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KAEDAH PEMBEZAAN BLOK KE BELAKANG LANGKAH BERUBAH 

PERINGKAT BERUBAH BAGI MENYELESAIKAN PERSAMAAN 

PEMBEZAAN BIASA KAKU PERINGKAT LEBIH TINGGI SECARA 

LANGSUNG 

ABSTRAK 

Tesis ini menekankan pembangunan Kaedah Pembezaan Blok Ke belakang 

Langkah Berubah Peringkat Berubah (VSVO-BBDM) bagi menyelesaikan 

persamaan-persamaan pembezaan biasa (ODEs) kaku peringkat lebih tinggi secara 

langsung. Kurangnya penyelidikan dalam menyelesaikan ODEs kaku peringkat tinggi 

secara langsung, terutamanya untuk peringkat tiga dan lebih tinggi, terbukti dalam 

literatur sedia ada. Oleh itu, adalah penting untuk mengambil peranan bagi mengkaji 

dan membincangkan penyelesaian langsung untuk ODEs kaku peringkat tinggi ini, 

khususnya pada peringkat tiga dan empat. Kaedah ini menghasilkan satu set 

penyelesaian baharu dalam satu blok pada setiap langkah pengamiran sepanjang 

selang. Bahagian pertama tesis membincangkan kerja pengkomputeran kaedah 

Langkah Berubah Formula Pembezaan Blok Ke belakang peringkat ke-m (mVS-

BBDF(3)) untuk penyelesaian berangka ODEs kaku peringkat ketiga secara langsung. 

Masalah ini diselesaikan secara langsung tanpa melalui proses penurunan ke sistem 

peringkat pertama. Kaedah mVS-BBDF(3) dilaksanakan dalam pendekatan saiz 

langkah berubah. Sementara itu, bahagian kedua tesis ini pula merangkumi kerja 

pengkomputeran kaedah VSVO-BBDM untuk menyelesaikan ODEs kaku peringkat 

yang lebih tinggi secara langsung. Kerja pengkomputeran VSVO-BBDM dijalankan 

dengan menggunakan strategi memvariasikan saiz langkah dan memvariasikan 

peringkat. Penambahbaikan strategi ini bertujuan untuk meningkatkan kecekapan 
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kaedah yang dicadangkan bagi menganggarkan penyelesaian dengan berkesan. Selain 

itu, perbincangan terperinci tentang penumpuan dan sifat kestabilan bagi kaedah-

kaedah yang dicadangkan juga turut disertakan. Kemudian, semua kerja 

pengkomputeran ditulis dalam platform “Microsoft Visual C++” dan eksperimen 

berangka dilaksanakan bagi mengesahkan kecekapan VSVO-BBDM. Seterusnya, 

hasil berangka yang diperoleh daripada kaedah yang dicadangkan dan penyelesai-

penyelesai yang sedia ada telah dibandingkan dalam jadual dan rajah. Kesimpulannya, 

keputusan berangka dengan jelas menunjukkan bahawa ketepatan penyelesaian 

bertambah baik dan kos pengiraan berkurang dengan menggunakan kaedah langsung 

yang dicadangkan, VSVO-BBDM. Secara keseluruhannya, penggunaan kaedah 

langsung VSVO-BBDM untuk menganggarkan penyelesaian bagi masalah yang 

dipertimbangkan adalah lebih cekap daripada kaedah-kaedah setanding. Oleh itu, 

VSVO-BBDM boleh dicadangkan sebagai penyelesai alternatif bagi menyelesaikan 

ODEs kaku peringkat yang lebih tinggi secara langsung. 
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VARIABLE STEP VARIABLE ORDER BLOCK BACKWARD 

DIFFERENTIATION METHOD FOR SOLVING DIRECTLY HIGHER 

ORDER STIFF ORDINARY DIFFERENTIAL EQUATIONS 

ABSTRACT 

This thesis emphasises on developing Variable Step Variable Order Block 

Backward Differentiation Method (VSVO-BBDM) for solving directly higher-order 

stiff ordinary differential equations (ODEs). The scarcity of research on solving 

higher-order stiff ODEs directly, especially for order three and higher, is evident in the 

existing literature. As a result, it is crucial to take up the mantle of investigating and 

elucidating the direct solutions for these higher-order stiff ODEs, specifically for 

orders three and four. This method generates a set of new solutions in a block at each 

integration step along the interval. The first part of the thesis discusses the 

computational work mth-order Variable Step Block Backward Differentiation Formula 

(mVS-BBDF(3)) method for direct numerical solutions of third-order stiff ODEs. 

These problems are directly solved without going through the reduction process to the 

first-order system. The mVS-BBDF(3) method is implemented in the variable step size 

approach. Meanwhile, the second part of this thesis comprises the computational work 

of the VSVO-BBDM for solving the higher-order stiff ODEs directly. The 

computational work of the VSVO-BBDM is carried out using a strategy of varying the 

step size and varying the order. The advancement of this strategy is intended to 

enhance the efficiency of the proposed methods to approximate the solutions 

effectively. Besides, a detailed discussion of the convergence and stability properties 

of the proposed methods is also included. Then, all the computational works are 

written in the Microsoft Visual C++ platform, and numerical experiments are 
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conducted to confirm the efficiency of the VSVO-BBDM. Subsequently, the 

numerical results obtained from the proposed method and the existing methods are 

compared in tables and figures. In conclusion, the numerical results clearly 

demonstrate that the accuracy of the solutions is improved and the computational cost 

is reduced using the proposed direct method, VSVO-BBDM. As a whole, the use of 

the direct method VSVO-BBDM for approximating the solutions of the considered 

problem is more efficient than comparable methods. Hence, the VSVO-BBDM is 

reliable and can be recommended as an alternative solver for solving the higher-order 

stiff ODEs directly. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Introduction 

Numerical analysis is a branch of mathematics that solves mathematical 

problems that commonly occur in science and engineering using various numerical 

methods introduced by scientists or, more specifically, mathematicians. The numerical 

method is a technique to obtain the approximated solutions of mathematical problems. 

Furthermore, it can provide approximate solutions for complicated problems for which 

analytical solutions may be difficult or sometimes impossible to find. 

 

 In addition, the mathematical problems such as differential equation (DE) or a 

system of DE can be applied to model the problems that occurred in the real-world. In 

general, the DE is an equation that consists of a function and its one or more 

derivatives. It describes how things changed. For instance, how fast a disease spread 

or how fast a population change. In the equation, the function is represented as physical 

quantities and the derivatives are defined as the rate of change of the function. The DE 

is categorised into two categories either as an ordinary differential equation (ODE 

henceforth) or partial differential equation (PDE henceforth). The ODE contains one 

or more ordinary derivatives of a function (dependent variable) with respect to a single 

independent variable. Meanwhile, the PDE contains differentials with respect to 

several independent variables.  

 

ODE can be classified into stiff or non-stiff cases. For solving stiff problems, 

not all the validated numerical methods for solving ODE can be suitably applied. The 

numerical methods might be less efficient as the step size used is relatively small, thus 
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requiring more computational time and effort. Implicit methods are therefore used in 

order to effectively solve this type of problem. One of the most popular implicit 

method for solving stiff ODEs is Backward Differentiation Formula (BDF) method 

(Ibrahim et al., 2007a; Akinfewa et al., 2013; Musa, 2013). 

 

There are many numerical methods that can be used to solve the higher-order 

ODEs. Normally, the existing numerical methods such as sixth-order P-stable 

symmetric multistep method, one leg multistep, or linear symmetric multistep method 

often necessitate the reduction process in order to solve higher-order differential 

equations. By using these methods, the higher-order problems will be reduced into 

their equivalent first-order systems. Afterwards, a suitable first-order numerical 

method is used to find the approximations. However, applying these classical first-

order methods will require a lot of computational efforts and lengthy computation 

times to generate the solutions since this approach will increase the number of 

equations to Mn, where M is the order of the problem and n is the number of equations 

in higher order form (Ibrahim et al., 2019). The direct approach to higher-order 

equations is believed to offer advantages in terms of speed and accuracy (Gear, 1967). 

 

The evolution of various numerical methods in the literature is intended to 

improve the existing methods by offering better solutions at which the problems are 

solved directly without reducing to its first-order system. Other than it being simpler, 

the direct method can potentially reduce computational burden and save computational 

time. 
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1.2 Problem Statement 

Various scholars have attempted to solve the higher-order ODEs. Earlier 

researchers such as Lambert and Watson (1976), Suleiman (1979), Fatunla (1984), and 

Jain et al. (1984) used first-order ODEs methods to find the numerical solutions of the 

second-order ODEs by reducing the second-order ODEs problems into their first-order 

ODEs systems but these methods were found to be inefficient. The deficiency of the 

approach is that more functions are needed to be computed, which leads to an increase 

in computational burden and wasted computation time.  

 

Recently, scholars such as Ibrahim et al. (2009), Zainuddin (2011), Yatim 

(2013b), Zainuddin et al. (2014), Zainuddin et al. (2015), Zainuddin et al. (2016a), 

Zainuddin (2016b), Ibrahim et al. (2018), Ibrahim et al. (2019), Zawawi et al. (2021), 

and Zainuddin et al. (2023) have solved the higher-order stiff ODEs problems directly 

without reducing them into a system of first-order. However, research on solving the 

higher-order stiff ODEs directly, particularly for order three and higher, has not been 

widely conducted, as most research focuses on solving the second-order stiff ODEs 

directly. The scarcity of research on solving higher-order stiff ODEs directly, 

especially for order three and higher, is evident in the existing literature. As a result, it 

is crucial to take up the mantle of investigating and elucidating the direct solutions for 

these higher-order stiff ODEs, specifically focusing on orders three and four. By 

embarking on this essential study, a critical gap in knowledge for various scientific 

and engineering domains can be filled. In doing so, the related challenges can be 

addressed, hence simplifying the computational process. 

 



 

 
4 

Motivated by the previous study of Yatim (2013b), this has been the inspiration 

for us to extend the study on solving the higher-order stiff ODEs directly since the 

study proved that the direct method such as BBDF is efficient for solving the second-

order stiff ODEs. 

1.3 Objective of the Thesis 

The main objective of this thesis is to develop the numerical methods for 

solving the higher-order stiff ODEs, namely Variable Step Variable Order Block 

Backward Differentiation Method. The objectives are: 

1. To derive direct methods of second-, third-, and fourth-order Variable Step 

Block Backward Differentiation Formulae (mVS-BBDF(3), m = 2, 3, and 

4) by varying the step size for solving third-order stiff ODEs, 

2. To derive the Variable Step Variable Order Block Backward 

Differentiation Method (VSVO-BBDM) by varying the step size and order 

for solving higher-order stiff ODEs directly, 

3. To establish the stability and convergence properties of VSVO-BBDM for 

solving the higher-order stiff ODEs, 

4. To develop the code of the VSVO-BBDM for solving the higher-order stiff 

ODEs directly; and 

5. To analyse the numerical results of the VSVO-BBDM on solving the 

higher-order stiff ODEs directly in terms of error, time, and number of total 

steps with the existing methods. 
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1.4 Scope of the Thesis 

This thesis emphasises the direct numerical solutions of higher-order stiff 

ODEs. The single and system of Initial Value Problems (IVPs) of higher-order stiff 

ODEs will be solved directly without going through the reduction process to their first-

order system. The proposed numerical methods for approximating the solutions of 

higher-order stiff ODEs of orders three and four are known as Variable Step Variable 

Order Block Backward Differentiation Method. This method implements variable step 

size and variable order approach at which this strategy is designed based on the value 

of Local Truncation Error (LTE). The conclusions are drawn based on the methods’ 

numerical performance with the existing methods in terms of accuracy, computational 

time, and number of total steps taken when applied to the selected tested problems at 

various intervals. 

1.5 Outline of the Thesis 

The thesis is organised into eight chapters. Chapter 1 provides a brief 

introduction and a basic idea of the numerical methods, along with the highlighted 

problems. This chapter also discusses the problem statement, objectives, and scope of 

the study. 

 

In Chapter 2, the related theories and definitions are discussed in detail so as 

to support the current study. Then, previous studies on the block method, BDF method, 

and BBDF method are reviewed in relation to the current study. 

 

Chapters 3, 4, and 5 comprise the step-by-step derivation of mVS-BBDF(3) 

methods (m = 2, 3, and 4) for solving the third-order stiff ODEs. These methods are 
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derived using several backvalues in the previous blocks by applying a variable step 

size strategy. Thus, these chapters detail the conditions for the successful step and the 

failure step, as well as a description of how the strategy of varying the step size works. 

The analysis of the order and stability of the methods is included in these chapters. 

Also, the convergence of those is analysed in Chapter 5. In addition, the numerical 

results are presented in Chapter 5 to validate the efficiency of these methods over the 

existing methods for solving third-order stiff ODEs. 

 

In Chapter 6, the VSVO-BBDM is derived with variable step sizes and orders. 

Also, the convergence and stability properties of the methods are further discussed in 

this chapter. The strategy of varying the step size and order is described briefly in this 

chapter. Besides, the convergence and stability of the method are also analysed. 

 

The problems tested, numerical results, and discussion of the comparison 

between VSVO-BBDM that was proposed in the previous chapter and the existing 

methods are included in Chapter 7. Once the programming code of the VSVO-BBDM 

is developed, several problems of higher-order stiff ODEs are tested to examine the 

performance of the proposed direct method. The numerical results obtained from the 

numerical experiments are tabulated, and the performance of the proposed method is 

discussed and compared to that of the existing methods. 

 

The conclusion of the main findings of the current study is presented in the last 

chapter, followed by the recommendations for potential future studies. 
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CHAPTER 2  
 

BACKGROUND THEORY AND LITERATURE REVIEW 

2.1 Introduction 

The definition of higher-order ODEs and stiffness will be discussed in this 

chapter. The LMM, which is the characteristic of the BBDF method, is also explained. 

Following that is the discussion on the types of MATLAB's ODE solvers designed for 

solving stiff and non-stiff ODE problems. Then, the previous studies on the direct 

method, block method, BDF method, and BBDF method are reviewed in relation to 

the current study. 

2.2 Background Theory 

This section discussed the mathematical theory of the considered problem and 

method.  

2.2.1 Higher-Order Ordinary Differential Equations 

Real-world problems also involve the higher-order ODEs. The focus of this 

thesis is on the IVPs of higher-order ODEs, specifically third- and fourth-order ODEs. 

Due to the lack of research on these problems, they require a little more attention. The 

definition of the n-dimensional system of the higher-order ODEs of Mth-order as 

written in Zainuddin (2011) is given by:  

        ( ) ( ),
M

i iy f x Y= ,    ni ,...,2,1= ,      0 , zx x x ,                      (2.1) 

where M is order of the ODE system, 0x  and zx  are finite with initial conditions 

( )0Y x = , 

where 



 

 
8 

( ) ( )

( ) ( )

1 1

1 1

1 1

1 1

( ) ( , , , , , , ),

( ) ( , , , , , , ).

M M

n n

M M

n n

Y x y y y y

x    

− −

− −

=

=

 

 

The thesis adopts the following theorem which states the conditions on ( ),if x Y
 
that 

guarantee the existence of a unique solution to (2.1). 

 

Theorem 2.1: Existence and Uniqueness (Henrici, 1962) Let ( ),if x Y  be defined and 

continuous for all points ( ),x Y  in the region D to be defined by interval 0 zx x x  , 

Y    where 0x  and zx  are finite, and let there exists a constant L known as 

Lipschitz constant such that for any  0 , zx x x , and anyY and *Y  for which ( ),x Y  

and ( )*,x Y  are both in D,  

                                       ( ) ( ) .,, ** YYLYxfYxf ii −−             (2.2) 

 

 Then, if   is any given number, there exist a unique solution ( )Y x  of (2.1) 

where ( )Y x  is continuous and differentiable for all ( ),x Y  in D. The requirement of 

(2.2) is known as Lipschitz condition.  

 

The proof of Theorem 2.1 can be referred to in Henrici (1962). This assumption 

establishes the existence of a unique solution to (2.1). 
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2.2.2 Stiff Ordinary Differential Equations 

Some of the ODE problems are presented with the phenomenon of stiffness. 

This phenomenon occurs in a variety of applications, such as the study of motion and 

mass systems, chemical kinetics, electronic circuits, control systems, and chemical 

reactions, to name a few (Sandu et al., 1997; Kim & Cho, 1997; Aiken, 1985; Soomro 

et al., 2023). 

 

The stiffness of the ODE problem is determined when its solutions are varied 

slowly, but the nearby solutions are varied rapidly. Unfortunately, there is no unique 

definition of stiffness given in the literature. Hence, the definition given in Lambert 

(1993) describing how (2.1) exhibits stiffness is considered as follows: 

 

Definition 2.1: Stiffness (Lambert, 1993) The problems are stiff if they satisfy the 

following conditions: 

i. ( )Re 0i  , i = 1, 2, … , n, and  

ii. ( ) ( )max Re min Re  ,i i   where i  are the eigenvalues of the Jacobian 

matrix, 
f

y




 and the ratio 

( )

( )

max Re
 

min Re

i i

i i




 is called the stiffness ratio of stiffness 

index. 

 

 

In fact, conventional methods are quite expensive, and they cannot handle stiff 

problems efficiently because many steps are required, thus risking round off errors that 

may invalidate the solution (Shampine & Gear, 1979). To put it simply, a lot of effort 

and longer time are required for the conventional methods to converge to a satisfactory 
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solution, in which the step size used in the entire integration is extremely small. Stiff 

problems are, therefore, difficult to solve by using the conventional explicit methods. 

2.2.3 Linear Multistep Method 

In contrast to the one-step method, a multistep method uses several prior 

solutions to compute the subsequent approximated solutions. A linear combination of 

the values of the computed solution and function at the prior points is known as the 

linear multistep method (LMM). There are two types of LMM: explicit and implicit. 

An example of explicit LMM is the Adams-Bashforth method, whereas examples of 

implicit LMM are the Adams-Moulton and BDF methods. Generally, the explicit 

methods are suitable for solving non-stiff problems and the implicit methods are 

suitable for solving stiff problems (Alexander, 1977; Cash, 1979; Griffiths & Higham, 

2010). 

 

The general expression of s-step LMM has the form 

                                                   
0 0

s s

j n j j n j

j j

y h f + +

= =

=  ,                                      (2.3) 

where h is the step size, j , j  are method’s coefficients and constant, and s denotes 

the number of steps in the method. Coefficients are presumed to be real and satisfy the 

conditions  

 

1s =  and 0 0| | | | 0 +  . 
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In order for method (2.3) to be implicit, n sy +  appears on both sides of the 

equation where n sf + on the right-hand side is ( ), ,n s n s n sf f x y+ + +=  0.s    

Meanwhile, if 0s = , the method is explicit. 

 

Following (2.3), the general form of the LMM for the higher-order ODEs is 

written as 

       
2

0 0 0 0

s s s s
M

j n j j n j j n j j n j

j j j j

y h y h y h f   + + + +

= = = =

 = + + +    ,          (2.4) 

 

where M is the order of the ODEs and
( )M

n j n jf y+ += . 

 

BBDF method is one of the LMM for solving higher-order stiff ODEs and it is 

also an implicit method. The BBDF method will be covered in greater detail in the 

next section. 

2.2.4 MATLAB’s ODE Solver 

In approximating the solutions, MATLAB’s ODE solvers can only solve first-

order equations. In order to use the solvers, the higher-order equations are rewritten 

into their equivalent first-order equations.  

 

Let, 

                                       

( )

( )

1 1 1 2 3

1 2 3

, , , , , ,

                       

, , , , , .

n

n n n

y f x y y y y

y f x y y y y

 =

 =

            (2.5) 
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Then, the system of first-order ODEs for (2.5) can also be written as 

                   ( ),Y F x Y =                                (2.6) 

under the initial conditions 

     ( )0
.Y x =  

 

Several options of MATLAB’s ODE solvers are made available for the IVP of 

ODEs. They can work either on stiff or non-stiff problems. Since some of the problems 

exhibit stiffness, the execution might be difficult and relatively slow. The type of 

problem that MATLAB's ODE solvers can efficiently solve must be determined in 

order to select the appropriate solvers.  

 

The ODE solvers provided by MATLAB are as shown in the following Table 

2.1 (for non-stiff problems) and Table 2.2 (for stiff problems): 

 

Table 2.1 MATLAB's ODE solvers for non-stiff problems 

Solver Accuracy Type Description 

ode45 Medium Single step 

method 

Medium order method based on an explicit 

Runge-Kutta (4,5) formula, the Dormand-

Prince pair 

ode23 Low Single step 

method 

Low order method which  is an implementation 

of an explicit Runge-Kutta (2,3) pair of 

Bogacki and Shampine 

ode113 Low to 

High 

Multistep 

method 

Variable step, variable-order Adams-

Bashforth-Moulton PECE solver of orders 1 to 

13 
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Table 2.2 MATLAB's ODE solvers for stiff problems 

Solver Accuracy Type Description 

ode15s Low to 

Medium 

Multistep 

method 

Variable step, variable order method based on 

the numerical differentiation formulas (NDFs) 

of orders 1 to 5. Optionally, it can use the 

backward differentiation formulas (BDFs, also 

known as Gear's method) 

ode23s Low Single step 

method 

Low order method based on a modified 

Rosenbrock formula of order 2  

ode23t Low Single step 

method 

Trapezoidal rule and can solve differential 

algebraic equations (DAEs) 

ode23tb Low Single step 

method 

Trapezoidal rule and Backward 

Differentiation Formula 

 

2.3 Literature Review 

This section will review the previous studies that relate to the current study. 

The higher-order stiff ODEs problems in this thesis will be solved using the direct 

block methods. Therefore, this section will review the related studies on the direct 

methods, block methods, BDF methods, and BBDF methods. 

2.3.1 Direct Methods for Solving Higher-Order ODEs 

Over the years, scholars have attempted to tackle the higher-order problem 

directly, thus eliminating the order reduction process. Various approaches have been 

applied for solving the higher-order ODEs problems directly, either using the non-

block or block method. As a result, efforts have been made to explore research on 

directly solving higher-order ODEs.   
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One of the pioneers in the study of direct method was Krogh (1968), who 

proposed the direct integration (DI) method for non-stiff problems by using modified 

divided difference, where the backvalues of any one of the derivatives are interpolated. 

Chawla and Sharma (1985) presented independently explicit and implicit Runge-

Kutta-Nystrom methods for solving general second-order ODEs. Then, Suleiman 

(1989) proposed the DI method using the standard divided difference for solving 

higher-order non-stiff ODEs. Awoyemi (2003) developed a P-stable LMM for general 

third-order ODEs that was implemented in predictor-corrector mode. Jator (2008) 

discussed a class of initial value methods (IVMs) for solving second-order IVPs 

directly. Jator and Li (2009) developed a self-starting LMM for solving the general 

second-order IVPs directly.  

 

The study on this field has been expanded to date. Then, Rajabi et al. (2016) 

proposed direct method for solving special third-order ODEs, namely the linear 3- and 

5-step methods. Another method introduced by Ghawadri et al. (2019) functions as a 

direct solver for fourth-order ODE of the structure
( ) ( )uuuxfu = ,,,4

. The one-step 

explicit three-stage of Runge-Kutta of order four (RKTF4) and four-stage of Runge-

Kutta of order five (RKTF5) are constructed using the associated B-series and quad-

coloured trees theory based on the algebraic order conditions developed in the form of 

( ) ( )uuuxfu = ,,,4
. Lee et al. (2020) explored a direct approach in handling the 

general third-order, discussing particularly the special class of explicit two-derivative 

Runge-Kutta type (STDRKT) methods involving the fourth derivative of the solution, 

that are two-stages of order five STDRKT2(5) and three-stages of order six 

STDRKT3(6) methods for solving a particular problem. 
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From those studies, the direct method has given a benefit when solving the 

higher-order ODEs which is a reduction in computational effort since the direct 

method will remove the burden of reducing the higher-order ODEs into a system of 

first-order ODEs. All the methods mentioned here are non-block methods. There are 

various block methods that have been proposed for solving the higher-order ODEs 

directly.  

 

The block method is a method that can provide multiple solutions 

simultaneously at a time instead of only one solution. Also, it has been proven that 

block methods are more accurate and require fewer function evaluations, which results 

in a reduction in the computational cost (Singla et al., 2022). Therefore, there will be 

another benefit of solving the higher-order ODEs directly using the block method. The 

problems will be solved more quickly with less computational effort while still 

producing the desired accuracy. The next subsection will present the reviews on the 

block method for solving first- and higher-order (second-order and above) non-stiff 

and stiff ODEs. 

2.3.2 Block Methods for Solving First-Order ODEs 

Among the earliest to introduce the block method was Milne (1953), who 

introduced computing the starting values for the predictor-corrector algorithm. Then, 

Rosser (1967) applied the idea for the Runge-Kutta method where multiple solutions 

were produced concurrently. Shampine and Watt (1969) and Watanabe (1978) further 

extended this idea by applying the block method on the one-step method for solving 

first-order ODEs. Birta and Abou-Rabia (1987) conducted the research on multistep 

block method. Voss and Abbas (1997) have considered block predictor-corrector 
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scheme of one-step fourth-order block method with variable step size for solving first-

order ODEs.  

 

Later, Ibrahim et al. (2007a) discussed the 2-point and 3-point block methods 

based on the BDF method for solving first-order stiff ODEs. Majid and Suleiman 

(2009) introduced a 3-point block method with variable step for solving first-order 

ODEs. Aksah et al. (2016) developed a new block Runge-Kutta method with various 

weights for solving first-order stiff ODEs. Kashkari and Syam (2019) proposed an 

optimized one-step hybrid block method for solving general first-order ODEs. Ekoro 

et al. (2021) developed Adam’s block with first and second derivative future points for 

solving linear and non-linear first-order IVPs in ODEs. Currently, Soomro et al. (2022) 

designed an optimized hybrid block Adams block method for the solutions of linear 

and nonlinear first-order IVPs in ODEs. 

2.3.3 Block Methods for Solving Higher-Order Non-Stiff ODEs 

The study on solving higher-order (second-order and above) ODEs problems 

was explored by the scholars. They proposed the idea of solving these problems using 

the block method. There have been a number of scholars who have conducted research 

on the direct solution of higher-order ODEs using the block method. The first to 

conduct the study was Fatunla (1991) who discussed the block method for solving 

second-order non-stiff ODEs directly by proposing zero-stable block method of orders 

3 and 4. Ken et al. (2008) developed the explicit and implicit r point block methods 

with constant coefficients based on Newton-Gregory backward interpolation formula 

for solving special second-order ODEs.  
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Then, the solution of second-order ODEs by the block method with variable 

step size is discussed in Majid et al. (2009). It is suited for the numerical integration 

of ODEs that are neither stiff nor mildly stiff, and it is presented in the simple form of 

the Adams-Moulton method. Olabode (2009) derived a 5-step block method of order 

7 that solved special third-order ODEs directly which eliminates the use of predictor 

corrector methods. Awoyemi (2011) introduced a method based on the collocation and 

interpolation of the power series approximate solution for the direct solution of second-

order non-stiff ODEs. Mehrkanoon (2011) proposed the direct variable step three-

point block multistep method for solving third-order non-stiff ODEs. The proposed 

method is based on a pair of explicit and implicit of Adams type formulas. 

 

The research on higher-order ODEs continued with the method proposed by 

Adeyeye and Omar (2019), known as the implicit five-step block method with 

generalised equidistant points for treating fourth-order non-stiff ODEs. Allogmany 

and Ismail (2020) proposed an implicit three-point block method with fourth and fifth 

derivatives of the solution for solving directly general linear, nonlinear, and 

applications of third-order non-stiff ODEs. Currently, Abdelrahim (2021) developed 

four-step implicit hybrid block method for the solutions of the non-stiff fourth-order 

ODEs. The method was developed using three off-step points, 1 5

4 2
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n n

x x
+ +
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2
n

x
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 In addition, most of the methods that have been developed previously were 

applied to solve higher-order non-stiff ODEs. In order to solve stiff problems, the BDF 

method is the most suitable method to be used since it is well-known for its capability 

to solve stiff problems. Therefore, the next subsection will review the previous studies 

that applied the BDF method for solving stiff problems. 
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2.3.4 BDF Methods for Solving Stiff ODEs 

The classical BDF method, also known as the Gear method (Gear, 1969), was 

the earliest method of solving the stiff ODEs problem. The BDF method works best 

for stiff problems (Oliver, 1982). A number of scholars have made some modifications 

on the classical BDF method and the some of the methods are listed as follows: 

2.3.4(a) Extended Backward Differentiation Formula (EBDF) 

Cash (1980) proposed a new method that added one future point called the 

Extended Backward Differentiation Formula (EBDF) for solving first-order stiff 

ODEs. The problems considered were predicted using the conventional BDF method 

and then corrected using the EBDF method. This method is A-stable up to order 4 and 

A(α)-stable up to order 9. The study also indicated the superiority of the EBDF over 

certain existing methods through the numerical results.   

2.3.4(b) Modified Extended Backward Differentiation Formulae (MEBDF) 

Modified Extended Backward Differentiation Formulae (MEBDF) was 

proposed by Cash (1983). This method was capable of achieving variable step/variable 

order processes using highly stable formulae of order 2 to 8. When comparing with the 

BDF method, the MEBDF method required fewer functions, fewer Jacobians, and 

fewer steps but required more backsolves. However, it managed to provide better 

accuracy and stability.  
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2.3.4(c) Adaptive Extended Backward Differentiation Formula (AEBDF) 

The Adaptive Extended Backward Differentiation Formula (AEBDF) has been 

developed by Hojjati et al. (2004). This method is A(α)-stable up to order 9 with a 

wider angle where its stability region is larger than the EBDF method, and it also gave 

better accuracy than the EBDF method.  

2.3.4(d) Block Backward Differentiation Formula (BBDF) 

Then, Ibrahim et al. (2007a) improved the classical BDF method by associating 

this method with the block method, thus resulting in the BBDF method. Ibrahim et 

al.’s research was motivated by the need to enhance the well-established solver for 

stiff ODEs, the Gear method, by speeding up the integration process and also 

improving the accuracy of the solutions.  

 

2.3.4(e) Hybrid Backward Differentiation Formula (HBDF) 

Ebadi and Gokhale (2010) have introduced the BDF method with some off-

step points, which is known as the Hybrid Backward Differentiation Formula (HBDF). 

This method has wider stability regions than the BDF, EBDF, and MEBDF methods, 

which are A-stable up to order 4 and A(α)-stable up to order 12. Therefore, the HBDF 

method managed to give more accurate results than comparable methods. 

2.3.4(f) Block Extended Backward Differentiation Formula (BEBDF) 

Later, Musa et al. (2012) proposed a block method in the form of the EBDF 

method, which is known as the Block Extended Backward Differentiation Formula 

(BEBDF). This method is extended from the EBDF method which computes two new 
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solutions concurrently and uses an extra future point, which makes it more 

advantageous than the conventional BBDF method by producing more accurate 

solutions.  

2.3.4(g) Continuous Block Backward Differentiation Formula (CBBDF) 

 Akinfewa et al. (2013) introduced a Continuous Block Backward 

Differentiation Formula (CBDF) that was implemented as a self-starting method and 

required only one initial value for solving the first-order stiff ODEs problem. As 

compared to the BDF method, the CBBDF method gave more accurate results and 

managed to reduce the computational cost with fewer numbers of function evaluations 

and computational steps.  

 

 From the studies, the methods based on BDF were able to solve stiff problems 

by providing good numerical results. In this study, the idea of the conventional BBDF 

method was chosen for solving the higher-order stiff ODEs problems since it has 

proven its superiority of solving the first-, second-, and third-order stiff ODEs through 

various approaches. 

2.3.5 BBDF Methods  

Basically, the BBDF method approximates a set of new solutions at each 

integration step by using the values in the preceding b-blocks. This means that every 

successful integration step will produce r new solutions, 1, ,n n ry y+ +  simultaneously, 

where each block contains r-points. Thus, by proceeding a block at a time, the number 

of total steps is reduced and a shorter time is needed to complete an integration step 
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instead of producing only a single solution at a time. Also, the BBDF method has the 

ability to store all the differentiation coefficients to avoid repetitive calculations, which 

will save computation time. Therefore, the BBDF method is advantageous in terms of 

computational time and number of total steps in finding the solutions to the problems.  

 

Apart from that, the BBDF method has been extensively used to solve stiff 

ODEs through various approaches. In relation to this, the efficacy of the BBDF method 

for solving first- and higher-order stiff ODEs problems will be elaborated in more 

detail in the following subsections. 

2.3.5(a) BBDF Method for Solving First-Order Stiff ODEs 

Ibrahim et al. (2007) constructed a set of implicit BBDF formulas known as r-

point BBDF methods for the solutions of the first-order stiff ODEs where r is 

represented as the block size. The r-point BBDF method will produce simultaneously 

r new solutions at the time of discretisation points, 1, ,n n rx x+ + . They discussed the 

general approach of computing simultaneously a block of 2 new values (r = 2) and 3 

new values (r = 3), using one earlier block with each block containing two and three 

points. The numerical results showed that the number of total steps was reduced to 

almost half and one third, and the execution time was faster than non-block BDF 

method when using the r-point BBDF methods. 

 

 

The Variable Step 2-point BBDF method introduced by Ibrahim et al. (2007b) 

was the pioneer BBDF method that applied a variation of step size. The step was 

considered successful if the computed LTE was less than the tolerance value. The 

value of the step size could be adjusted to 1.6 to gain computation speed or to remain 
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constant. Conversely, the step was considered a failure if the LTE was greater than the 

tolerance value. Thus, the step needs to be repeated by halving the current value of the 

step size. When comparing this method to the Variable Step Variable Order Backward 

Differentiation Formula (BDFVS) method in Suleiman (1979), this method produced 

better accuracy with less computational time and fewer total steps.  

 

Yatim et al. (2010) introduced a method for finding the solutions of first-order 

stiff ODEs called the Fifth Order Variable Step Block Backward Differentiation 

Formulae. A suitable step size was chosen at each step to optimise the performance in 

terms of precision and computation time. The suitable step size can be either constant, 

half, or increased to a factor of 1.9. The increment of the step size was inspired by 

Ibrahim et al. (2007b), where the step size was increased to a factor of 1.9 instead of 

1.6. They made a comparison between these increments and found that the increment 

value of the step size reduced the number of total steps and computed the solution 

faster. 

 

The research on the BBDF method was extended by adding one back value in 

the preceding blocks. Four backvalues are used to compute two new solutions in the 

current block. The resulting method, aimed at solving first-order stiff ODEs, was 

proposed by Nasir et al. (2011) and known as the Fifth Order Two-Point Block 

Backward Differentiation Formulas (BBDF(5)). The efficiency of the method was 

verified by comparing its performance to ode15s in MATLAB and the classic BDF 

method. The result proved that BBDF(5) was more efficient in both accuracy and 

execution time, where it converged faster than the other two methods. 
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The existing BBDF method proposed by Yatim et al. (2013a) was enhanced by 

research on the most efficient strategy for selecting the step size and order of the 

method. The strategy was applied to the BBDF method for solving first-order stiff 

ODEs. Fundamentally, each order of the BBDF method (orders three, four, and five) 

had a variety of values for step size. The method is known as the Variable Step Size 

and Variable Order Block Backward Differentiation Formula (VSVO-BBDF). The 

strategy for selecting the step size focused on reducing the number of iterations and 

computation time. Compared to ode15s and ode23s in MATLAB, VSVO-BBDF 

yielded the shortest execution time, reduced the number of total steps, and produced 

the best solutions. 

 

Abasi et al. (2012) derived a new formula to approximate three new solutions in 

the current block, known as the Variable Step Size 3-Point Block Backward 

Differentiation Formulas (3-BBDF) for the solution of the first-order stiff ODEs. The 

considered step size includes constant step size, halving the step size, and increasing 

the step size by a factor of 1.196. In comparison with both MATLAB’s suite ODEs 

solvers, ode15s and ode23s, the 3BBDF method performed better in reducing the error 

and also converged faster for all the considered problems.  

 

 

Currently, Nasarudin et al. (2020) made a modification to the classical BBDF 

method by adding two off-step points, which is known as the Block Backward 

Differentiation Formula with off-step points of order 6, BBDFO(6) for solving the 

first-order stiff ODEs. The stability region of the proposed method is larger as 

compared to the order six BBDF method without the off-step points, BBDF(6), that 

was proposed by Nasir (2012). The numerical experiments were conducted to validate 
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the efficiency of the BBDFO(6) by comparing its performance with that of the 

BBDF(6) and ode15s. The numerical results proved that the BBDFO(6) was found to 

produce better accuracy at certain step sizes than the other two methods. 

 

Therefore, it would be preferable to find the solutions of the higher-order stiff 

ODEs using the direct method, such as BBDF, since it is an implicit method that is 

suitable for solving the stiff problems.  

2.3.5(b) BBDF Method for Solving Second-Order Stiff ODEs 

Ibrahim et al. (2009) developed the Variable Step Block Backward 

Differentiation Formulas as a direct method for solving second-order stiff ODEs 

known as BBDF2. They considered the value of the step size ratio, r = 1 (constant step 

size), 2 (half of the step size), and 5/8 (increment of the step size by a factor of 1.6). It 

was proven that the BBDF2 successfully solved the considered problems since this 

method executed the solutions of the second-order ODEs directly. The results obtained 

showed a reduction in the number of total steps and execution time as compared to the 

non-direct BDFVS method developed by Suleiman (1979). Also, the proposed method 

was able to improve the accuracy of the solutions. 

 

In addition, Zainuddin (2011) proposed 3rd, 4th, and 5th Order Direct Block 

Backward Differentiation Formula, known as 2BBDF(3), 2BBDF(4), and 2BBDF(5), 

respectively, for solving second-order stiff ODEs. The method was developed using a 

fixed step size approach. The performance of the proposed method was validated by 

comparing with established solvers for solving stiff problems, namely ode15s and 

ode23s. The results confirmed that the proposed method is more efficient than the 




