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PEMBANGUNAN PERHUBUNGAN NOVEL GEOFIZIK–GEOTEKNIKAL 

PERSEKITARAN GRANITIK DI PULAU PINANG, MALAYSIA 

ABSTRAK 

Pencirian keadaan batuan tanah berhampiran permukaan adalah mencabar 

dalam rupa bumi kristal tropika disebabkan oleh geologi yang kompleks dan 

kekurangan penanda stratigrafi yang berbeza. Ciri-ciri ini boleh dipetakan secukupnya 

menggunakan perhubungan halaju-kerintangan melalui pemodelan kualiti batu-tanah 

yang dioptimumkan secara statistik, terutamanya di kawasan yang mempunyai beban 

atas <50 m. Pendekatan ini belum pernah digunakan di kawasan granitik tropika. Bagi 

mencapai matlamat penyelidikan, Pulau Pinang, Malaysia terain granitik tropika, 

dianggap sebagai kawasan yang sesuai kerana ciri-ciri batuan tanah intrinsiknya dan 

keperluan untuk menyelesaikan isu berkaitan alam sekitar. Oleh itu, penyelidikan ini 

membangunkan hubungan statistik halaju-kerintangan untuk rupa bumi granit 

berdasarkan pemodelan geotomografi yang kompleks (tomografi kerintangan elektrik 

dan tomografi biasan seismik [SRT]). Untuk tujuan ini, empat senario metodologi 

terperinci telah digunakan, memanfaatkan log lubang gerudi, penetapan kualiti batuan 

(RQD), ujian penembusan tanah (nilai N-SPT), dan analisis regresi yang diselia. 

Keputusan menunjukkan bahawa log litologi lubang gerudi berkorelasi baik dengan 

model litologi berasaskan kerintangan dan SRT di bahagian timur (Sungai Ara), 

selatan (Batu Maung), dan utara (Jelutong) Pulau Pinang. Kawasan ini dicirikan oleh 

tanah atas kelodak berpasir, pasir berkelodak kepada unit terluluhawa berpasir, unit 

terluluhawa/pecah dan batuan dasar granitik integral/segar. Penilaian kualiti batuan, 

melalui RQD berasaskan lubang gerudi, dan model RQD berasaskan SRT dan 

kerintangan, mempunyai ketepatan ramalan empirikal 95.8% hingga 100%. Nilai-N 
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SPT berasaskan lubang gerudi juga mewujudkan korelasi yang signifikan dengan 

model SRT yang diperhatikan. Akhirnya, hubungan statistik halaju-kerintangan 

berasaskan litologi bersatu mempunyai ketepatan ramalan > 85% walaupun litologi 

kawasan kajian itu rumit. Tiga perhubungan statistik halaju-rintangan berasaskan 

litologi khusus meningkatkan ketepatan ramalan kepada> 98%. Oleh itu, rangka kerja 

metodologi berbantukan statistik yang komprehensif dan perhubungan empirikal 

kerintangan halaju yang diperolehi boleh digunakan dalam terain granit tropika yang 

setanding untuk pemodelan batuan tanah berhampiran permukaan. Kebolehgunaan 

model berasaskan litologi yang diukur dan diramalkan telah disesuaikan untuk 

menyelesaikan reka bentuk infrastruktur. Berdasarkan keputusan keseluruhan, 

infrastruktur kejuruteraan harus menggunakan cerucuk yang dibenamkan, sebaiknya, 

ke batuan dasar granit yang segar dengan kedalaman antara 12–40 m. Ini disebabkan 

oleh kekuatan galas beban yang rendah bagi unit litologi yang dikaitkan dengan tanah 

liat/kelodak dan badan yang berpotensi mengandungi air. Paling penting, kajian ini 

telah merapatkan jurang antara ahli geofizik dan geo-jurutera dengan mewujudkan 

pemodelan ramalan halaju-rintangan yang baru dan kos rendah yang dioptimumkan 

secara statistik, terutamanya untuk kawasan yang luas tanpa data lubang gerudi atau 

terhad.  
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DEVELOPMENT OF NOVEL GEOPHYSICAL–GEOTECHNICAL 

RELATIONSHIPS OF GRANITIC ENVIRONMENTS IN PENANG ISLAND, 

MALAYSIA 

ABSTRACT 

The characterization of near-surface soil-rock conditions is challenging in 

tropical crystalline terrains due to complex geology and lack of distinct stratigraphic 

markers. These features can adequately be mapped using velocity-resistivity 

relationships via statistically optimized soil-rock quality modeling, especially in areas 

with overburden <50 m. The approach has not been used in tropical granitic terrains. 

To achieve the research goals, Penang Island, Malaysia; a tropical granitic terrain, was 

considered a suitable area due to its intrinsic soil-rock characteristics and the need to 

resolve environmental-related issues. This research, therefore, develops velocity-

resistivity statistical relationships for granitic terrains based on complex collocated 

geotomographic (electrical resistivity tomography and seismic refraction tomography 

[SRT]) modeling. To this end, four detailed methodological scenarios were utilized, 

leveraging borehole logs, rock quality designation (RQD), soil penetration test (SPT 

N-values), and supervised regression analysis. The results show that the borehole 

lithologic logs correlate well with resistivity- and SRT-based lithological models at 

the eastern (Sungai Ara), southern (Batu Maung), and northern (Jelutong) sections of 

Penang Island. The areas are characterized by sandy silt topsoil, silty sand to sandy 

weathered units, weathered/fractured units, and integral/fresh granitic bedrock. The 

rock quality assessment, via borehole-based RQD, and SRT- and resistivity-based 

RQD models, had empirical prediction accuracies of 95.8% to 100%. The borehole-

based SPT N-values also established significant correlations with the observed SRT 
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models. Ultimately, the unified lithology-based velocity-resistivity statistical relations 

had prediction accuracies of >85% despite the complexity of the study area’s 

lithologies. The three specific lithology-based velocity-resistivity statistical relations 

enhanced the prediction accuracy to >98%. Thus, the comprehensive statistically-

assisted methodological framework and the derived velocity-resistivity empirical 

relationships can be used in comparable tropical granitic terrains for near-surface soil-

rock modeling. The applicability of the measured and predicted lithology-based 

models was adapted to resolving infrastructure design. Based on the overall results, 

engineered infrastructure should be piled, preferably, to the fresh granitic bedrock with 

depths ranging from 12–40 m. This is due to the low load-bearing strength of the 

lithologic units attributable to clay/silt and potentially water-containing bodies. Most 

importantly, this study has bridged the gaps between geophysicists and geo-engineers 

by establishing novel, low cost statistically optimized velocity-resistivity predictive 

modeling, particularly for large aerial extents with no or limited borehole data. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Background 

In geoscience, multi-geophysical imaging, powerful data inversions, and 

analytical methods are increasingly important. This field of science uses cutting-edge 

surveying, inversion, supervised and unsupervised machine learning, and statistical 

techniques (especially regression) for data- and image-driven analyses (Meju et al., 

2003; Gallardo & Meju, 2007; Bery & Saad, 2012a, 2012b; Merritt, 2014; Merritt et 

al., 2014; Meju & Gallardo, 2016; Hasan et al., 2017, 2018, 2020a, 2020b, 2021a). All 

these powerful problem-solving approaches can be employed for all geophysical 

methods. Indirect and direct geophysical methods, particularly seismic and electrical 

methods, are often used to measure the physical and geomechanical properties of 

surficial and subsurface geology at different spatial and temporal scales (Budetta et al., 

2001; Cardarelli & Di Filippo, 2009; Kalantary et al., 2009; Olayanju et al., 2017; 

Rønning et al., 2019; Adiat et al., 2020; Suzuki et al., 2021; Hasan et al., 2022a). 

The possibility of achieving accurate predictions of geologic characteristics 

requires detailed multidimensional geophysical inversion modeling. However, the use 

of diverse geophysical datasets from related and unrelated physical events is a major 

challenge (Sivrikaya & Toğrol, 2006; Bery, 2016a, 2016b; Rymarczyk et al., 2019, 

2021; Hasan & Shang, 2022). This matters because of the contrasts in measured 

parameters, model complexities, and model uncertainties, among others (Reynolds, 

1997; Gallardo & Meju, 2007, 2011). To this end, selecting appropriate geophysical 

methods with the right imaging spacings is pertinent for improved subsurface 

geological investigations, particularly in exploration/environmental studies, 

infrastructure design, subsurface simulations, etc. These are highly essential in 
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improving data resolution, signal-to-noise ratio, project turnaround time and cost 

implications, and overall production results (Barton, 2006; Griffith & King, 2011; 

Kumar et al., 2016; Hasan et al., 2022a; Hasan & Shang, 2022). Seismic refraction and 

electrical resistivity techniques have so far contributed significantly to the above 

advantages, particularly in near-surface and relatively deep crustal studies. 

Traditionally, the seismic P-wave velocity (𝑉𝑝) and electrical resistivity (𝜌) models can 

be diagnostic independently. However, their improved techniques, i.e., seismic 

refraction tomography (SRT) and electrical resistivity tomography (ERT), provide 

detailed and reliable surficial to subsurface soil-rock features, both laterally and 

vertically nowadays (Quigley, 2006; Loke et al., 2013; Dahlin & Wisén, 2018; 

Ronczka et al., 2018; Akingboye et al., 2022). 

In recent years, SRT has become more popular for two-dimensional (2-D) 

subsurface crustal investigations. It effectively delineates weathered layers, water 

tables, bedrock structures, and soil-rock interfaces as well as for correcting structure-

related problems in reflection models. It is also used indirectly to determine rock mass 

rippability or rock mass quality (RMQ) (El-Naqa, 1996; Hoek & Brown, 1997; 

Hashemi et al., 2010; Ismail et al., 2018a; Zhang et al., 2019; Jug et al., 2020; Gottron 

& Henk, 2021). The three- and four-dimensional (3-D and 4-D) SRT surveys are still 

in the initial research stages (Lin et al., 2015). Defining specific lithologies is 

challenging via SRT due to masked zone, overburden of less than 50 m, hidden layers 

(i.e., a layer of low velocity beneath a high-velocity layer), and sections with water 

infills (Quigley, 2006; Bery, 2013; Hiltunen et al., 2007; Akingboye & Ogunyele, 

2019). These issues can result in the inaccurate delineation of the near-surface soil-

rock profiles and formation architecture. The problems can be annulled by using 

additional complementary methods. ERT, one of the best complementary techniques, 
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can adequately compensate for the limitations of the seismic refraction method. The 

integration of both methods provides adequate aids in mapping discrete soil profiles, 

rock boulders (floaters), caverns, karst voids, pollution plumes, and air- and water-

filled voids, among others (Barton, 2006; Ronczka et al., 2017, 2018; Cheng et al., 

2019; Zhao et al., 2019; Christensen et al., 2020). 

ERT is a versatile noninvasive technique with a wide range of resistivity values 

due to the coexisting relationships between varying subsurface lithologies and 

resistivities. The technique can be used effectively at the earth's surface, in boreholes 

(or cross-holes), and at the surface and bottom of streams/rivers (Dahlin, 1996; Bery 

& Saad, 2012b; Ganerød et al., 2006; Loke et al., 2013; Akingboye et al., 2022). Due 

to the technique’s field data acquisition speed with low-cost surveying design, 

especially in 3-D ERT surveys, it has been widely adopted in small and large-scale 

investigations (Nordiana et al., 2013; Dahlin & Loke, 2018; Cheng et al., 2019; Hung 

et al., 2019, 2020; Akingboye et al., 2022). A 4-D ERT survey (or time-lapse ERT) 

now provides more desired information on complex terrains and spatiotemporal 

water/moisture changes by measuring resistivity variations over days, weeks, months, 

or years (Barker & Moore, 1998; Merritt, 2014; Bery, 2016b; Alamry et al., 2017; De 

Carlo et al., 2020; Bièvre et al., 2021; Loke et al., 2022). Nevertheless, the ambiguities 

in geological interpretations put the ERT technique to the test. For instance, increasing 

ion concentration in water-saturated or clay-rich sandy formations can produce a low 

resistivity anomalous feature. In addition, lithological characteristics, pore fluid 

chemistry, void spaces, and other factors impact resistivity response. Thus, measured 

chargeability from the induced polarization (IP) survey (Slater et al., 2000; Slater & 

Lesmes, 2002; Slater & Glaser, 2003; Binley & Kemna, 2005; Rey et al., 2020) and 

borehole-derived soil-rock logs, rock quality designation (RQD), and in situ soil 
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penetration tests (SPT N-values) can settle these uncertainties (Braga et al., 1999; 

Sivrikaya & Toğrol, 2006; Kumar et al., 2016; Hasan & Shang, 2022). The 

relationships between velocity and resistivity (here-in-after referred to as velocity-

resistivity) data with any of the above uncertainty-resolving techniques can provide 

more robust and detailed soil-rock information than their independent models. 

Interestingly, discussions on velocity-resistivity relationships in geosciences 

and other related fields are currently underway to provide a fundamental law 

connecting velocity and resistivity parameters. Thus far, the interpretations of 

velocity-resistivity relationships have been based on interpolated (or co-analyzed) 2-

D modeling with statistical/numerical analysis, e.g., (Meju et al., 2003; Colombo et 

al., 2008a; Meju & Gallardo, 2016; Ronczka et al., 2017; Zeng et al., 2018). However, 

the 3-D statistical modeling approach is still evolving. The collocation of seismic 

velocity and resistivity models is becoming commonplace for developing robust 

analytical inversion and interpretation schemes in subsurface characterization (Meju 

et al., 2003; Gallardo, 2004; Gallardo & Meju, 2003, 2007; Gunther et al., 2006; Zeng 

et al., 2018). Soil-rock porosity is a typical assumption aiding velocity-resistivity 

relationships as an effective geophysical analytical tool. This property considerably 

influences compressional velocities and conductivities due to soil-rock matrix fraction 

against fluid (Meju et al., 2003; Gunther et al., 2006; Gallardo, 2007; Gallardo & Meju, 

2003, 2007, 2011; Yoon & Lee, 2010; Bery & Saad, 2012b; Lee & Yoon, 2015; Meju 

& Gallardo, 2016; Ronczka et al., 2017, 2018). 

Most importantly, the information derived from RQD and SPT N-values via 

borehole geotechnical tests is critical in understanding soil-rock conditions and their 

architectures. These parameters are key in the collocation or simultaneous joint 
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inversion of seismic velocity and resistivity datasets. RQD and N-value models offer 

the spatial determination of soil-rock integrity, soil strength, rock fractures, water- or 

soil-filled zones, etc (Ramamurthy, 2004; Barton, 2006; Butchibabu et al., 2017; Pells 

et al., 2017; Hasan et al., 2021b, 2022a;). The soil-rock integrity procedures will 

significantly improve the measured and predicted models from velocity-resistivity 

relationships to accurately delineate lithology, pore fluids, rock fracturing spatial 

variation, hidden thin velocity layers, and environmental-related issues in this 

research. However, previous researchers have not experimented with the soil-rock 

quality approach in developing velocity-resistivity statistical relations. This is because 

it is challenging to determine physical, geomechanical, and hydrogeological 

characteristics from conventional borehole drilling tests due to cost implications for 

large aerial extent (Bery & Saad, 2012a; Akingboye & Ogunyele, 2019; Hasan et al., 

2020b, 2022a). 

Consequently, the study area (Penang Island, Malaysia) is an ideal geological 

setting for evaluating this hypothesis and developing novel velocity-resistivity 

statistical relationships for tropical granitic terrains. Despite the enormous benefits of 

velocity-resistivity relationships in some terrains, e.g., (Colombo et al., 2008b; Meju 

et al., 2003; Meju & Gallardo, 2016; Zeng et al., 2018), researchers are yet to adopt 

this problem-solving technique in tropical granitic terrains, especially Penang Island, 

Malaysia. In addition, no definitive velocity-resistivity statistical relationships have 

been developed. However, SRT and ERT have been used to evaluate the properties of 

granitic rocks, e.g., (Zhao et al., 1994; Olona et al., 2010; Bery & Saad, 2012b; 

Balarabe & Bery, 2021; Balarabe et al., 2022). This research is, therefore, the next step 

in improving soil-rock characterization using a novel approach that integrates 

lithology-based borehole tests, complex collocated velocity-resistivity technique, and 
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supervised regression modeling. The first criteria used to achieve the velocity-

resistivity relationships were borehole-derived logs, RQD, and SPT N-value data of 

the complex near-surface lithologic units. These, including predicted velocity models, 

were also used to assess the study area’s spatial surficial and subsurface soil-rock 

conditions on a large scale. This novel study is the first of its kind in Penang and, most 

notably, in tropical granitic terrains. 

In contrast to earlier researchers, the complex collocated velocity-resistivity 

modeling approach for this study used dual spacings with a slight difference in station 

intervals. This is envisaged to make the empirical relationships developed work 

effectively for models of different station spacing scenarios. A complete 

methodological framework that includes simultaneous velocity-resistivity inversion 

and supervised regression workflows to achieve robust and accurate statistical 

relationships for effective use in granitic terrains, was also developed. This research 

also leveraged various statistical techniques to verify the accuracy of the derived 

empirical relations as well as measured and predicted models. The research findings 

adequately define the physical, hydrogeological, and geomechanical of the study 

area’s soil-rock conditions to mitigate environmental issues, particularly infrastructure 

design. This research will bridge the gap between geophysicists and geo-engineers 

(and hydrogeologists) by offering novel, low cost statistical-assisted geophysical-

geoengineering techniques for optimizing soil-rock characterization in tropical 

granitic terrains, particularly areas with an overburden of less than 50 m and places 

borehole data are limited or unavailable. 
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1.2 Problem Statement 

The characterization of surficial and subsurface soil-rock conditions in tropical 

crystalline basement terrains is challenging due to varying weathering conditions, 

localized structures, and the absence of distinctive stratigraphic markers (Bery & Saad, 

2012a, 2012b; Lee et al., 2021; Hasan et al., 2022a, 2022b, 2022c). As a result, 

geoscientists and related disciplines have used cutting-edge geophysical and inversion 

(with optimized analytical) techniques to resolve such problems. This is because 

noninvasive geophysics provides volumetric subsurface measurements with no 

disruption (Chambers et al., 2006; Naudet et al., 2008; Maślakowski et al., 2014; 

Loperte et al., 2016; Osinowo & Falufosi, 2018; Cheng et al., 2019; Christensen, 

2022). However, detailed and predictive geophysical modeling approaches are 

required for dense, detailed soil-rock characterization, e.g., (Gallardo & Meju, 2003; 

Colombo et al., 2010), particularly in the study area. 

Resolving soil-rock-related environmental issues requires a broad knowledge 

of the surface-to-subsurface geologic conditions via an integrated novel approach 

rather than relying on previous piecemeal research in the study area and its environs, 

e.g., (Bery & Saad, 2012a; Ismail et al., 2018a, 2018b; Aziman et al., 2019; Balarabe 

& Bery, 2021; Salleh et al., 2021; Zakaria et al., 2021, 2022; Balarabe et al., 2022). 

Despite the benefits of ERT and SRT with statistical relationships, e.g., (Marquis & 

Hyndman, 1991, 1992; Gallardo & Meju, 2007; Zeng et al., 2018), co-analyzing both 

parameters via empirical relations has not been practicalized in tropical granitic 

terrains, particularly the study area. As this is a complex modeling procedure that 

requires high expertise to prevent net loss of data and also to derive a high prediction 

accuracy for modeled soil-rock conditions, most especially in areas with overburden 

<50 m. Hence, a need for complex collocated velocity-resistivity modeling using 
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proven geophysical station intervals (or spacings) and effective statistical analyses to 

fully address varied soil-rock conditions. This predictive modeling approach is 

achievable typically based on the assumption that velocity-resistivity relationships are 

a porosity factor in noninvasive subsurface investigations (Eberhart-Phillips et al., 

1995; Meju et al., 2003; Gallardo & Meju, 2003, 2007; Zeng et al., 2018). 

Furthermore, the independent correlation of 𝑉𝑝 with RQD (Barton, 2006; 

Griffith & King, 2011; Bery & Saad, 2012a; Abzalov, 2016) and N-values (Hasancebi 

& Ulusay, 2007; Akin et al., 2011; Kumar et al., 2016; Alkhamaiseh et al., 2018), and 

the correlation of 𝜌 with RQD (Hasan et al., 2021b; 2022a, 2022b) can provide 

standardized parametric geotechnical results for areas with few or no borehole data 

and in highly steep regions where borehole drilling is impossible (Ramamurthy, 2004; 

Sivrikaya & Toğrol, 2006; Bery & Saad, 2012a; Kumar et al., 2016; Lin et al., 2017; 

Salaamah et al., 2019). These soil-rock parametric factors derivable from empirical 

relations, especially 𝜌 with RQD, are yet to be deduced for tropical granitic terrains. 

Given the above, Penang Island, the preferred study area to demonstrate and 

develop the objectives of this research, is a small area in Malaysia with a typical wet 

tropical climate having high annual rainfall and sun intensity. The seasonal variations 

of these tropical climates and other geologic activities have aided the progressive 

weathering of rock minerals, resulting in varying complex soil-rock profiles with 

locations (Bery et al., 2011; Bery, 2016a). As a result, the study area’s small landmass 

is much sought after for urbanization. Increased industrialization activities and the 

growth of other economic sectors have currently led people to build high-rise 

structures, with many projects to be executed in the future on the island. Lack of proper 

soil-rock characterization in the study area could cause structural failure arising from 
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ignorance of geological uncertainties in foundation rocks (Habibu & Lim, 2016; Ismail 

et al., 2018a; Lee et al., 2021; Salleh et al., 2021; Zakaria et al., 2021). Therefore, co-

analyzing velocity-resistivity optimized models and engineering data (RQD and SPT 

N-values) is a giant leap forward in resolving this problem and other soil-rock-related 

environmental issues. This will accurately improve the 2-D/3-D modeling and 

delineation of physical, geomechanical, and hydrogeological features over a large 

aerial extent in the study area and places with similar geology. 

1.3 Research Justification 

The non-existence of a fundamental law for velocity-resistivity data/models 

have stirred the interests of many researchers to provide correlations from their 

simultaneous/joint inversion, modeling, or statistical data clustering/relationships, 

e.g., (Opfer, 2003; Colombo & De Stefano, 2007; Colombo et al., 2008a, 2008b, 2010; 

Muñoz et al., 2010). Also, due to the lack of effective theoretical correlation 

formulations between in situ geotechnical tests and soil engineering parameters 

coupled with the costs of borehole drilling, the only credible approach to determining 

spatial soil-rock integrity is by developing empirical relations. This is effective for co-

analyzing RQD and N-values with 𝑉𝑝 and 𝜌 via statistical (regression) analyses, e.g., 

(Sivrikaya & Toğrol, 2006; Kalantary et al., 2009; Bery & Saad, 2012a; Kumar et al., 

2016). These techniques can offer robust 2-D/3-D models of the near-surface, 

providing a detailed understanding of soil-rock variability and their interfaces to 

mitigate infrastructure failure, landslides, soil liquefaction, groundwater deficit, etc 

(Kalantary et al., 2009; Bery & Saad, 2012a; Priya & Dodagoudar, 2015; Syukri, 2020; 

Hasan et al., 2022a). Similarly, velocity-resistivity relationships have been applied to 

geologic conditions, such as dry, wet, frozen, and thawed conditions, as well as in 
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some sedimentary and crystalline basement terrains. The resulting empirical trends 

related to porosity, water saturation, sand-filled fractures, and subsurface geologic 

boundaries have also been evaluated (Marquis & Hyndman, 1992; Gallardo & Meju, 

2003, 2004, 2007; Gunther et al., 2006; Yao et al., 2017). 

Logically, supposedly that geotechnical approaches and velocity-resistivity 

statistical modeling and prediction could address environmental problems in terrains 

where they were employed. In that case, these techniques with optimized statistical 

analyses and empirical predictive modeling should also be effective in granitic terrains. 

Therefore, the need to develop this problem-solving statistically optimized 

geophysical techniques in a typical granitic terrain in the tropics. The developed 

statistically-assisted velocity-resistivity relationships will help reduce the uncertainties 

for the successful construction of infrastructure and mitigation of ground-induced 

failure in the study area and other terrains with the same geologic characteristics. 

Overall, it will drastically reduce the high costs of drilling boreholes, ambiguities in 

geological model interpretation, and laborious field exercises for reliable 

determination of soil-rock conditions, thereby giving relief to geoscientists. Also, since 

the techniques are fast, cost-effective, and have a wide range of values to characterize 

subsurface geologic features, the research novel approach will adequately resolve soil-

rock-related environmental issues.(Kuras et al., 2016; Dahlin & Loke, 2018; Ronczka 

et al., 2018; Akingboye & Ogunyele, 2019; Aziz et al., 2019; Holmes et al., 

2020;Balarabe et al., 2022). 
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1.4 Research Objectives 

The specific objectives of the research are: 

i. to develop effective lithology-based statistical relationships for 𝑉𝑝 and 𝜌 

with RQD and SPT N-values for granitic terrains; 

ii. to develop robust statistically-assisted geophysical workflows and 

empirical relations for co-analyzing 𝑉𝑝 and 𝜌 via complex collocated 

modeling with optimized linear regression analyses, and 

iii. to evaluate and define the range of 𝑉𝑝 and 𝜌 for the surficial to subsurface 

soil-rock units based on SRT and ERT models and objectives (i) – (ii). 

1.5 Research Questions 

The following research questions are intended to be answered as they serve as 

motivation for this research: 

i. Which geotomographic approach between ERT and SRT provides the best 

soil-rock characterization models in tropical granitic terrains? 

ii. Can the performance of tomographic methods be improved to increase the 

resolution and quality of measured velocity and resistivity data for the same 

coincident model grids or pixels? 

iii. Are there any statistical correlations between 𝑉𝑝 and 𝜌 of subsurface 

lithological distributions in granitic terrains? 
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iv. Are the delineated velocity-resistivity trends in this study consistent with 

those obtained in different geological terrains/conditions? If not, what 

could have caused the variation? 

v. Do the lithology-based empirically derived models outperform their 

measured models, and are they efficient in accurately predicting and 

offering problem-solving subsurface information? 

1.6 Scope of the Study 

The scope of this research focuses on the development of velocity-resistivity 

geostatistical relationships for effective surficial and subsurface soil-rock 

characterization in complex tropical granitic terrains. To successfully achieve this, 

combined detailed soil-rock quality (RQD and SPT N-value) modeling, complex 

collocated 𝑉𝑝 and 𝜌 modeling, and the optimization power of supervised regression 

analysis, were used. To achieve the research goals, Penang Island in Malaysia; a 

tropical granitic terrain, was considered a suitable area due to its intrinsic soil-rock 

characteristics and the need to resolve environmental-related issues. Three sites: two 

(Sites 1 and 3) in the North Penang Pluton and one (Site 2) in the South Penang Pluton, 

will be investigated to design and achieve the research objectives. 

For potential results optimization, this study is segmented into stages: 1) 

reconnaissance surveys and performance assessment of used geotomographic 

electrodes; 2) detailed field geophysical (ERT and SRT) and geotechnical (RQD and 

SPT N-value) surveys; 3) detailed geophysical data inversions, soil-rock quality 

modeling, and complex collocation and development of velocity-resistivity 

geostatistical relationships; and 4) statistical optimization of soil-rock quality and 

velocity-resistivity relationships as well as assessing their performances in soil-rock 
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modeling and prediction. This will overall help assess the impacts of the delineated 

lithologies and geohydrodynamic-controlled structures from the derived and predicted 

models on infrastructure design. 

While this research aims to provide the above-mentioned valuable insights in 

tropical granitic terrains, it does not cover other environmental problems such as 

groundwater modeling and landslide occurrence determination as well as other 

crystalline basement or sedimentary terrins and deep crustal investigations in excess 

of several hundreds of meters and kilometers. Additionally, the study will not delve 

into evaluating the accuracy and performances of the developed statistically optimized 

soil-rock and velocity-resistivity relationships outside the terrain of Penang Island. 

This is due to the choice of rock type and, most especially, the cost implication. 

The research findings can contribute to the existing literature on characterizing 

complex near-surface soil-rock conditions and qualities, as well as developing 

statistically optimized velocity-resistivity relationships in tropical granitic terrains. 

However, the generalization of results beyond the specified statistical-assisted soil-

rock methodological framework and the geographical area should be approached with 

caution. 

1.7 Motivation of the Study 

The desire for more efficient and adaptive statistically optimized data- and 

image-based geophysical models are evolving to solve environmental issues. 

However, these methods are site-specific and function admirably in different terrains. 

The importance of electrical resistivity and seismic refraction methods in subsurface 

crustal studies is enormous. In terms of near-surface field data acquisition and data 

inversion processes, both SRT and ERT are easy to perform and modify to solve many 
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environmental problems. In addition, the methods are cost-effective and rapid to 

achieve the expected project plan’s turnaround time as well as produce quality results 

with a higher success rate for soil-rock definition. 

As previously stated, borehole geotechnical tests for soil-rock quality require 

heavy equipment with high costs and cannot be deployed on steep terrains. Hence, 

spatial variability of soil-rock conditions and quality can be predicted from effective 

empirical relations of 𝑉𝑝 and 𝜌 with RQD or N-values. Similarly, the velocity-

resistivity relationships have been employed to tackle geophysical problems under 

different geologic conditions. If such an approach were effectively utilized in some 

areas, its statistically optimized relationships could be adaptive in granitic terrains. 

Determining soil-rock parameters in granitic terrains with high accuracy via the 

approach will be a significant accomplishment in environmental studies. 

The chosen study area (Penang Island, Malaysia) has all of the required 

surficial and subsurface soil-rock characteristics for a typical tropical climate region. 

The proximity of study sites regarding research timeframe, availability of borehole 

data, cost of deploying field equipment and personnel, nature of the geological terrain, 

and success stories from previous studies on various environmental problems all 

played a significant role in the study location selection. 

1.8 Thesis Layout 

Chapter 1 presents the research background, focusing on the broad relevance 

of velocity-resistivity relationships in subsurface characterization. The section also 

highlighted the advantages and disadvantages of ERT and SRT, the fundamental 

constraints in developing velocity-resistivity relations, and their independent 

correlations with RQD and N-values. The statement of the problem, justification, 
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specific objectives, scope, and motivation of the research, including research 

questions, for developing velocity-resistivity statistical relationships in granitic 

environments were also explicitly highlighted. 

In Chapter 2, detailed literature reviews on ERT, SRT, soil-rock qualities 

(RQD and SPT N-values), and velocity-resistivity statistical formulations and 

relationships to support the background of the study were presented. Benefits and gaps 

in previously reviewed studies were emphasized. Therefore, to achieve the study’s 

objectives and highlight the novelty and contributions of the research, this study is 

designed on the identified gaps. 

Chapter 3 presents extensive and detailed discussions on the location, 

geography, relief, and regional and local geology of the study area. Concise, yet 

adequate, elucidation on the employed methods (𝑉𝑝, 𝜌, RQD, and SPT N-values), and 

the development of a complete methodological, velocity-resistivity inversion, and 

supervised regression workflows are also presented. The formulation and collocation 

of 𝑉𝑝 and 𝜌 mesh models, the development of empirical relations for 𝑉𝑝 and 𝜌 with 

RQD and SPT N-values, as well as velocity-resistivity statistical relationships for 

granitic terrains, are also presented in this chapter. 

The research results and their detailed discussions are presented in Chapter 4. 

The chapter also explicitly presents the novelties of the research and their overall 

contribution to existing knowledge. The limitation of the research is also highlighted. 

Chapter 5 presents the study’s conclusions and recommendations for future 

research. 
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CHAPTER 2  
 

LITERATURE REVIEW 

2.1 Introduction 

This section reviews previous works on electrical resistivity and seismic 

refraction techniques in near-surface crustal studies. Reviews on the theories and 

principles influencing electrical resistivity (or conductivity) and seismic refraction as 

well as their general applications are presented. In addition, the statistical relationships 

between these two geophysical parameters, which can also be referred to as velocity-

resistivity statistical relationships, in different terrains, and under different geologic 

conditions, are also reviewed. The reviews aim to identify gaps in previous studies. 

This way, the relevance and the novelties of the proposed research study will be helpful 

as inputs for designing problem-solving methodologies (preliminary and detailed field 

data gathering techniques, data processing, efficient statistical analyses, and modeling) 

and interpreting the research results. 

2.2 An Overview of Electrical Resistivity Methods 

Since the early 1920s until the late 1980s, the electrical resistivity method 

(ERM) has been the primary and most widely utilized 1D imaging technique (Griffiths 

et al., 1990; Aizebeokhai, 2010). The 1-D is a single probing method and as such is 

insufficient in resolving complex subsurface geology considerably. Over the years, the 

field of electrical resistivity imaging has significantly improved to provide 2-, 3-, and 

4-D subsurface crustal models. 

Natural fields within the earth and artificially generated currents injected into 

the earth’s formation are used in electrical surveying methods. ERM provides the 
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apparent resistivity, 𝜌𝑎, (or conductivity 𝜎) of surficial and underlying crustal 

materials and water-saturating fills via artificially generated current (Loke et al., 2013; 

Ronczka et al., 2017). Two current electrodes are used to inject electrical current into 

the subsurface, and another two electrodes measure the resulting potential difference 

(voltage). This allows for the calculation of 𝜌𝑎, taking into account the resistance for 

a precise measurement of a homogenous layer. Since increasing separation leads to 

greater depth penetration, the field-measured apparent resistivity is used to produce a 

composite resistivity image (consisting of the measured and calculated apparent 

resistivity pseudosections and inverse model resistivity section) of near-surface soil-

rock conditions for the area investigated. As a result, the generated inverse model 

resistivity section displays the variations in resistivity responses associated with 

subsurface lateral and vertical soil-rock profiles with their interfaces (or boundary 

conditions) and structures, as well as delineating water- and air-filled sections, 

boulders, and cavities (Crook et al., 2008; Akingboye & Ogunyele, 2019; Binley & 

Slater, 2020). Apart from the highlighted applicability of ERM, the method has 

numerous benefits in near-surface crustal investigations. 

2.2.1 Theories and Principles of Electrical Resistivity Methods 

Ohm’s law governs the link between electrical resistivity, current, and 

potential. The potential difference is determined for a point current source at 𝑥𝑐 in a 

continuous medium based on two theories: Ohm’s law and Poisson’s equation for 

current conservation (Telford et al., 1990; Loke et al., 2013). The combined expression 

given in Equation 2.1 can be simplified as the fundamental principle on which the 

resistivity data acquisition and interpretation depend. 
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Figure 2.1 (a) A single-point source electrode with electric flow current in the 

subsurface. (b) A schematic fundamental diagram of a four-electrode resistivity 

measurement at the earth’s surface and the subsurface distribution of the generated 

current flow. 

 

∇. [
1

𝜌(𝑥,𝑦,𝑧)
∇Φ𝜓(𝑥, 𝑦, 𝑧)] = −

𝜕𝐽

𝜕𝑡
𝜕𝑥𝑐     (2.1) 

Where 𝜌 is the resistivity, Φ is the potential, and 𝐽 is the current density. 

Taking the earth as a hemispherical shell with a uniform 𝜌 from a single 

grounded current electrode (Figure 2.1a), the current flows radially into the subsurface. 

This allows a uniform current distribution. The hemispherical shell then has a surface 

area of 𝐴 = 2𝜋𝑟2 at a distance 𝑟 from the electrode to give the current density (𝐽), as 

given in Equation 2.2. 

𝐽 =
𝐼

𝐴
=

𝐼

2𝜋𝑟2        (2.2) 

The charge density can also be given as  𝐽 =
𝐸

𝜌
; 

Where 𝐸 = −∇𝑉       (2.3) 

E is referred to as the electric field or the gradient of a scalar potential. 

Hence, the potential gradient associated with the current density (𝐽) is given as: 
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∇Φ = −𝜌𝐽 = −
𝜌𝐼

2𝜋𝑟2       (2.4) 

The potential is obtained through the integration of the following: 

𝑉 = ∫ ∇Φ = − ∫
𝜌𝐼𝜕𝑟

2𝜋𝑟2 =
𝜌𝐼

2𝜋𝑟
      (2.5) 

The general equation for a four-electrode resistivity measurement in terms of 

apparent resistivity and potential difference (∆𝑉), as shown in Figure 2.1b, is given by 

Equation 2.6. The potential 𝑉𝑀 at an internal electrode M is the sum of the potential 

contributions 𝑉𝐴 and 𝑉𝐵 from the current source at 𝐴 and the sink at point 𝐵. 

𝑉𝑀 =  𝑉𝐴 + 𝑉𝐵        (2.6) 

From Equation 2.5: 

𝑉𝑀 =
𝜌𝐼

2𝜋
(

1

𝑟𝐴
−

1

𝑟𝐵
)        (2.7a) 

Also, 𝑉𝑁 =
𝜌𝐼

2𝜋
(

1

𝑅𝐴
−

1

𝑅𝐵
)       (2.7b) 

The potential difference (∆𝑉) between electrodes M and N is given as: 

∆𝑉 = 𝑉𝑀 − 𝑉𝑁 =
𝜌𝐼

2𝜋
{(

1

𝑟𝐴
−

1

𝑟𝐵
) − (

1

𝑅𝐴
−

1

𝑅𝐵
)}   (2.8) 

𝜌 =
2𝜋∆𝑉

𝐼{(
1

𝑟𝐴
−

1

𝑟𝐵
)−(

1

𝑅𝐴
−

1

𝑅𝐵
)}

      (2.9) 

The geometric factor of any array, given as 𝑘, is written mathematically as: 

𝑘 =
2𝜋

{(
1

𝑟𝐴
−

1

𝑟𝐵
)−(

1

𝑅𝐴
−

1

𝑅𝐵
)}

       (2.10) 

In some literature, it is written as: 

𝑘 =
2𝜋

{(
1

𝑟1
−

1

𝑟2
)−(

1

𝑟3
−

1

𝑟4
)}

  

Where 𝑟1 =  𝑟𝐴; 𝑟2 =  𝑟𝐵; 𝑟3 = 𝑅𝐴; and 𝑟4 = 𝑅𝐵 
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Based on Ohm’s law, a typical cylindrical wire carrying a current I, with length L (m), 

cross-sectional area A (m2), and resistance R (Ω), has a measured resistance: 

𝑅 =
∆𝑉

𝐼
         (2.11) 

Hence, if Equations 2.10 and 2.11 are substituted in Equation 2.9, the apparent 

resistivity (𝜌𝑎) is written as: 

𝜌𝑎 = 𝑘𝑅        (2.12) 

ERM can generally be employed for several geophysical applications due to 

the wide range of 𝜌𝑎 values for earth materials. The range of 𝜌𝑎 values for some rocks, 

soils, and minerals are shown in Figure 2.2 and Table 2.1. 

 

Figure 2.2 Resistivity chart for the range of values for rocks, soils, and minerals 

(after Telford et al., 1990). 
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Table 2.1 A comprehensive summary of the electrical resistivity values for some 

earth materials in different localities. 

Common 

Materials 

Range of resistivity values (𝛀m) 

Loke (2002) Gibson & George (2013) SEG (2014) AGI (2008) 

Clay 1 – 100 1 – 100 1 – 300 10 – 100 

Sand 10 – 800 50 – 1050 1 – 1100 600 − 1 × 104 

Gravel 600 − 104 100 – 1400 20 – 7000 600 − 1 × 104 

Limestone 80 – 6000 50 − 106 ---- 100 − 1 × 106 

Shale 20 – 2000 ---- 3 – 200 ---- 

Sandstone 10 – 5000 1 − 7.4 × 108 10 – 700 100 − 1 × 103 

Granite 5000 − 106 100 − 106 300 – 40000 ---- 

 

2.2.2 Configurations, Sensitivities, and Performance of Electrode Arrays 

The electrical resistivity imaging electrodes have systematic arrangement 

modes known as array configuration. Only the spontaneous potential (SP) method has 

unique electrodes for its land and marine surveys. In practice, four electrodes (i.e., two 

current and two potential electrodes) are required for the electrical imaging or depth 

sounding. Electrodes may be placed on the ground surface, in boreholes, or at the 

surface/bottom of stream/river (via floating electrodes mechanism). A crucial element 

in reducing noise and enhancing the effectiveness and resolution of the method for 

identifying lateral and vertical structures is the choice of the selected electrode array 

configuration. For example in imaging, several electrode kinds, such as galvanized 

iron and aluminum electrodes, are noise-sensitive (LaBrecque & Daily, 2008). 

However, Daily et al. (2005) suggested that all electrodes are usable with any arrays, 

provided the survey lasts for a short time. An alternating power source is also used to 

avoid electrode polarization (Binley & Kemna, 2005). 
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Unlike the other electrodes, the copper electrode is easier to inject current into 

the ground because of its high conductivity that enables faster current flow. The 

electrode is resistant to corrosion but is rarely used due to its cost compared to other 

electrodes. On the other hand, the stainless steel electrode is often used for imaging 

and depth sounding due to its high sensitivity and relatively lower price. However, it 

has lower conductivity and is also vulnerable to corrosion than copper. Both electrodes 

may be sensitive to cultural/self-potential noise in the subsurface. Most importantly, 

electrodes’ sensitivities and resolution capacities depend on electrode spacing, total 

spread length, amount of current introduced into the ground, depth of investigation, 

etc. A high-resolution tomographic model can be produced for a survey with small 

electrode spacing and short traverse due to shallow probing depth and ease of current 

penetration (Loke, 2002; Binley & Kemna, 2005; Daily et al., 2005; Loke et al., 2013; 

Binley, 2015; Binley et al., 2015; Mieszkowski et al., 2018; Akingboye & Ogunyele, 

2019; Jiang et al., 2021; Akingboye et al., 2022). 

There are several types of electrode arrays used for electrical investigations. 

The most commonly used arrays are Wenner, Schlumberger, Wenner-Schlumberger, 

dipole-dipole, pole-dipole, pole-pole, and gradient arrays. The uncommonly used ones 

are the optimized or modified arrays, which are products of the modifications of the 

commonly used arrays. These include the azimuthal square array, radial array, Cole-

Cole array, Standard L and Corner array, Compare R and its noise-weighted array, etc. 

(Loke, 2002, 2004; Crook et al., 2008; Abdullah et al., 2018, 2019; Couto Junior et al., 

2020). Some of these arrays employ two electrodes each for current and potential. Few 

use only one current and potential electrode, two currents and one potential electrode, 

or one current and two potential electrodes with the remaining current and potential 

electrodes spaced at an infinite distance (usually 20 times the normal electrode 
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separation). All these array configurations can image both lateral and vertical electrical 

variations, as well as detect 2-, 3- and 4-D anomalous bodies (Griffiths et al., 1990; 

Telford et al., 1990; Arora & Ahmed, 2011; Merritt, 2014; Binley et al., 2015; Bery et 

al., 2019; Hasan et al., 2020; Hojat et al., 2020; Rucker et al., 2021a; Szűcs et al., 

2021). 

Figure 2.3a–j shows the configurations, sensitivities, and performances of the 

electrode’s quadrupole for some commonly used arrays. The schematic images 

depicting the lateral and vertical variations of subsurface electrical properties 

measured by these arrays are also provided. The Wenner array has three configuration 

types, namely the Wenner-Alpha (𝛼), Wenner-Beta (𝛽), and Wenner-Gamma (𝛾),  

with configurations of C1P1P2C2, C2C1P1P2, and C1P1C2P2, respectively (Figure 

2.3a–c). Although the Wenner arrays have reduced horizontal sensitivity for sills and 

sedimentary structures, they are highly sensitive to detecting vertical changes below 

their centers (Loke et al., 2013; Merritt, 2014). As a result, the arrays may be best used 

in a noisy environment to derive appropriate vertical structures with high resolution 

(Loke, 2002). The Schlumberger array, with the same configuration C1P1P2C2, is 

similar to the Wenner- arrays but with closely spaced potential electrodes P1P2 (Figure 

2.3d). The Schlumberger array’s model coverage is narrower than the dipole-dipole 

array yet offers a slightly better horizontal resolution. This is because the closely 

spaced inner potential electrodes are sensitive to conditions around them (Loke, 2002; 

Merritt, 2014; Akingboye & Ogunyele, 2019). 

The Wenner-Schlumberger array (Figure 2.3e) is a hybrid between the 

Wenner-alpha (𝛼) array and the Schlumberger array (Pazdirek & Bláha, 2015; 

Balarabe et al., 2022). Wenner-Schlumberger has a greater median depth of 
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investigation, a weaker signal, and slightly wider horizontal data coverage than the 

Wenner array. The array, however, outperforms the dipole-dipole array in terms of 

signal power and narrower horizontal data coverage (Loke, 2002). This array is 

moderately sensitive to both horizontal and vertical structures. Thus, it is appropriate 

for deriving high-resolution models for both geological structures. 

 

Figure 2.3 Array types with their respective geometric configurations of the 

electrode’s quadrupole and geometric factors. C (1, 2) and P (1, 2) represent the current 

and potential electrodes, respectively. 𝑛 is an integer value for dipole separation factor, 

𝑎 represents electrode spacing, 𝑘 is the geometric factor, and ∞ implies infinity 

distance. The background inverted images show the performance and sensitivity 

patterns of the arrays. In the case of a gradient array, the first potential electrode pair 

𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 = 1 (modified after Akingboye & Ogunyele, 2019). 

 




