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KAEDAH BAKI UNTUK MENYELESAIKAN PERSAMAAN PEMBEZAAN

PECAHAN DENGAN KERNEL TUNGGAL

ABSTRAK

Dalam tesis ini, kami melaksanakan dua kaedah baki untuk menyelesaikan dua ma-

salah sains dan kejuruteraan tertib pecahan yang penting. Terbitan pecahan digunakan

dalam pengertian Caputo. Atas sebab ini, kami memulakan kajian ini dengan mem-

bincangkan dan menyediakan beberapa sifat kalkulus pecahan. Kajian komprehensif

untuk teori kalkulus pecahan telah dibentangkan. Kaedah baki pertama yang digunak-

an dalam tesis ini ialah gabungan kaedah siri pecahan dan kaedah penjelmaan Laplace

pecahan. Gabungan ini digunakan untuk menyelesaikan sebuah aplikasi penting dalam

fizik iaitu persamaan gelombang resapan pecahan dengan tindak balas. Tujuan utama

kaedah ini adalah untuk menyelesaikan masalah ini secara analitik. Perlu dinyatakan

bahawa kami dapat mencari sebuah penyelesaian yang tepat dalam contoh ini. Kaedah

baki kedua ialah kaedah kolokasi yang digunakan untuk menyelesaikan aplikasi kedua

iaitu persamaan Fokker Plank pecahan. Beberapa contoh telah disiasat menggunak-

an kaedah kolokasi tersebut. Tiga ukuran ralat digunakan untuk menguji kecekapan

pendekatan ini. Ukuran ini ialah ralat maksimum, ralat min kuasa dua, dan ralat ba-

ki dan kesemuanya adalah dari tertib 10−15. Oleh kerana domain pembolehubah x

dan y are (0,∞), penjelmaan Laplace digunakan ke atas x dahulu, kemudian dengan

y. Pendekatan ini akan menghasilkan masalah nilai awal yang diwakili dalam t sahaja.

Dari situ, kaedah siri pecahan digunakan untuk menyelesaikan sistem persamaan ini.

Dua contoh dibincangkan untuk menerangkan prosedur. Keputusan menunjukkan ba-

hawa pendekatan ini adalah cekap dan boleh digunakan untuk masalah lain daripada
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jenis yang sama. Idea pendekatan ini adalah untuk menulis penyelesaian anggaran dari

segi fungsi percubaan bebas linear {ϕi}. Kita harus ambil perhatian bahawa ϕo me-

menuhi syarat awal manakala fungsi percubaan lain memenuhi syarat awal homogen.

Kemudian, baki dibina dan diortogonalkan ke atas fungsi berat. Pendekatan ini akan

menghasilkan sama ada sistem linear atau tak linear berdasarkan masalah nilai awal

pecahan. Perisian Mathematica 11.1 digunakan untuk menyelesaikan sistem ini un-

tuk mencari pekali bagi fungsi percubaan di mana {1,x,x2, . . . ,xn} digunakan sebagai

asas piawai. Keputusan yang diperolehi menunjukkan bahawa penyelesaian anggar-

an tidak bertepatan dengan penyelesaian yang tepat. Ini adalah munasabah kerana

kita tidak boleh mendapatkan penyelesaian yang tepat untuk semua masalah terutama-

nya jika penyelesaian mempunyai bentuk xα atau fungsi trigonometri. Atas sebab ini,

pendekatan kolokasi digunakan bersama-sama dengan fungsi pecahan B-spline seba-

gai fungsi percubaan untuk menyelesaikan persamaan Fokker Planck pecahan secara

analitik. Ini bermakna bahawa penyelesaian anggaran adalah sangat hampir dengan

penyelesaian yang tepat. Daripada keputusan ini, pendekatan ini dipercayai teritlak

untuk menyelesaikan masalah yang serupa.
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RESIDUAL METHODS FOR SOLVING FRACTIONAL DIFFERENTIAL

EQUATIONS WITH SINGULAR KERNELS

ABSTRACT

In this thesis, we implement two residual methods to solve two important fractional

applications in science and engineering. The fractional derivative is used in the Caputo

sense. For this reason, we start this study by discussing and providing several proper-

ties of fractional calculus. Comprehensive study for the theory of fractional calculus

are presented. The first residual method used in this thesis is a combination of frac-

tional series method and fractional Laplace transform method. This combination is

use to solve an important application in physics which is the fractional diffusion-wave

equation with a reaction. The main purpose of this method is to solve this problem

analytically. It is worth mentioning that we are able to find the exact solution in our

examples. The second residual method is the collocation method. We use it to solve the

second application which is the fractional Fokker Plank equation. Several examples are

investigated using the collocation method. Three error measures are used to test the ef-

ficiency of this approach. These measures are the maximum error, mean-square error,

and residual error and all of them are of order 10−15. Since the domains of the variables

x and y are (0,∞), the Laplace transform is applied with respect to x first, then with

respect to y. This approach will produce initial value problem represented in t only.

From there, the fractional series method is applied to solve this system of equations.

Two examples are discussed to explain the procedure. The results show that this ap-

proach is efficient and can be used for other problems from the same type. The idea of

this approach is to write the approximate solution in terms of linearly independent trial

xiv



functions {ϕi}. We should note that ϕo satisfies the initial condition while other trial

functions satisfy homogeneous initial conditions. Then, the residual is constructed and

orthogonalized with respect to the weight function. This approach will produce either

a linear or nonlinear system based on the fractional initial value problem. Mathematica

software 11.1 is used to solve this system to find the coefficients of the trial functions

whereby {1,x,x2, . . . ,xn} is used as the standard basis. Obtained results show that the

approximate solution is not coincide with the exact solution. This is reasonable since

we cannot get accurate solution for all problems especially if the solution has the form

xα or trigonometric function. For this reason, the collocation approach is used along

with the fractional B-spline functions as trial functions to solve the fractional Fokker

Planck equation analytically. This means that the approximate solution is very close to

the exact solution. From these results, this approach is believed to be generalized for

solving similar problems.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The purpose of this thesis is to utilize various analytical methods that can be used

to solve fractional differential equations. At the beginning, we combined the Laplace

transforms and series methods to solve fractional diffusion wave equations with reac-

tions. Then, we used a reliable method of solving the fractional Fokker Planck equation

based on the B-Spline method. This chapter discusses the background of the research,

problem statement and research question, scope of study, methodology, objectives, re-

search gap, and thesis outline.

It is worth to mention that we used Mathematica version 11.1.0.0 year 2017 to draw

all the graph including of this thesis.

1.2 Background

September 30th, 1695 was the born of fractional calculus with reason to a profound

problem raised by a French mathematician called L’Hospital in a letter to a German

mathematician named Leibniz. The adorable response of Leibniz to that profound

problem laminated a major inspiration for all generations of scientists and is incessant

to motivate the minds of modern researchers. Fractional calculus has maintained the

attention of best-level mathematicians for last three centuries, and over the last decade

it has been used to tackle the dynamics of complex systems from different fields of

science and engineering.
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An important point to note is that it was Abel who proposed the first application of

fractional derivatives in 1823 and further discussed by Podlubny et al. (2017). As pre-

viously described, Abel utilized fractional derivatives to fix an integral equation that

appears as an example of fractional calculus’s important applications, the tautochrone

problem is formulated. This problem shows the path along which an object must slid-

ing down along the influence of gravity regardless of its initial position. Through

fractional calculus, the solution was determined to be a part of inverted cycloid. Abel

is commonly referred to as the father of the complete framework for fractional calcu-

lus for many different reasons. As a result of the first paper, Abel introduced integrals

that are fractionally ordered that are currently known as the Riemann-Liouville frac-

tional integrals, as well as differentiation that are fractionally ordered in the form of

the Caputo fractional derivative Abel (1823).

1.3 Motivation

Recently, fractional calculus has been gaining considerable attention. Fractional

differential equations (FDEs) have been adapted as mathematical models as discussed

in Baleanu et al. (2012). Several applications for FDEs can be found in models of vis-

coelastic behavior Jha and Dasgupta (2019), anomalous diffusion Metzler and Klafter

(2000), compartment models, economics, epidemiology, dynamics of particles, biol-

ogy, and signal and image processing Matlob and Jamali (2019).

We select the fractional diffusion–wave equation with a reaction since it is defined

in the sense of the generalized diffusion, which has fractional derivative. We should

note that the diffusion process is asymmetric or stochastic, but it is determined on a

molecule scale, so a fractional modification is needed. We should also note that when

2



the derivative is of order one, this equation become a diffusion equation and when the

derivative is of order 2, it becomes wave equation. From this understanding, we are

interested to see the behavior of the problem when the derivative is fractional and the

order is in between 1 and 2.

The Fokker-Planck Equation is used in models of standard diffusion problems involv-

ing external fields. Recently, the integer order diffusion equation was generalized to a

fractional diffusion equation in which the differentiation with respect to t and x are re-

placed by differentiation of non-integer order. We notice that this equation becomes a

hot topic for researchers. This has sparked our interest to explore this equation further.

Alquran et al. (2017) used the fractional series method to solve time fractional phi-4

equation while Zada et al. (2022) used the fractional Laplace transform method to solve

the integro-differential equations. These motivate us to combine the two approaches to

solve our proposed problems to see if we could generate better results compared to the

previous works. The fractional series method with Laplace transform is the most suit-

able method for solving the fractional diffusion–wave equation with a reaction. First,

the domain of the variables x and y are (0,∞) that allows us to take the Laplace trans-

form and reduce the problem into fractional initial value problem with one variable.

Second, the fractional power rule fits properly with the new problem. Third, this ap-

proach will produce an analytical solution. Finally, this approach is very accurate and

give approximate solution close to the exact solution.

Pitolli (2018) used the collocation method with B-spline in the Predator-Prey models.

Inspired from their work, we modified the method to make it suitable to be used for

our model. Collocation method is a very powerful method to solve either integer or

fractional initial value problems. It is easy to implement, and easy to program it. We

3



initially tried to use different trial functions such as the standard basis for polynomials

of degree less than or equal . However, we were not satisfied with the results until

we see the trial function used in Pitolli (2018). This gives the motivation to adopt this

approach in our work and it turned out to be successfully applied to solve our problems.

1.4 Problem Statements and Research Questions

A substantial number of methods are available for solving different fractional dif-

ferential equations. Some of these methods are not self-starters such as multi-step

methods and some of them have low order such as one-step methods. While some of

them give low accuracy with such problem such as Adomian decomposition method.

Computational time and complexity of the method are main disadvantages to several

methods. To overcome these problems, we want to propose a combination of a few

methods that could possibly generate good results and this will be the main focus of

this research.

In this thesis, first, we illustrate a Laplace transform technique to solve fractional dif-

fusion wave equation. Secondly, we illustrate a B-Spline technique to solve the Frac-

tional Fokker Planck equation. Prior to implementing these methods, therefore, main

properties will be illustrated and discussed to ensure that they will achieve accurate

and reliable results. In our thesis, we aim to answer the following questions:

1. Does the method of B-Spline for solving the Fractional Fokker Planck equation

give us accurate and reliable results?

2. Does the method of Laplace transform in solving a class of fractional-time diffusion-

wave equation give us accurate and reliable results?

4



3. Are the proposed methods promising to solve other physical problems?

1.5 Scope of the study

The study focuses on solving fractional differential equations by using different

applicable analytical methods. We solved two different fractional differential equa-

tions. Firstly, we illustrate a analytical technique for solving a class of fractional-time

diffusion-wave equation based on Laplace transform and fractional series method.

Then, by utilizing the B-Spline method, we will solve the fractional Fokker Planck

equation analytically. We give the prove of the fractional series method. In addition,

we proved several results in the fractional derivative and fractional Laplace transform.

1.6 Objectives of the Study

Several objectives are sought by this study:

1. To find an analytical method for solving fractional diffusion-wave equation with

a reaction based on the Laplace transform and fractional series method.

2. To find a reliable method for solving the fractional Fokker Planck equation based

on the B-Spline method.

3. To investigate the efficiency of proposed methods by solving several proposed

problems.

4. To study the properties of fractional calculus and their proof.
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1.7 Methodology

With the weighted residual method, solutions to differential equations are approx-

imated by linear combinations of trial functions or shape functions with unknown co-

efficients. As a result, an error or residual is derived from the approximate solution

applied to the governing differential equation. Finally, in order to determine the un-

known coefficients, the residual is forced to disappear at average points or made to

be as small as possible depending on the weight function. A number of weighting

functions are available, and some of the most popular have been named. A system of

algebraic equations is produced by making the residual vanish over the entire solution

domain. From this perspective, the weighted residual method is promising method in

solving our problems.

Several scholars and researchers presented their own ideas on weighted residual meth-

ods. Some of the authors have tried to describe the details of the analysis of these

methods. Instead of doing detailed analysis, some authors illustrated how these meth-

ods were applied. In Lindgren (2009) paper, a weighted residual method provides

simple and accurate solutions to boundary value problems with nonlinear differen-

tial equations. B. Finlayson and Scriven (1966) provides a table about the history of

approximate methods on his research. Several weighted residual analyses were con-

ducted by B. A. Finlayson (2013) and B. Finlayson and Scriven (1966). There was a

discussion of weighted residual methods and their steps in Keskin (2019).

In this thesis, we study two problems. The first problem considers solving a class of

fractional-time diffusion-wave equation that is defined by the following, Schneider and
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Wyss (1989)

D2α
t µ(x,y, t) = a1µxx(x,y, t)+a2µyy(x,y, t)−a3µx(x,y, t) (1.1)

−a4µy(x,y, t)−a5µ(x,y, t)+θ(x,y, t),

such that

µ(x,y,0) = g1(x,y), 0 < x < ∞, 0 < y < ∞, (1.2)

µ
α
t (x,y,0) = g2(x,y), 0 < x < ∞, 0 < y < ∞, (1.3)

µ(0,y, t) = h1(y, t), 0 < y < ∞, 0 < t < T, (1.4)

µx(0,y, t) = h2(y, t), 0 < y < ∞, 0 < t < T, (1.5)

µ(x,0, t) = r1(x, t), 0 < x < ∞, 0 < t < T, (1.6)

µy(x,0, t) = r2(x, t), 0 < x < ∞, 0 < t < T, (1.7)

where 1
2 <α ≤ 1,a1,a2 > 0,a3,a4,a5 ≥ 0 are constants, and θ(x,y, t),g1(x,y),g2(x,y),

h1(y, t),h2(y, t),r1(x, t),r2(x, t) are continuous functions, and D2α is the Caputo deriva-

tives. We proposed Laplace-series method for solving this problem, Alquran et al.

(2017).

The second problem consider the following fractional Fokker Plank equation, Risken

and Voigtlaender (1984)

Dη
z Ω(y,z)+Dη

y Ω(y,z)−D2η
y Ω(y,z) = 0, (1.8)

Ω(y,0) = h(y) (1.9)
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where y,z> 0 and η ∈ (0,1]. Using collocation method, the weight function is selected

so that at n distinct points in the domain, the residual is zero. The weight function can

be used as the displaced Dirac delta function. We proposed the B-Spline method,

Pitolli (2018) to solve the this problem.

The below flowchart to describes the methods that we used to solve our problem. In

this thesis, we implement two residual methods to solve two important fractional ap-

plications in science and engineering.

Methodology

Fractional Fokker Plank EquationFractional Diffusion-Wave Equation

Laplace-series method B-Spline method

Exact solution Approximate solution with error up to 10−15

Figure 1.1: The methodologies of the thesis

1.8 Limitations

For the investigation of all types of fractional differential equations, no unique

method can be used. In this way, no matter what changes are made to a method at
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any given time, new solutions are able to be developed which are always useful. All

existing implemented methods and solutions have some limitations depending on the

issues they face. It is difficult to solve fractional differential equations when the order is

high, and in some cases, no solution can be reached. It is imperative to search for new

methods for recovering exact solutions for space-time fractional differential equations.

Fractional initial value problems are difficult to solve and sometimes not possible,

especially with the nonlinear case. For this reason, we try to choose linear problems

so that we can know the exact solution and compare with them. In addition, if the

solution has some forms such as trigonometric, it needs large computational time and

computational cost to find the approximate solutions. For this reason, we try to limit

ourselves to some doable cases.

1.9 Research Gap

Caputo derivative is non-local derivative with singular kernel. This make the study

of initial and boundary value problems are difficult. Exact solutions for such prob-

lems are not easy to compute. This make many researchers use different definitions

to avoid this difficulty. Although many researchers discussed the numerical solution

of diffusion-wave equation with a reaction and Fokker Planck equation in the integer

derivative case, we could not find reference for the fractional case. This gap in this area

encourage us to investigate such problems. It was a big challenge to us to check the ac-

curacy of our results, but we use several error measures to overcome this difficulty. By

this thesis, we hope the door will be open for the research in similar problems. Many

similar problems can be discussed now such as fractional eigenvalue problems, frac-

tional integro-differential problems, and system of fractional initial value problems.

9



1.10 Outline of the thesis

In this thesis, six chapters are presented. This first chapter describes introduc-

tion, background, motivation, problem statements and research questions, scope of the

study, objective of the study, methodology, limitation, research gap and outline of the

thesis. In chapter 2, we will study the existing research and debates related to our

study. In chapter 3, there will be a review of some basic concepts that are needed for

this study. First, some special functions are discussed, such as gamma functions and

beta functions, as well as Mittag-Leffler functions. Second, we define some important

definitions of fractional calculus and their properties. In the end, we discuss Laplace

transform and the Fokker-Plank equation.

In chapter 4, we solve a fractional Diffusion-Wave equation with reaction by using

Laplace-Series method. In chapter 5, we study a fractional Fokker-Plank equation by

using B-Spline method. The conclusion of the thesis is in chapter 6 along with possible

future research projects.
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CHAPTER 2

LITERATURE REVIEW

The purpose of this chapter is to review the existing research and debates related to

our study. In section 2.1 and 2.2 the historical development of fractional calculus will

be discussed and how fractional calculus can be applied. In section 2.3, the history

of Fokker Plank equation in its one dimension and several dimensions are going to be

studied. In section 2.4, present the history of B-spline method in solving differential

equation. In section 2.5, the method of solving Fractional Diffusion-Wave Equation is

going to be reviewed. In Section 2.6, the method of fractional series is discussed.

2.1 Historical Development

During 1695, L’Hopital, a French mathematician, asked a German mathematician

called Leibnitz to solve the following question, "If the order n = 1
2 , how can I find the

derivative for this function,

f (x) = x.”

Leibnitz’s response was "This is an apparent paradox from which, one day, useful

consequences will be drawn" Kilbas et al. (2006). By the question of L’hopital, the

fractional calculus started appearing in the world. Fractional Calculus is considered to

have been born on September 30, 1695. Many mathematicians have studied the ques-

tion of L’hopital in the following decades: Euler in 1738, Lagrange in 1772, Laplace in

1812, Lacroix in 1819, Fourier in 1822, Abel in 1826, Liouville in 1832, Riemann in

1847, Greer in 1859, Holmgren in 1865, Griinwald in 1867, Letnikov in 1868, Sonin
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in 1869, Laurent in 1884, Nekrassov in 1888, Krug in 1890, and Weyl in 1917. There

are many concepts of functional integrals and derivatives found by the mathematicians

using their own notation and methodology Aygören (2014).

In this regard, the most noteworthy achievements can be found in De Oliveira and

Tenreiro Machado (2014), based on the following:

1. To determine the derivative of positive order, Fourier proposed an integral rep-

resentation in 1822.

2. Fractional Calculus was applied for the first time in 1826 when Abel solved an

integral equation related to the tautochrone problem.

3. A formula for differentiating the exponential function was proposed by Liouville

in 1832. As far as Liouville is concerned, this is the first definition he gave. Ac-

cording to Liouville’s second definition, an integral is used instead of an integer

in order to describe the non-integer integration.

4. With the definition of derivatives, Weyl resolved a problem related with periodic

functions.

2.2 Fractional Calculus

There are more than 300 years of history behind fractional derivatives and integrals.

Scientists and engineers in the modern era realized that fractional derivatives and inte-

grals provided better processes for describing nature’s complicated phenomena. This

includes non-Brownian motion, systems identification, control, and viscoelastic mate-

rials Matlob and Jamali (2019). We can use the non-local property of the fractional

12



derivative to describe those complex systems which involve long-memory in time in a

better way. To analyze the experimental data described in a fractional way, the numer-

ical process has become an essential method Li et al. (2011). Furthermore, fractional

derivatives and integrals have a wide range of applications in engineering and sci-

ence. Electronics (Tapadar et al. (2022)), viscoelasticity (Matlob and Jamali (2019)),

fluid mechanics, electrochemistry (Magin (2004)), models of biological populations

(Ionescu et al. (2017)), optics (Yilmaz (2021)), signal processing (Assaleh and Ahmad

(2007)), quantum mechanics (Al-Raeei (2021)), electricity (Tapadar et al. (2022)), and

ecological systems (Ray et al. (2014)).

Literature reviews are used to become familiar with contemporary thinking and re-

search on a given topic. Research on the fractional calculus has been conducted over

time. Several research articles have been examined for review.

Vo and Ekpenyong (2022) described some determinations of integer-order mechani-

cal models in capturing features of compliance data from macrophages under various

clinical conditions. Using both integer order models and fractional calculus versions

in Mittag-Leffler form, Vo and Ekpenyong found that the viscoelastic parameters from

fractional Kelvin-Voigt model quantify the pharmacological interventions and matura-

tion of macrophages more strictly than integer-order models.

Yilmaz (2021) created a new type of geometric phase model with fractional deriva-

tives. Additionaly, Yilmaz introduced a magnetic curve whose direction is determined

by the electric field. For various values of the conformable fractional derivative, mod-

els that are consistent with the theory are examined and analyzed.

Furthermore, Valentim Jr et al. (2020) asked them-self if the fractional calculus can

help to improve tumor growth model, and the answer was an important article where
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it published in 2020. The article shows how to utilize a fractional approach, and stud-

ied derives analytical solutions for five of these models, whose parameters are best

matched to existing clinical data. In terms of tumor growth prediction, results show

that fractional models not only have better performance, which is mostly wanted for

decision-making in oncology, but also reveal interesting characteristics to be further

explored.

Rusyaman et al. (2020) presented a topic on the fractional relationship using a frac-

tional differential equation model applied to empirical data on surface tension and

viscosity measured in laboratory experiments on lubricating oil. The output of this

articles is "there is an empirical relationship can be expressed between surface tension

and viscosity".

Moreover, in Ibrahim et al. (2022) paper, a mathematical model based on fractional

partial differential equations was presented. The class is formulated by the proportional-

Caputo hybrid operator. In addition, some features of the geometric functions in the

unit disk are applied to define the upper bound solutions for this class of fractional

partial differential equations. The result of this article is "the model strongly devel-

ops the details of the given data sets, and could probably help the medical staff in the

meantime the diagnosis process."

In addition, Assaleh and Ahmad (2007) presented an original methodology for speech

signal modeling utilizing fractional calculus. This method differs from the celebrated

Linear Predictive Coding method, that uses integer order models. Shown by means

of mathematical reenactments by involving a couple of integrals of partial orders as

basis function, the speech signal can be modeled precisely. The modern methodology

has the value of requiring fewer model boundaries, and is shown to be better than the
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Linear Predictive Codin method in capturing the subtleties of the modeled signal.

The previous applications give us impression that fractional calculus is a hot research

topic and motivate us to look for more applications. During our search, we selected

two main problems which are fractional Fokker-Planck Equation and fractional dif-

fusion–wave equation with a reaction. These two problems will be investigated and

solved using the methods that will be introduced in the coming sections.

2.3 Fokker Plank Equation

There is a long history of studies on the theory equation of Fokker–Planck, dating

back to Einstein, Langevin, Fokker, and Planck, among many others Shahmorad et al.

(2020), Risken and Voigtlaender (1984), Hoover et al. (1980). Because of impressive

advancements in analysis and computation, plus a wide range of available applications,

the theory of the Fokker-Planck equation is exceedingly rich in content.

A wide range of scientific phenomena can be described by it, including the relation-

ship between random force and fluctuations, and non linearity in pattern formation.

The Fokker–Planck equation can be used to describe many physical, chemical, biolog-

ical, and economic systems. Numerous algorithms have been explored for numerical

solutions of the Fokker–Planck equation in modern years, see Leonenko and Phillips

(2015), Shizgal (2016).

The Fokker–Planck equation has received considerable theoretical attention in recent

years. Each of the proposed methods has its advantages and limitations, as might be ex-

pected. A number of authors have used path integral methods Bao and Shizgal (2019),

Zhang et al. (2020).

A numerical evaluation of the Onsager-Machlup-functions using a mathematical for-
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malism provided by Wehner and Wolfer, Leonenko and Phillips (2015), has been pre-

sented. Eigenvalue expansion is applicable to a wide class of Fokker–Planck operators

Shizgal (2016). The eigenvalue of Fokker–Planck equation can be solved very ac-

curately by using various spectral methods and pseudo spectral methods. When the

Fokker–Planck equation deals with a Lorentz gas system, the complete set of eigen-

values and eigenfunctions determine the dynamics completely.

The Fokker Planck Equation was named after the famous Physicists Fokker and Planck

who studied Brownian motion in a radiation field and proposed a theory of fluctuations

based on it. When small pollen grains are suspended in liquid or gas, they exhibit a

highly animated and irregular motion. Robert Brown first observed this phenomenon

in 1827 Brown (1827). Brownian motion is named after this phenomenon.

For a one-dimensional Brownian motion with a single variable x and a distribution

function W (v, t), Fokker-Planck’s equations take the form

dW
dt

=
[
− d

dx
D(1)(x)+

d2

dx2 D(2)(x)
]

W . (2.1)

The diffusion coefficient is D(2)(x)> 0, while the drift coefficient is D(1)(x). It is also

possible that drift and diffusion are time-dependent. Drift coefficients are sometimes

linear while diffusion coefficients are constant. According to mathematical literature,

equation (2.1) is a parabolic partial differential equation of order 2 and it is commonly

known as the forward Kolmogorov equation.

By using the equation (2.1), we will write it in a general form to N variables x1,x2, . . . ,xn

as

dW
dt

=
[
−

N

∑
i=1

d
dxi

D(1)
i ({x})+

N

∑
i, j=1

d2

dxi dx j
D(2)

i j ({x})
]

W . (2.2)
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Drift vector D(1)
i and diffusion tensor D(2)

i j are generally dependent on N variables

x1,x2, . . . ,xn = {x}. For N macroscopic variables {x}, such that {x} can be different

variables types such as position and velocity, the distribution function (2.2) can be de-

fined as W ({x}, t)

To understand a macroscopic system, as with Brownian motion, you would have to

solve all of its microscopic equations. Fokker-Planck equations are simply equations

of motion for fluctuations in macroscopic variables. When we use a deterministic treat-

ment, we ignore the fluctuations of the macroscopic variables. Therefore, we would

neglect the diffusion term in the Fokker-Planck equation (2.61). As a result, the differ-

ential equations (2.2), equate to the system of differential equation (i = 1,2, . . . ,N)

dxi

dt
= D(1)

i (x1, . . . ,xn) = D(1)
i ({x}), for the N macrovariables {x}. (2.3)

There are other equations of motion for distribution functions besides the Fokker-

Planck Equation. Also, there are Boltzmann equations and Master equations. For

continuous macroscopic variables, Fokker-Planck equation is the simplest equation.

These variables usually describe macroscopic but small subsystems, such as the posi-

tion and velocity of a Brownian particle in motion, the current in an electric circuit,

and the electrical field in a laser.

A larger subsystem, however, may allow the fluctuations to be neglected, resulting in

deterministic equations. A stochastic description is required for large systems in these

cases when the deterministic equations cannot be solved Jordan et al. (1998).
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2.4 B-spline

I will begin by introducing the history of the spline interpolation method. In the

late 1960s, Bickley (1968) utilized the spline interpolation method to solve differen-

tial equations. He studied second-order linear boundary value problems with arbitrary

spline functions on domains. Based on the domain chosen for the problem, the spline

function is constructed by utilizing the boundary conditions. It was believed at the time

that the results were very promising.

In 1969, Fyfe (1969) examined and discussed Bickley (1968) and Curtis and Pow-

ell (1967) cubic spline methods and error estimations. With Fyfe’s correction spline,

the solution can be adjusted more effectively. In addition, Fyfe demonstrated that

the method is less efficient for non-equal intervals using a correction spline. The

same interval spline was used to test a problem, and minimal computations were re-

quired. Deferred corrections were the least effective when applied to intervals that

were not equal. Although Fyfe claimed that this method was more efficient than Finite-

difference Methods because the spline could give approximate solutions at any point

in the interval.

In 1975, Ahlberg and Ito (1975) began utilizing B-splines to solve ordinary differential

equations. Several researchers have utilized B-splines to solve linear and nonlinear

partial differential equations because of their simplicity. For years, researchers have

developed and studied the use of B-splines in designing curves and interpolating points.

Recent studies involving B-splines for solving partial differential equations will be dis-

cussed.

Pitolli (2018), solved fractional differential problems utilizing fractional B-splines col-

location method. Essentially, the idea is to utilized noninteger degree piecewise poly-
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nomials generated by fractional B-splines as approximating space. Next, in the col-

location step, an exact differentiation rule involving the generalized finite difference

operator is applied to approximate accurately and efficiently the fractional derivative

of the approximating function. Several fractional Lotka-Volterra and predator-pray

models with variable coefficients were solved to demonstrate the effectiveness of the

technique in solving nonlinear dynamical systems of fractional order. Based on the

numerical tests, they showed that the method they proposed is accurate and low-cost

at the same time.

Lakestani et al. (2012), established the operational matrix by utilizing B-spline func-

tions of fractional derivative of degree α in the Caputo sense. Utilizing this technique

enables them to solved different problems directly since it reduces them to a system

of algebraic equations. By using this method, linear and nonlinear fractional differen-

tial equations are solved. The new technique presented in this paper is illustrated with

problems to demonstrate its validity and applicability. In their paper, the authors show

that the new approach is effective at solving the problem.

Yaseen et al. (2017), presented an approach for solving fractional sub-diffusion equa-

tions numerically based on cubic trigonometric B-spline collocations. For discretizing

the time derivative, the usual finite difference scheme is utilized. With the help of

the Grünwald–Letnikov discretization of the Riemann–Louville derivative, the cubic

trigonometric B-spline functions are utilized to approximate the second-order deriva-

tive with respect to space. They demonstrate the stability of the scheme by utilizing the

Fourier method, and they test its accuracy by applying it to a test example. Numerical

tests have verified the accuracy and efficiency of the proposed method.

Akram et al. (2022) proposed generalization of the collocation method to solve the
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time fractional Black-Scholes European option pricing model by extending cubic B-

splines. One of the key features of the strategy they used it turns problems of this kind

into algebraic equations that can be used to program computers. As a result they found,

not only are the problems simplified, but computations are also sped up. In this article,

they examined whether the scheme is stable and convergent in terms of Fourier analy-

sis. It is also proposed that a numerical scheme can be constructed with second-order

accuracy in the spatial direction. As can be seen from their numerical and graphical

results, the suggested approach for the European option prices is in good agreement

with analytical solutions.

2.5 Fractional Diffusion-Wave Equation

Two basic examples of fractional differential equations are the diffusion equation

and the wave equation. In physics, Nigmatullin (1986) introduced the fractional dif-

fusion equation for describing diffusion in porous media with fractal geometry. It has

been shown that the fractional diffusion-wave equation can more accurately model

many electromagnetic, acoustic, and mechanical universal responses. The fractional

diffusion-wave equation has been numerically analyzed by little authors, when com-

pared to considerable theoretical analysis.

Agrawal (2002) showed that the Fractional diffusion-wave equations defined in bounded

space domains that gave a general solution. In the Caputo sense, fractional time deriva-

tives are defined. An equation in the space domain is converted to a wavenumber do-

main utilized a finite sine transform. In order to reduce the equation to an algebraic

equation, they used the Laplace transform. Solutions are obtained by utilizing the in-

verse Laplace and inverse finite sine transforms. While, A Mittag-Leffler function is

20



used to express the response expressions. The solutions to the first and second deriva-

tives are ordinary diffusion and wave expressions. In order to demonstrate how they

presented the technique, two problems are provided. A fractional time derivative of

order 1
2 exhibits slow diffusion, while a fractional time derivative of order 3

2 exhibits

mixed diffusion-wave behavior.

An extension of the two-dimensional differential transform method by Momani et al.

(2007) will allow the method to be applied to diffusion-wave equations with space- and

time-fractional derivatives. Using Taylor’s generalized formula and Caputo fractional

derivatives, the new generalization is presented. With their proofs, they introduced

new theorems that were never known before. These results are illustrated with several

problems to demonstrate their effectiveness. They proved that the technique is very

effective and convenient for solving fractional order partial differential equations.

Al-Khaled and Momani (2005) generalized the partial differential equation of diffu-

sion by replacing the first order time derivative with a fractional derivative of order

α , 0 < α ≤ 2. A generalized fractional diffusion equation (diffusion-wave) is approxi-

mated using the decomposition method. Caputo sense was used in their paper to define

fractional derivatives. They found that, the decomposition methodology can be utilized

to find precise solutions to a wide range of examples. Specifically, for α = 1 and α = 2,

the general solution is reduced to the diffusion and wave solutions. Diffusion and wave

propagation are related by numerical results (when α = 3
4 ).

2.6 Fractional Series method

As can be seen in any book of analysis, power series have become fundamental

tools for studying elementary functions and other types of function. They are widely
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used in computational science to obtain approximations of functions Apostol (1991).

It has enabled scientists in Mathematics, Chemistry, and other disciplines to make ap-

proximate solutions of a wide variety of systems, while neglecting higher order terms

about equilibrium points. Utilizing this method, one can linearize a problem and ana-

lyze it easily.

Sezer and Akyüz-Daşcıogˇlu (2007) discuss a generalization of the pantograph equa-

tion, a functional differential equation that has a linear functional argument. This paper

presents an approximate solution of the pantograph equation using Taylor polynomials

for retarded and advanced cases. When the known functions in equation can be ex-

panded into Taylor series, the method has the best advantage. It is important to choose

a large truncation limit N in order to get the best approximation from the Taylor ex-

pansion of functions.

Yalçinbaş and Sezer (2000) develops a Taylor method for solving high-order linear

Volterra-Fredholm integrodifferential equations under mixed conditions in terms of

Taylor polynomials. This method has the advantage of expressing the solution as a

truncated Taylor series, and therefore, as a Taylor polynomial when x = c. As a result,

the solution y(x) at low computation effort can be calculated after the coefficients of

the series are calculated. In the paper, they prove that the method is efficiency by find-

ing an analytical solution in many examples.

Abu Arqub, Abo-Hammour, et al. (2013), present a novel analytical approach which

has been developed to solve higher-order initial value problems of ordinary differential

equations. A rapidly convergent series with easily commutable components was im-

plemented utilizing symbolic computation software to construct a series solution for

higher-order initial value problems. In the suggested method, a polynomial is utilized
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to construct an analytical solution, thereby reproducing the exact solution when the so-

lution is polynomial. To demonstrate the precision, and qualification of this technique,

they present different examples. Methods found to be effective, straightforward, and

easy were found to be very active.

Due to their complex integration-differential definition, fractional derivatives are dif-

ficult to study due to the complexity of their integro-differential formula, requiring

careful manipulation with standard integer operators. In many papers, authors utiliz-

ing series solutions to solve fractional differential equations based on fractional power

series.

Liaqat et al. (2022), modify the power series solution method to fractional order by us-

ing conformable derivatives for the solution of coupled systems of nonlinear fractional

partial differential equations. The method is known as conformable fractional power

series. The absolute errors of three examples are considered numerically to evaluate

the efficiency and consistency of the method. The recommendations have proven to be

unpretentious, accurate, valid, and capable. Compared to homotopy analysis and Ado-

mian decomposition, it has a powerful advantage in solving nonlinear complications.

Further, the residual power series method requires calculating fractional derivatives ev-

ery time the coefficients are generated, whereas this technique only requires equating

coefficients. Series solutions are also analyzed for convergence and error.

Cheng et al. (2022), examined Keller-Segel type time fractional diffusion equations

and their solutions. Based on symmetry analysis, this fractional system admits Lie

symmetries in Riemann–Liouville sense. The Erdélyi–Kober differential operator is

used to derive the power series solution based on similarity reductions. A generalized

Noether theorem is used to discuss conservation laws based on the symmetries above.
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Additionally, the invariant subspace method and the q-homotopy analysis method are

used to calculate the initial values of time fractional Keller-Segel equations in Caputo

sense.

Bayrak et al. (2022), proposed an enhanced residual power series technique for ap-

proximate solution of linear and nonlinear space-time fractional problems with Dirich-

let boundary conditions by utilizing new parameter λ . Based on this parameter, the

numerical solutions for space-time fractional differential equations can be established.

Because Dirichlet boundary conditions vary for each example, the best option of pa-

rameter λ depends on the example. As a result of this research, they have made a

major contribution. Additionally, the illustrated examples demonstrate that the best

approximate solutions are constructed for distinct values of parameter λ . Furthermore,

numerical examples demonstrate the activity and accuracy of this method.

Kumar et al. (2022), presented a method for solving non-local boundary value prob-

lems arising in chemical reactor theory based on fractional-order Lagrange polyno-

mials. They began by determining the operational matrix for integer and fractional

derivatives in the proposed numerical method. As a result of the operational matrix

and collocation at the nodal points, they obtained a system of algebraic equations that

can be readily resolved for unbeknown coefficients. A convergence analysis of the

proposed technique has also been conducted. Various numerical problems showed the

naivety of this technique and its high accuracy, even while utilizing fractional order

Lagrange polynomials.
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