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ANALISIS PERCABANGAN BERANGKA MODEL PEMANGSA-MANGSA 

LESLIE-GOWER DENGAN BEBERAPA JENIS STRATEGI PENUAIAN 

PEMANGSA 

ABSTRAK 

Model pemangsa-mangsa adalah model yang melibatkan interaksi antara dua 

spesies. Dinamik model pemangsa-mangsa menarik perhatian ramai ahli ekologi dan 

ahli matematik. Kajian ini menunjukkan hasil teori dan berangka ke atas analisis model 

pemangsa-mangsa Leslie-Gower dengan pelbagai jenis strategi penuaian pemangsa 

iaitu model penuaian pemangsa linear, hasil-malar, dan tidak linear. Kami 

menggambarkan analisis percabangan berangka kodimensi-satu dan kodimensi-dua 

untuk  menunjukkan kestabilan titik keseimbangan dan tingkah laku model apabila 

nilai penuaian berubah dengan strategi penuaian yang berbeza. Kami menganalisis 

setiap model untuk menentukan kewujudan percabangan berangka tempatan seperti 

pelana-nod, transkritikal, Hopf, dan percabangan berangka Bogdanov-Takens serta 

membandingkan jenis percabangan berangka yang berbeza yang berlaku untuk setiap 

strategi penuaian pemangsa. Kajian ini menyiasat dinamik model pemangsa-mangsa 

Leslie-Gower dengan strategi penuaian berbeza melalui analisis berangka yang 

menyokong kadar penuaian kritikal yang ditentukan daripada analisis secara teori. 

Kajian ini juga menemui kepentingan strategi penuaian pemangsa dalam pengurusan 

sumber yang optimum yang boleh diperbaharui menggunakan model mangsa-

pemangsa Leslie-Gower. Pemilihan nilai parameter adalah sangat penting kerana ia 

melibatkan perbezaan nilai yang sangat kecil dan boleh mengakibatkan spesis 

pemangsa pupus jika nilai penuaian pemangsa lebih tinggi berbanding nilai kritikal 

penuaian pemangsa. 
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THE NUMERICAL BIFURCATION ANALYSIS OF  

LESLIE-GOWER PREDATOR-PREY MODEL WITH 

DIFFERENT TYPES OF PREDATOR HARVESTING 

STRATEGIES 

ABSTRACT 

The predator-prey model is the most common model dealing with the interaction 

between two species. The dynamics of a predator-prey model has attracted a lot of 

attention from many ecologists and mathematicians. This study shows theoretical and 

numerical results on the analysis of the Leslie-Gower predator-prey model with 

different types of predator harvesting strategies namely linear, constant-yield and 

nonlinear predator harvesting models. We illustrate the numerical bifurcations analysis 

of codimension-one and codimension-two to show the stability of the steady-states and 

the behaviour of the model when the harvesting rate change under different harvesting 

strategies. We analyse each model to determine the existence of local bifurcations such 

as saddle-node, transcritical, Hopf, and Bogdanov-Takens bifurcations and compare 

the different type of bifurcations that occurs for each predator harvesting strategy. This 

study investigates the dynamics of the Leslie-Gower predator-prey model with 

different harvesting strategies through numerical analysis that corroborate with the 

critical harvesting rate determined from the theoretical analysis. This study also 

discovers the significance of predator harvesting strategies in the optimal management 

of renewable resources using the Leslie-Gower predator-prey model. The choice of 

the parameter values is crucial with the small difference in the values may cause the 

predator species extinct if the harvesting rate is greater than the critical harvesting rate.  
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CHAPTER 1  

INTRODUCTION 

 

 

1.1 Background of the study 

In the ecological system, there are many interactions between the species in 

their environment, such as competition, commensalism, and predation. In ecological 

studies, the term “predation” is defined as a biological interaction in which the hunting 

organism (that is, the predator) feeds on the organism that is being preyed on. The 

predator species may not kill their prey before feeding on them, but the act of predation 

always becomes the reason for the death of the prey. Lotka and Volterra first 

introduced the theory of predator-prey interaction in the 1920s, which presumed that 

predator-prey interactions depend on the size of the prey population. Therefore, the 

prey population grows exponentially in the absence of a predator, and the predator will 

seek other prey after the size of the prey decreases (Boyce and DiPrima, 2010). 

 

Holling (1959) further described the way a predator responds to the changing 

density of its prey via three types of functional response; (i) in type I there is a linear 

relationship where the predator can keep up with the increasing density of prey by 

eating them in direct proportion to their abundance in the environment; (ii) in type II 

the rate of prey consumption per predator initially rises as the prey density increases 

but eventually remains constant regardless of a further increase in prey density; (iii) in 

type III, the functional response resembles type II in which at high levels of prey 
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density, saturation occurs, and the response of predators to prey at low prey density is 

different. 

 

Despite all the theoretical models and approaches, there is still a lack of 

understanding of the complex interactions between predators and prey and the effect 

of predation on prey populations. In general, predators can have impacts on prey 

populations, but under certain circumstances, predation has little or no effects on prey 

populations even though they are the main cause of death in those populations. These 

circumstances can include direct killing and risk effects by other factors such as human 

activities that cause an environmental disaster. The outcomes can vary greatly 

depending on the habitat characteristics, the number of predator species, the 

vulnerability of prey, weather, age population and hunting behaviour. Furthermore, 

the exploitation of biological resources and harvesting of populations that are 

commonly practised in fishery, forestry, and wildlife management further disturbed 

the ecological conditions.  

 

In response to these challenges, there is a wide interest to investigate predator-

prey systems and the impact of harvesting on populations. Many classic models have 

been developed to study the dynamics of species interactions and one of the earliest 

predator-prey models in mathematical ecology is the Lotka-Volterra model. This 

model becomes the basis of many models in the analysis of population dynamics, and 

it was discovered independently by Alfred Lotka (1925) and by Vito Volterra (1926).  

 

Harvesting is an important and effective method to prevent and control the 

explosive growth of predators or prey when they reach sufficient population numbers. 
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The rate of harvesting has been used to control the increase in population and as a 

controller of the population density. In resource management applications, harvesting 

gives a great impact on the stability and dynamics of the population system when there 

are changes in steady-states, perturbations, and parameter values (Ouncharoen et al., 

2010). 

 

In ecological modelling, the focus of population dynamics is whether the 

unforeseen changes in the dynamics of the populations occur, and which values of 

parameters involved do occur. These changes are called bifurcations. Bifurcations also 

can be interpreted in terms of eigenvalues degeneracy. Local bifurcations involve the 

degeneracy of some eigenvalue to a small region of phase space containing the steady-

state and associated with the changes in the stability of the steady-state. In first-order 

ODEs of predator-prey systems, the qualitative characterization of the behaviours of 

solutions depends on their initial conditions and parameter. This can be done by 

finding the steady-state solutions, and then using stability analysis. 

  

The main focus of this study is to perform the bifurcation analysis of the Leslie-

Gower predator-prey model by further investigating the dynamics of three different 

predator harvesting strategies namely, (i) the constant-yield predator harvesting, (ii) 

linear harvesting, and (iii) non-linear predator harvesting strategies. This study aims 

to provide a comparative analysis of the Leslie-Gower predator-prey model on these 

three different predator harvesting strategies, analyse the dynamical bifurcation types 

that affect harvesting strategies, and provide evidence on the bifurcation analysis to 

support the most effective predator-prey model incorporating harvesting, based on 

theoretical analysis done by previous studies.  
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1.2 Problem Description 

The interaction between species such as predator-prey models play an 

important role in studying the environmental balance and the management of 

renewable sources. The harvesting strategies for the populations in predator-prey is 

important to balance the population in an ecosystem, preserve the ecological health 

system, and at the same time control the exploitation of the ecosystem. 

 

The effects of harvesting in the dynamics of the predator-prey model have 

attracted great attention from researchers for prey harvesting because it is common 

nature to harvest the prey and developed a modified model to study prey harvesting. 

Harvesting in prey affects the population of predators indirectly because it reduces the 

food population available in the area. A different point of view should be given to 

investigate and compare their dynamic behaviour when it involved different predator 

harvesting strategies to give a clear picture of real-life applications such as the impact 

of harvesting on the management of renewable resources in fishery management and 

consider harvesting at a rate less than the maximum sustainable yield (MSY) to ensure 

the risk-free environment. The MSY level is the population size that occurs at the point 

where the population is increasing at its maximum rate.  

 

1.3 Objectives of the Study 

The objectives of this study are:  

a) To provide a comprehensive summary of theoretical and numerical 

analysis results of the Leslie-Gower predator-prey model with constant-
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yield predator harvesting, linear harvesting, and nonlinear predator 

harvesting. 

b) To analyse the different predator harvesting strategies and make the 

comparative analysis in the Leslie-Gower predator-prey model that affect 

the different types of bifurcation. 

c) To corroborate the numerical bifurcation analysis with theoretical analysis 

and discuss the biological interpretation in the predator-prey model with 

different predator harvesting strategies. 

 

1.4 Significance of the Study 

The findings in this study are useful for future research in ecology especially 

in mathematical modelling because this study will give a better understanding of the 

Leslie-Gower predator-prey model with different types of predator harvesting and its 

effects on the stability of the population especially involving constant-yield predator 

harvesting, linear predator harvesting, and nonlinear predator harvesting. The 

comparative studies for different predator harvesting strategies of Leslie-Gower 

predator-prey models discussed in this study can guide new researchers to develop 

new research ideas on the dynamics of the different models.  

 

The study of the different harvesting rate use for the different predator 

harvesting strategies in the Leslie-Gower model will contribute to the research 

performed on understanding the impact of the harvesting rate on the coexistence and 

extinction between prey and predator in such scenarios which consider the exploitation 

of the predator population through harvesting. The results from both theoretical and 

numerical analysis of the models used in this study, gained through computing for the 
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steady states, determining the stability of the steady states, and checking for the 

existence of possible bifurcations in the systems will be beneficial for planning 

balanced harvesting of resources.  

 

Thus, the conclusions derived from this study can be used in the management 

of renewable resources, specifically in the field of extinction prevention as stated in 

Malaysia's Sustainable Development Goal (SDGs) to conserve and sustainably use the 

oceans, seas, and marine resources for sustainable development. Moreover, this work 

discusses the impact of the harvesting rate on predator-prey species in the ecosystem. 

Overall, it is hoped to add to the existing predator-prey model’s body of knowledge 

and fill the gap in the current literature. 

 

1.5 Outlines of the Thesis 

 

This thesis is organized into six chapters. Chapter 1 is the introduction to the 

study. In Chapter 2, the literature related to Leslie-Gower predator-prey model is 

presented. Chapter 3 outlines a detailed analysis of the model system. In Chapter 4, 

the analytical result of the Leslie-Gower model with different predator harvesting 

strategies is discussed. The numerical simulation result for bifurcation analysis of the 

Leslie-Gower predator-prey model with different predator harvesting strategies is 

presented in Chapter 5. Discussion and conclusion are presented in Chapter 6 which 

summarize our key findings. 
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CHAPTER 2  

LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, we will discuss the predator-prey model incorporating different 

types of predator harvesting strategies, namely, constant-yield, linear and nonlinear 

Michaelis-Menten type predator harvesting. Lotka-Volterra model was discovered 

independently by Alfred Lotka and by Vito Volterra (1926). The Lotka-Volterra model 

is written as 

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑥𝑦,  

𝑑𝑦

𝑑𝑡
= −𝑐𝑦 + 𝑑𝑥𝑦,               (2.1) 

where x is the population of prey at time t and y is the population of the predator at 

time t with a, b, c, and d are positive parameters. This model was derived and 

developed through the logistic equation in the theory of chemical reaction and 

observation of the fish population in the Adriatic Sea. The Lotka-Volterra model 

describes the predator population as having logistic growth but the carrying capacity 

of the predator is proportional to prey abundance, where the existence of the predator 

depends exclusively on the prey population (Leslie & Gower, 1960). Therefore, for 

this study, it was of interest to investigate one of the important predator-prey models 

which is a modification of the Lotka-Volterra model known as the Leslie-Gower 

model.  
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The Leslie-Gower predator-prey model is written by Leslie and Gower (1960), 

which is given by  

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 (1 −

𝑥

𝐾
) − 𝑎𝑥𝑦,  

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦(1 −

𝑦

𝑏𝑥
).                (2.2) 

Both 𝑟1 and 𝑟2 are intrinsic growth rates of prey and predator. The maximum value at 

which the per capita reduction rate of the prey, x is represented by a. K is the carrying 

capacity of the prey in the absence of a predator and bx is a prey-dependent carrying 

capacity for a predator. The measurement of the quality of the food for a predator is b 

which bx is proportional to prey abundance. The term 
𝑦

𝑏𝑥
 is called the Leslie-Gower 

term. If a constant is added to the term as 
𝑦

𝑏𝑥+𝑐
, then it was called the modified Leslie-

Gower term. The modified Leslie-Gower term is used to avoid the singularities when 

𝑥 = 0. 

 

In early 1972, the stability analysis of predator-prey models with their 

harvesting regimes was investigated using the Leslie-Gower predator-prey model 

(2.2). Leslie-Gower predator-prey model with prey and predator harvesting was 

proposed as in May et al. (1979): 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥(1 −

𝑥

𝐾
) − 𝑎𝑥𝑦 − 𝐻1, 

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦(1 −

𝑦

𝑏𝑥
) − 𝐻2,              (2.3) 

where 𝐻1 and 𝐻2 are the effects of harvesting for the prey and predator, respectively. 

If 𝐻1 and 𝐻2 from the system (2.3) equals zero, then the Leslie-Gower predator-prey 

model has no harvesting as in (2.2). 
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Next, there are two types of harvesting which are constant-effort harvesting 

and constant-yield harvesting have been proposed. Beddington and May (1980) 

proposed constant-effort harvesting for both predator and prey which was described 

by a linear function with constant multiplication of the size of the population under 

harvest where   𝐻1 = 𝑟1ℎ1𝑥 and 𝐻2 = 𝑟2ℎ2𝑦. Then, from Beddington and May (1980),  

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥(1 −

𝑥

𝐾
) − 𝑎𝑥𝑦 − 𝑟1ℎ1𝑥, 

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦(1 −

𝑦

𝑏𝑥
) − 𝑟2ℎ2𝑦,               (2.4) 

which can be simplified to  

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥(1 − ℎ1 −

𝑥

𝐾
) − 𝑎𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦(1 − ℎ2 −

𝑦

𝑏𝑥
).              (2.5) 

           

Later, Beddington and Cooke (1982) studied the constant-yield prey harvesting 

and constant-effort predator harvesting with 𝐻1 = ℎ1 and 𝐻2 = 𝑟2ℎ2
𝑦,  respectively. 

The constant-yield harvesting is described by a constant independent of the size of the 

population under harvest. The different type of predator-prey model with the 

harvesting rate leads to different dynamical behaviour. Thus, the model is written as 

(Beddington and Cooke (1982)) 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥(1 −

𝑥

𝐾
) − 𝑎𝑥𝑦 − ℎ1, 

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦(1 − ℎ2 −

𝑦

𝑏𝑥
).              (2.6) 

Since they found constant-yield harvesting in prey presented more dynamics for the 

population system, further research in constant-yield harvesting for both predator and 

prey has been done. They found that if the predators are in a state of heavy depletion 

the effect of the prey harvesting on predator replacement yields is not very great but 
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as predators rise to higher levels the effect becomes substantial. This model is written 

in Beddington and Cooke (1982) as 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥(1 −

𝑥

𝐾
) − 𝑎𝑥𝑦 − ℎ1, 

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦(1 −

𝑦

𝑏𝑥
) − ℎ2.              (2.7) 

 

Zhu and Lan (2010) studied constant-yield harvesting on the prey and found 

that constant-yield harvesting has more dynamic effects on the population system than 

constant-effort harvesting. The model with constant-yield prey harvesting as given by 

(Zhu and Lan (2010)) 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥(1 −

𝑥

𝐾
) − 𝑎𝑥𝑦 − ℎ1, 

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦(1 −

𝑦

𝑏𝑥
).                                (2.8) 

 

Then, Huang et al. (2013) studied the bifurcations analysis for Leslie-Gower 

predator-prey model with constant-yield predator harvesting. They found richer 

dynamics in the model which inspired them to continue their studied and analysed of 

the bifurcations with their dynamics for the constant-yield harvesting in predators. The 

constant-yield predator harvesting is written as 𝐻2 = ℎ
2
 as given by (Huang et al. 

(2013)) 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥(1 −

𝑥

𝐾
) − 𝑎𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑟2𝑦 (1 −

𝑦

𝑏𝑥
) − ℎ2.                      (2.9) 

 

Gupta et al. (2012) discussed the bifurcation analysis of a Leslie-Gower predator-prey 

model for nonlinear prey harvesting and mentioned nonlinear harvesting as more 

realistic and exhibits saturation effects concerning both the stock abundance and the 
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effort level. The Leslie-Gower predator-prey model with Michaelis-Manten type prey 

harvesting is (Gupta et al. (2012)) 

𝑑𝑥

𝑑𝑡
= [𝑟 (1 −

𝑥

𝐾
) − 𝛼𝑦 −

𝑞𝐸

𝑚1𝐸+𝑚2𝑥
] 𝑥, 

𝑑𝑦

𝑑𝑡
= {

𝑠 (1 −
𝑦

𝑛𝑥
) 𝑦, if (𝑥, 𝑦) ≠ 0        

0,                       if (𝑥, 𝑦) = (0, 0)
 ,                                       (2.10) 

where r and s are intrinsic growth rates of the prey and predators, respectively. K is 

the environmental carrying capacity for prey, α is the maximal predator per capita 

consumption rate, n is a measure of food quality that the prey provides towards the 

predator births, q is the catchability coefficient, E is the effort applied to harvest 

individuals, 𝑚1  and 𝑚2  are positive constants. Singh et al. (2016) studied the 

nonlinear predator harvesting for Leslie-Gower predator-prey model and showed more 

complex and rich dynamics when adopting a nonlinear harvesting method compared 

to the model with no harvesting and with constant-yield predator harvesting. The 

model is written as (Singh et al. (2016)) 

 
𝑑𝑥

𝑑𝑡
= 𝑟 (1 −

𝑥

𝐾
) 𝑥 − 𝑚𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= {

𝑠(1 −
𝑦

𝑛𝑥
)𝑦 −

𝑞𝐸

𝑚1𝐸+𝑚2𝑥
, if (𝑥, 𝑦) ≠ 0             

0                                      , if (𝑥, 𝑦) = (0, 0)
.                     (2.11) 

Then, Hu and Cao (2017) analysed the stability and bifurcation types in the Leslie-

Gower predator-prey model with the Michaelis-Menten nonlinear type of predator 

harvesting. Their findings revealed that the nonlinear predator harvesting type has 

richer dynamics compared to the linear harvesting and the constant-yield harvesting 

methods. 
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2.2 Predator-Prey Model with Harvesting Strategy 

 Harvesting has a strong impact on the dynamics of a predator-prey population. 

The strategy for harvesting is necessary to develop an ecological system in bio-

economics and MSY with minimum effort to protect the ecosystems and to get an 

insight into the optimal management of renewable resources. Clark (2005) studied the 

mathematical model of harvesting to interplay the economical and biological 

perspectives in renewable resource management.  

 

Hoekstra and van den Bergh (2005) studied the conservation and harvesting of 

a population dynamics model. They illustrated that several types of optimal harvesting 

solutions are possible depending on economic and ecological parameters such as the 

maximum harvesting rate, the discount rate, the cost of fishing, and the predator’s 

search and handling time of prey. The final optimal harvest rate can be constant, 

resulting in a steady-state, either with or without the predator species. Moreover, 

harvesting is an effective method to prevent and control the explosive growth of 

predators or prey. Therefore, it is essential to introduce the harvesting strategies of 

populations into models. According to Gupta et al. (2015), there are three types of 

harvesting strategies which are: 

 i)   constant harvesting, ℎ(𝑢) = ℎ, 

ii)   proportional harvesting, ℎ(𝑢) = 𝑞𝐸𝑢, and  

iii)  nonlinear harvesting (Holling type II), 
𝑞𝐸𝑢

𝑚1𝐸+𝑚2𝑢
 

where 𝑢 is the population that presents the harvesting, q is the catchability coefficient, 

E is the effort applied to harvest individual populations, and 𝑚1 , 𝑚2  are suitable 

positive constants. Constant harvesting can be described by a constant number, h of 

individuals harvested per unit of time which is independent of the size of the 
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population under harvest. Proportional harvesting means that the number of 

individuals harvested per unit of time is proportional to the current population. 

Nonlinear harvesting, which is also known as Michaelis-Menten type harvesting or 

Holling type-II function, is more realistic compared to constant harvesting and 

proportional harvesting from biological and economic points of view. It shows that the 

nonlinear harvesting function exhibits a saturation effect for both stock abundance and 

effort level.  

 

2.2.1 Predator-Prey Model with Prey Harvesting 

Harvesting of prey is common in the predator-prey model which is frequently 

used to describe the dynamic in the ecological system. If the prey is harvested, the 

predator is indirectly affected by the harvest and can go extinct if its resources are 

overexploited. The predator-prey model with constant-yield harvesting in prey was 

studied by Zhu and Lan (2010). They investigated how the harvesting rate affects the 

dynamics of Leslie-Gower predator-prey models with prey harvesting. They computed 

the Lyapunov-numbers to obtain the supercritical or subcritical Hopf bifurcation and 

limit cycles for the weak centre. 

 

The discussion on nonlinear harvesting started when Xiao and Jenning (2005) 

studied the dynamical properties of the ratio-dependent predator-prey model with 

constant prey harvesting. There are numerous kinds of bifurcations such as saddle-

node, subcritical and supercritical Hopf bifurcations, and Bogdanov-Takens 

bifurcation. They showed a limit cycle and a homoclinic or heteroclinic orbit exist at 

different parameter values. It has been shown that the nonzero constant prey harvesting 

rate prevents common extinction as a possible outcome of predator-prey interaction. 
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Rebaza (2012) studied the dynamics of prey threshold harvesting and refuge and 

showed that threshold harvesting is more efficient than using continuous harvesting. 

Gupta et al. (2013) studied a bifurcation analysis of a modified Leslie-Gower prey-

predator model in the presence of nonlinear harvesting in prey with the Michaelis-

Menten type. Then, found out that the system has up to five steady states including the 

origin and can be a saddle, nodes, focus, centres and saddle-node bifurcations. Since, 

the common nature to harvest prey, many researchers focused on the prey harvesting 

model from earlier. Avila-Vales et al. (2017) described the dynamics and bifurcations 

of the predator-prey system with a functional response of Holling type III, that 

considered a Michaelis-Menten harvesting term in the prey population. Zhang et al. 

(2018) studied the dynamics of a modified Leslie-Gower model with Holling type-IV 

functional response and nonlinear prey harvesting. They discussed the bionomical 

steady state of the model and the optimal harvesting policy that should be adopted by 

a regulatory agency. They established the stability of the limit cycle using the 

Lyapunov number around the steady states. A stable limit cycle is possible when the 

consumption of prey by the predator is bounded by some maximum value. Diza and 

Addawe (2018) used a threshold on the prey harvesting to control the harvesting done 

in the population to avoid extinction and Su (2019) studied linear harvesting and 

identified a weak focus in the prey harvesting system. The study revealed that there 

are at most three limit cycles bifurcated from Hopf bifurcation. The ongoing study of 

predator-prey models with prey harvesting keeps growing with different modifications 

of the model with their prey harvesting.  Next, we will discuss the predator-prey model 

with predator harvesting. 
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2.2.2 Predator-Prey Model with Predator Harvesting 

The predator-prey models with predator harvesting caught the researcher's 

attention after the prey harvesting. It is well-known that harvesting one species has a 

strong influence on the dynamics of the ecosystem. The most common predator 

harvesting form is a nonzero constant or a linear harvesting rate. Azar et al. (1995) 

studied the stability properties of these two harvesting strategies in a two-prey-one-

predator for Lotka-Volterra type model with predator harvesting. Their study 

contributes to a qualitative understanding of the properties of different harvesting 

strategies. They also demonstrated switching from a linear to a constant harvesting 

rate may turn a stable stationary state into a periodic or chaotic oscillatory mode from 

a mathematical perspective. However, when deciding on the constant level of 

harvesting, the instability of the constant harvest strategy calls for great care because 

the result is counter intuitive and worth exploring more in detail. Lenzini and Rebaza 

(2010) also studied two predator-prey models with linear or nonzero constant predator 

harvesting and mentioned that these two types of harvesting rates seemingly have their 

advantages and disadvantages in fitting the harvest in the real world. They reported 

that when the density of the predator or prey is rather low, the nonzero constant 

harvesting rate is not as reasonable as the proportional type, while if the predator or 

prey is abundant, the linear harvesting rate is less possible than the constant harvesting 

rate.  The predator conversion rate must exceed the sum of the death and the harvesting 

rate to exhibit interesting dynamics around the coexistence steady-state, including 

multiple bifurcations, periodic orbits, and connecting orbits.  
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The interaction between a predator and prey modelled by differential equations 

system as a logistic model for prey and a linear model for predator was studied by Li 

et al. (2016). They discussed that the model with a linear predator harvesting rate has 

either a stable steady-state or a stable limit cycle compared with more dynamics for a 

constant harvesting rate on the predator. The new predator-prey model with non-

smooth switched harvest on predator depending on the density of the predator.  

 

Huang et al. (2013) studied the effect of constant-yield predator harvesting on 

the dynamics of a Leslie-Gower type model and showed that the model has Bogdanov-

Takens singularity of codimension-three or a weak focus of multiplicity two for some 

parameter values. They have shown that as the parameters changed, the model exhibits 

saddle-node bifurcation, repelling and attracting Bogdanov-Takens bifurcations, 

supercritical and subcritical Hopf bifurcation, and degenerate Hopf bifurcations. Then, 

Gong and Huang (2014) proved the Bogdanov-Takens bifurcation for the model and 

when the different parameter values varied the model had a limit cycle or a homoclinic 

loop. Then, Song et al. (2018) studied the modified predator-prey model with 

Michaelis-Menten type predator harvesting and diffusion term. They mentioned that 

it can induce Turing instability spatially in homogenous periodic solutions. The natural 

growth rate of the prey can also affect the stability of the positive steady-state and 

induce Hopf bifurcation.  

 

2.3  Leslie-Gower Predator-Prey Model with Predator Harvesting Strategies 

An abundance of research can be found on prey harvesting techniques because 

it has rich dynamics. The predator harvesting study is also important to see their 

impacts on species interaction. Three types of predator harvesting strategies are 
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considered in this section, namely, linear, constant-yield, and nonlinear Michaelis-

Menten strategies. The Leslie-Gower predator-prey model depicts the convergence of 

asymptotic solutions to a stable steady state. The steady-state depends on the intrinsic 

factors which govern the system dynamics. It marks a significant improvement over 

the Lotka-Volterra model which is limited in its explanatory capability. 

 

Jianfeng and Zhao (2017) studied the predator-prey model with constant-yield 

prey harvesting and make a comparison with predator harvesting. They mentioned that 

Bogdanov-Takens bifurcation occurred only in the system with predator harvesting. 

Huang et al. (2016) studied the dynamical behaviour of the predator-prey model with 

constant-yield predator harvesting in which they discovered that the initial densities of 

both species need careful management in the renewable resource contexts. The critical 

harvesting value affected the predator species for all admissible initial densities of both 

species when the harvest rate is greater than the critical value, which leads to 

extinction. Their analytical study showed that when the constant-yield harvesting rate, 

h varies, the model has complex dynamics such as saddle-node bifurcation, repelling 

and attracting Bogdanov-Takens bifurcations, supercritical and subcritical Hopf 

bifurcation, and degenerate Hopf Bifurcations. Later, Huang et al. (2016) produced 

analytical proof that the model with constant-yield predator harvesting has a 

Bogdanov-Taken singularity (cusp) of codimension-three or a weak focus of 

multiplicity two for some parameter values as well as the existence of a stable 

homoclinic loop and unstable limit cycle, two limit cycles and semi-stable limit cycle. 

Su (2020) investigates Huang et al. (2013) and shows the existence of two limit cycles 

from the degenerate Hopf bifurcation.  

 



18 

 

Another harvesting strategy is nonlinear or Michaelis-Menten strategy. Singh et al. 

(2016) studied the dynamical analysis for nonlinear Michaelis-Menten predator 

harvesting of Leslie-Gower model and showed the existence of bistability for some 

parametric conditions by different kinds of bifurcations such as Bogdanov-Takens 

bifurcation and homoclinic bifurcation. Zhu and Kong (2017) found very rich 

bifurcations dynamics of the Leslie-Gower predator-prey model with Michaelis-

Menten predator harvesting and proved up to five equilibria and their dynamics such 

as topological saddles, nodes, foci, centres, saddle-nodes, cusps of codimension-two 

or three. They also proved the transcritical bifurcation, pitchfork bifurcation, 

Bogdanov-Takens bifurcation and homoclinic bifurcation. Then, Hu and Cao (2017) 

proved that Leslie-Gower model with nonlinear predator harvesting has a more 

realistic and reasonable model than the constant-yield harvesting and constant-effort 

harvesting from biological and economic points of view since it can remove some 

limitations which arise from the catch-per-unit-effort hypothesis by varying the 

parameter values. The model is written as (Hu and Cao (2017)) 

𝑑𝑥

𝑑𝑡
= 𝑟1𝑥 (1 −

𝑥

𝐾
) − 𝑎𝑥𝑦, 

𝑑𝑦

𝑑𝑡
= 𝑟2𝑥 (1 −

𝑦

𝑏𝑥
) −

𝑞𝐸𝑦

𝐶𝐸+𝑙𝑦
,                                 (2.12) 

where term 
𝑞𝐸𝑦

𝐶𝐸+𝑙𝑦
 is the Michaelis-Menten type harvesting and E, q, C and l are 

positive parameters.  

 

In-depth theoretical studies were carried out by Huang et al. (2013 and 2016) 

and Su (2020) in proving the existence of saddle-node bifurcation, Hopf bifurcation, 

and Bogdanov-Takens bifurcation for constant-yield predator harvesting strategy. In 

addition, the occurrence of limit cycles, degenerate Hopf bifurcations, and homoclinic 
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bifurcation are also discussed. Similarly, Singh et al. (2016), Hu and Cao (2017), and 

Zhu and Kong (2017) studied the Leslie-Gower predator-prey model with the 

nonlinear Michaelis-Menten harvesting strategy and proved a richer dynamic 

compared to constant-yield predator harvesting due to the existence of non-extinct 

prey population at steady-state (1, 0). The occurrence of steady-states, transcritical 

bifurcation, homoclinic bifurcation, and bistability shown in the nonlinear model have 

developed more ideas to discover the dynamical studies.  

 

Inspired by the work of Huang et al. (2013) and Hu and Cao (2017), this study 

will focus on predator harvesting for the Leslie-Gower predator-prey model with 

constant-yield harvesting and nonlinear harvesting. The linear harvesting model may 

not get much interest in the predator-prey model study. However, to see from the point 

of view of harvesting strategies, we will include linear harvesting as part of the 

harvesting strategies in the models. Therefore, in the numerical bifurcation analysis 

study, we will discuss the number of steady states, local asymptotic stability, and type 

of bifurcations for the models mentioned. The phase portrait, codimension-one, and 

codimension-two bifurcation diagrams will be illustrated graphically and verified 

according to the theoretical analysis done from previous studies. Then, different 

bifurcation types that occurred for different harvesting strategies will be analysed 

together with the effects of management renewable resources application.   
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CHAPTER 3 

RESEARCH METHODOLOGY 

 

3.1 Introduction  

In this chapter, we will discuss the methodology for this study. The model 

adopted in this study is the Leslie-Gower predator-prey model with three different 

types of predator harvesting strategies, namely, linear, constant-yield and nonlinear 

predator harvesting models. To study the dynamics of the Leslie-Gower predator-prey 

model, we need basic knowledge of the qualitative and bifurcation theory of the model. 

The behaviour of a nonlinear system can be characterised by standard steady states, 

stability, and bifurcation analysis (Strogatz, 1994). 

 

This study begins with determining the steady states to describe the behaviour 

of the predator and prey populations. It also can be found in graphical illustrations 

called nullclines in the phase plane. The stability analysis and bifurcation analysis will 

be carried out to determine the dynamic behaviour of the system. The sign of the 

eigenvalues is important to analyse the stability of the steady states which descend 

from the Jacobian matrix. The theoretical and numerical analyses of the saddle-node, 

transcritical, Hopf, degenerate Hopf, Bogdanov-Takens, and homoclinic bifurcations 

were further discussed in this study. Finally, the numerical bifurcation analysis is 

supported by the phase plane, codimension-one, and codimension-two bifurcation 

diagrams using XPPAUT and MATLAB software. 
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3.2 Steady States and Nullclines 

 Consider the system of the differential equation, 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑦),  

𝑑𝑦

𝑑𝑡
= 𝑔(𝑥, 𝑦).                (3.1) 

In ordinary differential equations (ODEs), the steady state is defined as a point that 

does not change when the functions are continuously differentiable. The steady states 

can be found by a point of intersection of x-nullcline and y-nullcline curves in the 

phase plane where the director field defined by the differential equation points in a 

particular direction. The x-nullcline is the set of points (x, y) such that 𝑓(𝑥, 𝑦) = 0 and 

the vector are either straight up or straight down. The y-nullcline is the set of points 

(𝑥, 𝑦) = 0 where 𝑔(𝑥, 𝑦) = 0 and the vectors are either to the left or to the right. The 

directions only can be changed at a steady state.  

 

To find the steady-states, we solve the simultaneous equations (by setting 
𝑑𝑥

𝑑𝑡
= 0 and  

𝑑𝑦

𝑑𝑡
= 0 in (3.1)), 

𝑓(𝑥, 𝑦) = 0, 

𝑔(𝑥, 𝑦) = 0.                (3.2)       

  

The steady states are solutions to system (3.1) that do not change over time and we 

denote them as (𝑥∗, 𝑦∗).  
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3.3 Stability 

 In a dynamical system, stability is important to predict how a dynamical system 

evolves overtime. If the model is stable, then a small variation to the parameter values 

will not change the system qualitatively. However, if the model is not stable, it may 

be susceptible to the changes in the parameter values. A steady state can be an attractor 

or repeller. An attractor means the variable is displaced and moves back to the steady 

state and is asymptotically stable, while a repeller is a variable that is moved away 

from steady states and is unstable. The trajectories cannot cross the steady states unless 

in a periodic solution.  

 

3.3.1 Stability Analysis 

 To determine the stability of system (3.1), we expand system (3.1) using Taylor 

expansion about (𝑥∗, 𝑦∗). We linearize the system near the steady-state (𝑥∗, 𝑦∗) to 

gives 

𝑑�̂�

𝑑𝑡
=

𝜕𝑓

𝜕𝑥
(𝑥∗, 𝑦∗)�̂� +

𝜕𝑓

𝜕𝑦
(𝑥∗, 𝑦∗)𝑦,̂

𝑑�̂�

𝑑𝑡
=

𝜕𝑔

𝜕𝑥
(𝑥∗, 𝑦∗)�̂� +

𝜕𝑔

𝜕𝑦
(𝑥∗, 𝑦∗)𝑦,̂

             (3.3) 

where �̂� = (𝑥 − 𝑥∗)  and �̂� = (𝑦 − 𝑦∗)  are local variables. Equation (3.3) can be 

written as  

  (

𝑑�̂�
𝑑𝑡

𝑑�̂�

𝑑𝑡

) =  𝐽(𝑥∗, 𝑦∗) (
�̂�
�̂�

)              (3.4) 

where 

   𝐽(𝑥∗, 𝑦∗) (
�̂�
�̂�

) = (

𝜕𝑓

𝜕𝑥
(𝑥∗, 𝑦∗)

𝜕𝑓

𝜕𝑦
(𝑥∗, 𝑦∗)

𝜕𝑔

𝜕𝑥
(𝑥∗, 𝑦∗)

𝜕𝑔

𝜕𝑦
(𝑥∗, 𝑦∗)

 ),           (3.5) 
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is the Jacobian matrix of the system evaluated at the steady state. Let 

𝑎11 = 
𝜕𝑓

𝜕𝑥
(𝑥∗, 𝑦∗), 𝑎12 =

𝜕𝑓

𝜕𝑦
(𝑥∗, 𝑦∗), 𝑎21 = 

𝜕𝑔

𝜕𝑥
(𝑥∗, 𝑦∗), and 𝑎22 =

𝜕𝑔

𝜕𝑦
(𝑥∗, 𝑦∗). 

Then, the determinant of J can be denoted as 

  Det  𝐽 = 𝑎11𝑎22 − 𝑎12𝑎21,                                    (3.6) 

and the trace of J is 

Tr 𝐽 = 𝑎11 + 𝑎22.                         (3.7) 

Thus, the eigenvalues of J are given by 

𝜆1,2 =
Tr𝐽±√(Tr𝐽)2−4(Det 𝐽)

2
 .                        (3.8) 

 

According to Strogatz (1994), the eigenvalues can provide explanations about 

the types and stability of a steady state. From (3.8), there are two possibilities; either 

both eigenvalues are real or they form a complex conjugate pair such that                 

𝜆1,2 = 𝑎 ± 𝑏𝑖. If the eigenvalues are real (𝑏 = 0), then  

a) in the case 𝜆1 < 0and 𝜆2 < 0, the steady-state is a stable node (see Figure 

3.1(a)), 

b) in the case 𝜆1 > 0 and 𝜆2 > 0, the steady-state is an unstable node (see Figure 

3.1(b)), 

c) in the case  𝜆1 > 0 and 𝜆2 < 0 or 𝜆1 < 0 and 𝜆2 > 0, the steady-state is a 

saddle point (see Figure 3.1(c)). 

 

However, if the eigenvalues are complex (𝑏 ≠ 0), then 

a) in the case 𝑎 < 0, the steady-state is a stable spiral (see Figure 3.2(a)), 

b) in the case 𝑎 > 0, the steady-state is an unstable spiral (see Figure 3.2(b)), 

c) in the case 𝑎 = 0, the steady-state is a neutral centre (see Figure 3.2(c)). 
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    (a): Stable node                  (b): Unstable node                (c): Saddle Point 

Figure 3.1: Phase portraits for real or distinct eigenvalues with the red dot denotes a 

stable steady state and the black dot denotes unstable steady states. 

 

 

 (a): Stable Spiral                 (b): Unstable Spiral                (c): Neutral centre      

 

Figure 3.2: Phase portraits for complex eigenvalues with the red dot denotes a stable 

steady state and the black dot denotes unstable steady states. 

 

  

3.3.2 Lyapunov Method of Stability 

In addition, the stability of the nonhyperbolic steady states can be determined 

by the Lyapunov number, 𝜎 for the steady-state at the origin. From Perko (1996), let  

𝑑𝑥

𝑑𝑡
= 𝑎𝑥 − 𝑏𝑦 + 𝑝(𝑥, 𝑦), 

𝑑𝑦

𝑑𝑡
= 𝑏𝑥 + 𝑎𝑦 + 𝑞(𝑥, 𝑦) 

with 𝑏 ≠ 0 where the power series expansions of 𝑝 and 𝑞 begin with second or higher-

degree terms. Then, the Lyapunov number for the focus at the origin is  

(x*,y*) (x*,y*) 

(x*,y*) 

(x*,y*) (x*,y*) 

(x*,y*) 


