi & Boufi, 2016). In view of nourishing the demand for 

utilizing biocompatible and green materials, cellulose holds a vital position due to 

being inexhaustible, highly functional and sustainable, and amenable feedstock 

(Trache et al., 2017). Moreover, cellulose inherits a unique hierarchical structure 

(Figure 2.3b) to have gained increasing attention to exploring its exclusive properties. 

    

Nonetheless, reasonably poor adsorption capability and limited solubility in 

water and organic solvents have restricted the technological applications of cellulose 

(Sehaqui et al., 2016). To improve the adsorption characteristics of cellulose, its 

specific surface area and the amount of active sites should be increased through the 

preparation of nanocelluloses (Hong et al., 2019). More importantly, nanocellulosic 

materials have attracted growing interest due to their well-defined structure and 

functionalities (Grishkewich et al., 2017). Since the production of nanomaterials 

derived from petroleum-based resources involves the extensive use of hazardous 

chemicals and causes global warming and related environmental concerns. Thus, 

desperate measures have been taken to utilize materials derived from renewable 

resources instead of conventional raw materials to attain sustainable development 

(Putro et al., 2017).  

Nanocellulose obtained from lignocellulosic materials is endowed with 

astounding thermal and mechanical properties, as well as they are eco-friendly and 

cheap to produce (Rambabu et al., 2016). Nanocelluloses are typically nanoscale 

cellulosic materials with at least one of their dimensions (diameter, length or width) 
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below 100 nm (Thomas et al., 2020). In recent years, biosorbents, for instance, 

adsorbents prepared from nanocellulose, have gained increasing attention, being 

environmentally benign and inexpensive to produce (Beyki et al., 2016). Extensive 

research work is being executed to convert abundant, cost-effective, and renewable 

materials to obtain value-added products with significant benefits. 

 

 

 

Figure 2.3: a) Chemical structure and b) microstructure of cellulose (Trache et al., 

2020) 

 

 

 Nanocelluloses can be classified into three major classes based on their 

preparation techniques, processing conditions, shape (morphology) and size, which are 

(i) cellulose nanocrystals (CNC), also known as cellulose nanowhiskers, (ii) cellulose 

nanofibrils (CNF), also called nanofibrillar cellulose, and (iii) bacterial nanocellulose 

(BNC), sometimes referred as bacterial cellulose (Mondal, 2017; Yi et al., 2020; Zinge 
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& Kandasubramanian, 2020). Nanocellulose can be isolated from diverse 

lignocellulosic plant resources through chemical, mechanical treatments or bacterial 

origin as individual processes or can be combined to attain nanocelluloses with 

peculiar characteristics (Espíndola et al., 2021; Mondal, 2017; Phanthong et al., 2018; 

Trache et al., 2020). Table 2.2 depicts some of the major isolation methods of 

nanocellulose from cellulose pulp.  

 

Table 2.2: Primary isolation methods/treatments of cellulose pulp-derived 

nanocellulose 
 

Classification  Pretreatment method Reference 

Chemical  • Acid hydrolysis 

• 2,2,6,6-tetramethylpiperidine-1-oxyl 

(TEMPO)-mediated oxidation 

• Alkaline treatment 

• Ionic liquid treatment 

• Solvent extraction 

 

Phanthong et al. (2018) 

Physical 

(mechanical) 
• Grinding 

• High-pressure homogenization 

(microfluidization) 

• Ultrasonication 

• Milling (PFI, disk, planetary ball) 

• Steam explosion 

• Electrospinning 

• Micro-jet method 

 

Wang (2019) 

Biological  • Enzymatic hydrolysis 

• Bacteria 

• Fungi    

Mondal (2017) 

 

 

 There are two key steps involved in the preparation of nanocelluloses. First, 

the initial pretreatment step involves the delignification of the biomass to reduce its 

recalcitrance and removal of hemicellulose, which is applied to the lignocellulosic 
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material to acquire pristine cellulose (Diyanilla et al., 2020) and secondly, treating 

pristine cellulose by chemical or physical methods, which deconstruct the cellulosic 

hierarchical structure (Curvello et al., 2019) to yield nanocellulose. 

 

 

2.3 Cellulose nanocrystals 

 

CNCs are typically produced through mineral acid hydrolysis, viz. 

concentrated acid breakdown, with the use of H2SO4, H3PO4, HCl, HBr, citric acid and 

formic acid under regulated conditions of temperature, time and acid to cellulosic fiber 

ratio (Tshikovhi et al., 2020) with subsequent post-treatment approaches, including 

centrifugation, neutralization and dialysis to eliminate the excess acid on its surface 

(Trache et al., 2020; Zinge & Kandasubramanian, 2020). Cellulose nanocrystals can 

also be produced through recyclable organic acids (especially dicarboxylic acids), 

including oxalic, maleic, and p-toluenesulfonic acids. Enzymatic phosphorylation (Liu 

et al., 2015) and oxidation (Klemm et al., 2018) are two additional methods employed 

to prepare cellulose nanocrystals. Despite the fact that acid hydrolysis using sulfuric 

acid is the oldest process, it remains the most common preparation method for CNCs. 

A typical approach starts with alkali and bleaching pretreatments, followed by acid 

hydrolysis. Figure 2.4 depicts a schematic diagram of a pretreatment process applied 

to lignocellulosic biomass. It was reported that Calvert was the first author who 

performed the hydrolysis of cellulose in 1855 (Mao et al., 2017). A few decades later, 

in 1951, Rånby successfully prepared stable colloidal suspensions of cellulose using 

H2SO4 (Nascimento et al., 2018). 
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Figure 2.4: Schematic representation of a pretreatment process applied on 

lignocellulosic biomass (adapted from Sarip et al. (2016))  

 

 

 

Since the preparation method and the conditions adopted significantly affect 

the characteristics of isolated nanocelluloses, Table 2.3 has been presented to highlight 

the features of diverse nanocelluloses reported in the literature. Depending on the 

natural source, isolation procedure, conditions, and pre-post-treatments, the 

characteristics of nanocellulose such as crystallinity, yield, dimensions and 

morphology, surface chemistry, physicochemical and thermal properties can be 

tailored for a specific use, opening an extensive range of possibilities to develop new 

materials (Wohlhauser et al., 2018).           

 

 



 

 
 

2
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Table 2.3: Effect of isolation method and adopted conditions on the characteristics of CNCs based on recent studies   

Source Isolation treatment  Structural   

morphology 

Dimension (nm) Zeta  

potential 

(mV) 

Crystallinity 

(%) 

Degradation 

temperature  

(℃) 

References 

Wheat bran H2SO4 hydrolysis (64 wt.%, 45 

℃, 60 min) 

Needle-

shaped  

structure 

Diameter: 31.2 ± 7.8 

Length: 854.7 ± 

210.4 

NA      NA NA Kang et al. 

(2021) 

Commercial 

MCC 

2,2,6,6-tetramethylpiperidine-1-

oxyl (TEMPO)-mediated 

oxidation (pH 10.8, 

25 °C, 2 h) 

 

 

Rod-like 

structure 

Diameter: 8.1 ± 2.0 

Length:  

96.4 ± 28.8 

-35.8 ± 0.6     ~58 320-330 R. Sun et al. 

(2021) 

Hardwood kraft 

pulp 

H2SO4 hydrolysis (64 wt.%, 45 

℃, 2 h) 

Needle-like 

morphology 

Hydrodynamic 

diameter: 172 ± 18 

-40.7 ± 0.7     ~80 NA Wang et al. 

(2021) 

 

Dunaliella 

tertiolecta marine 

green algae  

residue 

H2SO4 hydrolysis (50 wt.%, 4.5 

h) 

Needle-like 

morphology 

Diameter: 30 ± 5.2 

Length: 520-700 

NA 89 369 Mondal et al. 

(2021) 

Almond (Prunus 

dulcis) shell 

TEMPO-mediated oxidation 

(pH 10, 7 °C, 2 h) 

 

Spherical-like 

aggregates 

  Diameter: 25-100  

 

 

 

 

NA NA 271.4 Maaloul et al. 

(2021) 
 

 
 



 

 
 

2
1
 

Rice husk H2SO4 hydrolysis (10.0 M, 50 

℃, 40 min) 

Rod-like 

morphology 

Diameter: 5-15 

  Length: ~400 

 

NA NA NA Supramaniam et 

al. (2018) 

 

 

 

 

Pineapple crown 

fibers 

 

H2SO4 hydrolysis (50 wt.%, 50 

℃, 1 h) 

 

 

H2SO4 hydrolysis (64 wt.%, 50 

℃, 1 h) 

 

H2SO4 hydrolysis (64 wt.%, 50 

℃, 2 h) 

 

 

 

 

Rod-shaped 

agglomerates  

 NA 

 

 

 

NA 

 

 

NA 

-35.73 

 

 

 

-48.76 

 

 

-47.96 

92.13 

 

 

 

84.47 

 

 

87.44 

345 

 

 

 

346 

 

 

348 

 

 

 

 
Pereira et al. 

(2020) 

Cotton linters H2SO4 hydrolysis (65 wt.%, 63 

℃, 30 min) 

Rod-like 

nanoparticles 

 Diameter: 27± 12.4 

 Length: 129 ± 60.6 

 

-34 ± 5 NA NA Lin et al. (2021) 

 

 

 

 

Eucalyptus 

pulpboard 

Enzymatic hydrolysis 

(10 U mL-1 xylanase 

and cellulase enzyme composite, 

12 h, 

50 °C and 150 rpm) 

 

Enzymatic hydrolysis 

(300 U mL-1 xylanase and 

cellulase enzyme composite, 4 

h, 50 °C and 150 rpm) 

 

Rod-shaped 

 

 

 

 

 

Spherical 

Diameter: 20 

Length: 400-500 

 

 

 

 

Diameter: 30 

-25.2 

 

 

 

 

 

-28.2 

76.6 

 

 

 

 

 

55.8 

NA 

 

 

 

 

 

NA 

 

 

 

J.T. Xu et al. 

(2021) 
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Grape pomace Deep eutectic solvent (lactic 

acid: choline chloride; 2:1 molar 

ratio) hydrolysis (80 ℃, 300 

rpm, 6 h) 

 

Rod-like  

crystals 

Diameter: 22.0 ± 

3.9 

Length: 241.5 ± 

45.3 

-29.07 ± 1.66 95.2 >380 Fan et al. (2020) 

Commercial 

MCC 

Mechanical milling  

(6 h) with 1000 rpm centrifugal 

separation 

 

Stacked rod-

shaped 

Diameter: 43 ± 12 

Length: 537 ± 

197 

-8 NA NA Yao et al. 

(2020) 

 

Note: NA, information is not available
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 Chen et al. (2016) demonstrated that CNCs produced from bleached eucalyptus 

kraft pulp employing oxalic acid (70 wt.%, 100 ℃, 60 min) result in high thermal 

stability (322 ℃ vs 218 ℃), longer particle length and enhanced crystallinity (82.8% 

vs 77.9%) compared to H2SO4 hydrolyzed (64 wt.%, 45 ℃, 45 min) CNCs. Luzi et al. 

(2019) extracted CNCs from North African grass (Diss) stems through H2SO4 

hydrolysis upon pretreating cellulose obtained from Diss stems employing various 

chemical pretreatments, which are de-waxing, bleaching with NaClO2 and treatment 

with NaHSO4 and NaOH, and enzymatic pretreatment via xylanase, polygalacturonase 

and cellulase. They highlighted that chemically pretreated fibers offer CNCs with 

compact size, while enzymatic pretreatment resulted in CNCs with higher crystallinity 

and thermal stability. It has been reported that in comparison to CNF and BNC, CNCs 

encompass superior mechanical properties on account of their high crystallinity. Out 

of all the nanocellulose forms, only CNCs have been endorsed as safe by numerous 

standards (Yang & Cranston, 2014). Figure 2.5 depicts the mechanism of the chemical 

and mechanical methods to produce CNC and CNF from cellulose. 

Figure 2.5: The mechanism of chemical and mechanical methods for producing CNC 

and CNF from cellulose (adapted from Sofla et al. (2016)) 
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Modified CNCs were initially explored for use as reinforcing materials before 

they could be innovatively tested for fluorescence bioimaging applications (Li et al., 

2022). Plenty of studies have explored the utility of CNCs as reinforcing materials for 

various applications, for instance, in gelatin hydrogels for controlled drug delivery 

systems (Ooi et al., 2016), chitosan films (Mujtaba et al., 2017), poly(vinyl alcohol) 

films (Popescu, 2017), natural rubber nanocomposites (Koeipudsa et al., 2022), 

cement composites (Fan et al., 2022), sodium alginate-based superabsorbent-fertilizer 

hydrogel (El Idrissi et al., 2022), core-shell hydrogels for sustained release of fertilizer 

and water retention (do Nascimento et al., 2022), bio-nanocomposite film for food 

packaging (Gupta et al., 2021), highly compressible hydrogel for ultrasound scanning 

(Cheng et al., 2022), calcium alginate hydrogels for methylene blue adsorption 

(Soleimani et al., 2023), spider-web-inspired membrane for oil/water separation (Q. 

Wang et al., 2022), photocurable thermosetting elastomer for 3D printing (Palaganas 

et al., 2022), and  nanocomposite coating for wood furniture (Kaboorani et al., 2017).  

It is interesting to note that CNCs as nanomaterials have undisputable physical 

and excellent biological properties that enhance their interest as biomedical materials 

(Aziz et al., 2021; Ganguly et al., 2020; Mali & Sherje, 2022; Sunasee et al., 2016). 

For instance, Long et al. (2021) developed a novel method for fabrication of CNC-

based pH responsive drug delivery system for anticancer drug doxorubicin. The 

biological evaluation results affirmed that the developed drug carrier revealed negative 


