

Second Semester Examination 2022/2023 Academic Session

July/August 2023

EEK372 - POWER SYSTEM ANALYSIS

Duration: 3 hours

Please ensure that this examination paper consists of \underline{SIX} (6) pages including appendix material before you begin the examination.

<u>Instructions:</u> This question paper consists of FOUR (4) questions. Answer ALL questions. All questions carry the same marks.

(a) The single-line diagram of a three-phase power system is shown in Figure
The length of transmission line has is 64 km with series reactance of 0.5 ohm/km. The ratings of the components are given in Table 1. Using the common base S_b = 300 MVA and V_b = 20 kV at the generator, draw the reactance diagram in per unit.

Figure 1

Table 1

Component	Power (S)	Voltage (V)	Reactance X
Generator G	300 MVA	20.0 kV	20%
Transformer T ₁	350 MVA	230/20 kV	10%
Transformer T ₂	300 MVA	220/13.2 kV	10%
Motor M1	200 MVA	13.2 kV	20%
Motor M2	100 MVA	13.2 kV	20%

(55 marks)

- (b) A three-phase line with an impedance of (0.2 + j1.0) ohm/phase feeds three balanced three-phase loads connected in parallel.
 - Load 1: absorbs a total of 150 kW and 120 kvar
 - Load 2: delta connected with an impedance of (150 j48) ohm/phase
 - Load 3: 120 kVA at 0.6 power factor leading

If the line-to-neutral voltage at the load end of the line is 2000 V (rms), calculate the magnitude of the line-to-line voltage at the source end of the line.

(45 marks)

2. (a) A three-phase overhead transmission line is designed to deliver 15 MW, power factor 0.8 lagging at 132 kV at its receiving end. The transmission line loss is 5 % of the delivered power. The transmission line has resistance 0.572 Ω per km. Given the resistivity of the conductor material to be 2.84 x 10-8 ohm-m, determine the length of the line and conductor diameter. Neglect power losses due to insulator leakage currents and corona.

(35 marks)

(b) Assuming that there are 4 sub-conductors arranged symmetrically in a circle of radius R. These sub-conductors are equal in size with a diameter of 6 cm. Determine the radius of the circle, R if the geometric mean radius of this bundle conductor is 12 cm.

(25 marks)

(c) A single-phase transmission line has two conductors, each of 10 mm radius. The distance between them is 1 m. It is then converted to a three-phase transmission line by introducing a third conductor of the same radius. This new conductor is fixed at an equal distance, D from the two single-phase conductors. The three-phase lines is fully transposed. The inductance per phase of the three-phase system is 5 % more than that of the inductance per conductor of the single-phase system. Calculate the distance, D. Determine the ratio of the capacitance per phase of the three-phase system to the line-to-neutral capacitance of the single-phase system.

(40 marks)

3. The one-line diagram of a simple three-bus power system and its data are shown in Figure 3 and Table 3. The neutral of each generator is grounded through an impedance of 0.25 per unit on a 100-MVA base. The generators are running on the no-load condition at rated voltage and frequency with their EMF in phase.

Figure 3: Three-bus power system

Table 3: List of Data

rable 3. List of Data						
Item	Base MVA	Voltage Rating (kV)	X ¹	X ²	X ³	
G ₁	100	20	0.15	0.15	0.05	
G ₂	100	20	0.15	0.15	0.05	
T ₁	100	20/220	0.10	0.10	0.10	
T_2	100	20/220	0.10	0.10	0.10	
L ₁₂	100	220	0.125	0.125	0.30	
L ₁₃	100	220	0.15	0.15	0.35	
L ₂₃	100	220	0.25	0.25	0.7125	

Determine the followings:

(a) The positive, negative and zero sequence Thevenin impedance seen from bus 3.

(60 marks)

(b) Fault current when a single line-to-ground fault occurred at bus 3 with $Z_f = 0.1j$ per unit.

(40 marks)

- 4. Based on Question Three (Q3), determine:
 - (a) Fault current when a line-to-line fault occur at bus 3 with $Z_f=0.1j$ per unit.

(50 marks)

(b) Fault current when a double line-to-ground fault occur at Bus 3 with $Z_f=0.1j$ per unit.

(50 marks)

-0000000-

APPENDIX A

QUESTION NUMBER	CO	PO
1	1	2
2	1	2
3	3	2
4	3	3