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ANALISIS DATA TOPOLOGI MELALUI PEMBELAJARAN MESIN 

TANPA PENYELIAAN UNTUK MENGENAL PASTI KEADAAN 

ATMOSFERA SUNGAI BAGI PENGESANAN BANJIR 

ABSTRAK 

Banjir ialah bencana alam yang setiap tahun memusnahkan bangunan, tanah 

ladang, harta benda, dan kehidupan di banyak wilayah di dunia. Kurang daripada dua 

dekad yang lalu, analisis data Topologi (TDA) dan pembelajaran mesin (ML) telah 

digunakan dalam ramalan, yang mempunyai kelebihan berbanding kaedah biasa. Oleh 

itu, kerja ini memperkenalkan kaedah hibrid TDA dan ML tanpa pengawasan (TDA-

uML) untuk pengurusan banjir. TDA-uML menggabungkan algebra topologi dengan 

sains komputer untuk menjadi bidang kajian baharu dalam statistik, mengendalikan 

bentuk dalam data raya. Tiga sifat menjadikan TDA berbeza daripada kaedah biasa; ia 

adalah ketakvarianan koordinat, ketakvarianan canggaan, dan perwakilan termampat. 

Kaedah ini melibatkan latihan, ujian, pengiraan, mendapatkan nilai optimum dan 

pengesahan nilai optimum. Beberapa model pengurusan banjir biasa seperti model 

Hidrologi, hidraulik dan statistik yang penyelidik telah gunakan adalah tidak tepat 

dalam ramalan, mahal, kurang pelaksanaan model hibrid dan tidak disahkan 

berbanding kaedah TDA-uML. Teknik ini bertujuan untuk membangunkan kaedah 

hibrid TDA-uML untuk ramalan banjir; menilai ketepatan kaedah hibrid (TDA-uML) 

dalam meramal banjir, memilih ujian kesahan terbaik untuk kajian, dan menentukan 

sama ada terdapat hubungan dalam corak ciri. TDA-uML terdiri daripada k-min 

berkelompok dan aspek homologi gigih TDA. Penemuan menunjukkan bahawa 

kaedah mengekstrak ciri topologi yang berkaitan daripada set data tetapi dengan cara 

yang berbeza, menghasilkan hasil yang cekap sebanyak 80%. Akhir sekali, TDA-uML 
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dapat mengesan banjir dan tiada banjir dalam set data untuk kawalan banjir; nilai 

terpencil telah dibetulkan dalam pelaksanaan prosedur ujian kesahan. Selain itu, aspek 

homologi gigih (PH) kaedah mengenal pasti banjir dan tiada bulan banjir dalam set 

data, mewujudkan hubungan yang sama dengan kaedah pengelompokan k-min baharu. 

PH boleh mengekstrak maklumat dari segi ringkasan (nilai) topologi dan mentafsir 

keputusan melalui kod bar dan plot gambar rajah gigih (PD); pengelompokan k-min 

boleh mengesan corak ciri luar biasa pada 4 negeri (Kogi, Oyo, Taraba dan Kano) 

daripada 14 negeri terpilih. Penyepaduan pengelas mesin vektor sokongan (SVM) 

dalam kajian ini, memberikan hasil yang berkelajuan tinggi dan tepat yang boleh 

meramalkan banjir dan mencegah bencana besar. 
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TOPOLOGICAL DATA ANALYSIS VIA UNSUPERVISED MACHINE 

LEARNING FOR RECOGNIZING ATMOSPHERIC RIVERS CONDITIONS 

ON FLOOD DETECTION 

ABSTRACT 

Flooding is a natural disaster that annually destroys buildings, farmland, 

properties, and life in many regions of the world. Less than two decades ago, 

Topological data analysis (TDA) and machine learning (ML) were used in predictions, 

which have advantages over the common method. Thus, the present work introduces 

a hybrid method of TDA and unsupervised ML (TDA-uML) for flood management. 

The TDA-uML blends topological algebra with computer science to become a new 

study area in statistics, handling shapes in big data. Three properties make TDA 

distinct from common methods; they are coordinate invariance, deformation 

invariance, and compressed representation. The method involves training, testing, 

computation, obtaining of optimal values and validation of optimal value. Some 

common flood management models such as Hydrologic, hydraulic, and statistical 

models that researchers had used are inaccurate in the prediction, costly, lack the 

implementation of hybrid models, and are not validated compared to the TDA-uML 

method. The technique is aimed at developing a hybrid method of TDA-uML for flood 

prediction; evaluating the accuracy of the hybrid method (TDA-uML) in predicting 

flood, choosing the best validity tests for the study, and determining whether there is 

a relationship in the feature patterns. The TDA-uML comprises k-means clustering 

and Persistent homology aspects of TDA. Findings showed that the methods extracted 

relevant topological features from datasets but in distinct ways, producing efficient 

outcome of 80%. Finally, TDA-uML could detect flood and no flood in the dataset for 
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flood control; outliers were fixed in the implementation of the validity test procesure. 

Moreover, persistent homology (PH) aspect of the method identified flood and no 

flood months in the datasets, establishing a similar relationship with the new k-means 

clustering method. The PH could extract information in terms of topological 

summaries (values) and interpret the results via barcodes and persistent diagram (PD) 

plots; the k-mean clustering could detect the unusual features pattern on 4 states (Kogi, 

Oyo, Taraba, and Kano) out of 14 selected states. The integration of the support vector 

machine (SVM) classifier in this study, provided high speed and accurate results that 

could predict flood and prevent eminent disaster.  
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CHAPTER 1  

INTRODUCTION 

1.1 Background of the Study 

Topological data analysis (TDA) is a recent research area in statistics that uses 

algebraic topology tools to capture a dataset's shape and structure. According to 

Gholizadeh and Zadrozny (2018), TDA is a mathematical tool that captures the 

intrinsic structure of shapes in a dataset. It was reported in Biscio and Møller (2019) 

that the TDA as a method in statistics uses algebraic topological ideas to summarize 

and visualize complex datasets. The origin of TDA was traced to the 18th century by 

a Swiss Mathematician, Leonard Euler (Richeson, 2019). The study further revealed 

that the impact of Euler’s formula in the field of geometry contributed to the historical 

development of TDA, and was applied in the study of shape. Topological data analysis 

gradually appeared over time, and its historical development can be traced to the work 

of these authors: Frosini (1990); Vanessa (1999); Letscher and Zomorodian (2002); 

Zomorodian and Carlsson (2005). The advent of the combined method of TDA and 

Machine Learning (ML) is more recent and has gained more applications as recorded 

in the studies of Carlsson (2014); Bubenik (2015). 

The development of persistent homology (PH), k-mean clustering, and other 

tools in TDA has been driven by algorithm (Vejdemo-Johansson, 2012). In the 90s, 

the area started with computational geometry and with researchers (geometers) 

interested in studying the algorithmic aspects of the classical subjects in mathematics, 

such as algebraic topology. Topological Data Analysis (TDA) was discovered as a 

researchable area in statistics after many years of origin from Mathematical Topology.  

The area flourished in the 80s’ and 90s’ by addressing different practical problems and 
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enriching the area of discrete geometry in the course. Computational topology can 

address the area of shape and data analysis while drawing upon and perhaps 

developing further the area of topology in the discrete context (Edelsbrunner & Harer, 

2010). 

Since the discovery, some tools have been identified and used in the analysis 

and/or computation of TDA; among them are clustering, Persistence homology, Ridge 

estimation, and Manifold estimation. This study used two TDA’s tools: clustering (i.e., 

k–mean) and persistence homology (that combines the Vietoris Rips and Persistent 

diagram functions). In both cases, the same datasets were used. The two TDA’s tools 

integrated unsupervised machine learning (uML) procedure in their implementation; 

this made the method synthetic, automated, and unique in flood management 

compared to other flood models. There are three key properties that give TDA the 

power to analyze and understand shape. They are (a) Coordinate invariance (freeness); 

the principal idea is that it should not matter how the dataset was represented in terms 

of coordinate, provided the internal distances remain unchanged. Moreover, the 

measure of topological shape does not change if the shape is rotated. (b) Deformation 

invariance; the property of invariant deformation remains unchangeable even if there 

is stretching on the object. For example, the letter ‘A’ remains a loop with two legs 

and a close triangle if apply stretching to it. (c) Compressed representation; If closely 

observed, the illustration of important attributes in the letter ‘A’ can be observed as 

having three bounded angles with two stands (legs) irrespective of the compression of 

millions of data points with similar relationships in the object. More details on the 

three properties of TDA with illustrated examples can be found in Offroy and 

Duponchel (2016).   
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The implementation of the TDA-uML method invoved importation of 

important libraries, loading of datasets, training and testing, data preprocessing, and 

computation of cluster centroids follow. Finally, the support vector machines (SVM) 

classified the resultant feature into flooding and no flooding zones, establishing flood 

detection in the proposed method (TDA-uML method). The PH aspect also integrated 

ML procedure in its computation to obtain topological features. The outcome of the 

plots in PH could extract inputs that share similar features with the k-mean clustering 

– this was discovered in the bars of the barcode and persistent diagram (PH) plots 

between the months of January and September. The outcome could establish a 

relationship in the feature patterns of the analysis. 

A few pieces of literature that applied the combined method of TDA in flood 

control are Muszynski et al. (2019); Zulkepli et al. (2020); and Musa et al. (2021). 

Nevertheless, many researchers have researched flood control without applying TDA 

to study pattern recognition using complex data (simulated data). These listed authors 

did not implement TDA in flood modeling and control (Olugunorisa, 2009; Olajuyigbe 

et al., 2012; Archfield et al., 2013; Nkwunonwo et al., 2015; Nkwunonwo, 2016; Yang 

et al., 2019). This study used actual dataset and is the first to apply TDA in studying 

flooding in Nigeria. The advantage of the method is that it uses classifiers in binary 

classification and can combine with other techniques. Next, it works well in large and 

noisy datasets via dimensionality reduction. The cluster validity test(s) is observed to 

produce a better feature pattern in the outcome regarding connectedness and 

compartment in the k = 2 clusters.  

In this study, Excel is used to arrange our dataset and fix missing values, 

Python programming language in writing a suitable code for the analysis, and R 

programming language codes to evaluate our results' validity. Next, four rainfall 
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parameters (maximum and minimum temperature, precipitation, and wind speed) were 

used to fill a research gap, considering the finding in Riihimäki et al. (2020), which 

stated that the more the variable, the better the result. After that, various flooding 

patterns were identified in the fourteen selected regions in Nigeria. The results 

obtained in the subsequent tables and plots showed potential flooding, no flooding, 

and their performances. 

The validity tests were conducted to appropriately standardize the distribution of the 

dataset considering the work of Tibshirani et al. (2001). The variances were used to 

identify the zone/state with the highest flood rate and the degree of flood disaster in a 

particular zone. The density features of the four variables used in this study were 

obtained. The Persistent homology (PH) was used to study our datasets in their low-

dimension topological features. Finally, the findings provided answers to the research 

questions: to develop a hybrid method of TDA and unsupervised ML (TDA-uML) for 

flood detection, to evaluate the accuracy of the hybrid method (TDA-uML) in 

detecting flood, to measure the extent of spread of the resultant clusters from the 

centroid, to choose the best test that validated our method, and to determine whether 

there is a relationship in the feature patterns of our analysis. 

1.2 Motivation of  Study 

In this recent era, all types of flood modelling (mathematical, statistical, and 

machine learning) have rapidly grown in number, value, and implementation 

procedure. They all use a working algorithm and computations via computer programs 

and developed software. This rapid progress has simultaneously reduced flood impact 

and increased confidence in flood prediction and potentially generated the essentiality 

of proper risk management in flood control. Moreover, the increase in technology and 
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industry brings about a corresponding increase in a data point, such that automated and 

hybrid methods are needed to meet the geometric rate of increase in datasets. Most 

recent studies are beginning to drift to a hybrid system of combining two methods in 

flood control; research in time series has started adopting and implementing the 

combined method of TDA, which makes it extract topological features of datasets (Lei, 

2020). 

The combined application of the TDA approach was used in Musa et al. (2021) 

in the theory of the Critical Slowing Down to produce a reliable Level Early Warning 

System on flooding. The Persistent homology applied in the model sequentially 

extracts two kinds of topological feature patterns (the components and the holes) from 

datasets. The study controlled the flood rate and minimized the fatality rate. The 

question here is this: can it be applied to a new environmental scenario? 

Many researchers applied flood models to different flood zones for flood 

control. Among them are Archfield et al. (2013) predicted the flow of the stream in 

uncontrolled catchments, Nkwunonwu et al. (2016) estimated the risk levels of 

municipals affected by flood using weather instead, Olajuyigbe et al. (2012) used a 

secondary dataset, administered questionnaire to households, and obtained key 

information on flood in Lagos state, (Yang et al., 2019), used high-resolution 

atmospheric and hydrological model simulations in Arizona. 

The menace of floods is an annual occurrence and has destroyed most 

environments near the flood zones. The havoc associated with flooding has cost lives, 

properties, and displaced families. Besides, the feature pattern of floods is rarely 

studied. Due to these mentioned problems, the researchers are motivated to fill the 

gaps and help minimize disasters from extreme weather and climate change by 

applying a hybrid method.  
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Besides, the proposed approach combines TDA and ML. It is meant to 

minimize outliers, noise in long-memory time series, error in the output and reduce 

dimensionality in a large dataset. Also, our method does not require threshold 

conditions in pattern recognition, and so it can use the current spatial dataset for 

recognition (prediction) of ARs (Muszynski et al., 2019). In a hybrid method (TDA-

uML), the questions remain if more than one variable could be used in a spatial dataset; 

none of them considered that. Can TDA-uML method be developed for predicting 

flood? Can a hybrid method be evaluated? Can the degree of flood concentration be 

measured? None of the above research considered these questions. Therefore, it is time 

to see what happens if a hybrid method is implemented in flood management and 

control. Will these new models improve the results?  

1.3 Problem statement 

There have been many problems with the use of traditional models for flood 

prediction. The Nigerian Hydrological Services Agency (NIHSA) used the geospatial 

streamflow model (GEOSFM) and the Soil Water Assessment Tool (SWAT) for flood 

prediction. Munzimi et al. (2019) reported that they use hydrological and 

hydrogeological data, rainfall data, topographical data, soil, and water balance index 

with the Digital Elevation Model (DEM). Such models can help to establish 

information on the baseline flows throughout the river and provide a benchmark for 

assessing future hydrological changes associated with changes in land overflow and 

climate change. Despite their efforts, the agency has some challenges; the performance 

of their models has not been evaluated/validated for accurate prediction. Moreover, 

there are still problems ranging from inadequate use of satellite technology to 

inadequate training in labor development and computation.  
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The three traditional flood modelling types include 1) One dimension (1D) 

modeling approach that solves the 1D equation of river flow; 2) Two-dimension (2D) 

modeling approach that solves the 2D equation of river flow; 3) Link (1D channel and 

2D floodplain) combines 1D, and 2D water flow models. The models were developed 

to permit vertical feature representation, describing fluid substances' motion (Teng et 

al. 2017). Many problems illustrated in this section were encountered in the common 

flood models. For instance, they are non-predictive, and have no direct linkage to 

hydrology. They are difficult to use. These have engineering, environmental, and 

processing limitations. They are computationally intensive, and the errors associated 

with the input can grow with time. Most of the flood modelling approaches, unlike 

TDA, lack inherent topological invariant and theoretical properties. The advent of 

computational power and ML procedure integrated with the proposed hybrid method 

has led to more robust advancements in the modelling of floods; this tackles most of 

the problems encountered in the common methods described here. Besides, the 

integration of the support vector machine (SVM) classifier in pattern detection in time-

series dataset, enhances the high accuracy of flood prediction in our proposed method 

(TDA-uML). The result is more robust when machine learning procedure is combined 

according to Ambrosio et al. (2021). In networking, the whole framework can be 

trained and retrained in such a manner that a deeply supervised framework for the 

effective detection of structures in datasets could result in accurate information 

extraction (Ji et al., 2021). 
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1.4 Research questions 

The question of how to detect flood feature patterns and minimize the negative 

effect on life (environment) is the main problem to be addressed in this study. This 

research study aims at answering these questions. 

1. Can a hybrid method for flood detection be developed? 

2. Can the accuracy of a hybrid method of flood detection be evaluated?  

3. How can the extent of concentration or spread of the flood pattern be measured? 

4.  What is the best valid test for the research study? 

5. Is there any relationship in the feature patterns obtained in this study? 

1.5 Research objectives 

The answers to the above-stated research questions formed the objectives of 

this study, and they are stated as follows: 

1.  To develop a hybrid method of TDA and unsupervised ML (TDA-

uML) for flood detection. 

2.  To evaluate the accuracy of the hybrid method (TDA-uML) in 

detecting flood. 

3.  To measure the extent of spread of the resultant clusters from the 

centroid. 

4.  To choose the best test that validated our method.  

5.  To determine whether there is a relationship in the feature patterns of 

our analysis. 
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1.6 Significance of the Study 

This study is significant to the existing literature in several ways. The main 

contribution of this research to the literature lies in the ability to develop a hybrid 

method of TDA and unsupervised ML (TDA-uML) for flood detection. This 

development resulted in the discovery of the potential flooding and no flooding 

partitions in each state. Based on the potential flooding and no flooding patterns 

discovered, relevant information on the eminent flooding (disaster) can be passed 

across to those dwelling in the regions to relocate; the awareness created will help 

avoid the menace resulting from flooding. The information on the flood detection will 

also provide vital information to the government on how to construct channels and 

where to channel the flood to minimize havoc.  

The next significance is in the use of  evaluating the accuracy of the hybrid 

method (TDA-uML) in detection flood. Here, the intra-cluster validity test(s) were 

used to measure the accuracy of the hybrid method. The similarity in the features, the 

outcome of the tests, and the percentage score are significant factors that provide 

excellent evaluation measure to the hybrid method. 

In the literature on time series analysis like volatility and economic data, it is 

common to treat outliers and structural change separately using different procedures. 

This study will add to the literature by using the same procedure to detect outliers 

during the reanalysis process and automatically fix them, avoiding using separate 

procedures, saves time and money.  

There has been a rare application of the technique to an extreme event like 

flooding. Few works of literature have applied it in the study related to flooding, and 

from our reviewed literature, the method has not been applied in any African country; 

this study is set to fill the gap and add to the literature. In its aspect, persistent 
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homology (PH) is a unique property that separates real features from noise. The 

remarkable aspect helps PH in the analysis of datasets at multiple resolutions. Our 

study extended the unique property to a new environmental scenario.  

As the world is advancing in various aspects; in population growth; economic 

growth; industrial growth; production growth, and so on, more datasets are generated 

daily at a rapid rate; there is, therefore, a need for the adoption of a synthetic and robust 

technique that can meet up with the proportional rate at which dataset is being 

generated (Muszynski et al., 2019). The study will meet the demand of the recent 

growth in technology in terms of the speed and increase in a dataset: the procedure 

works well with both complex and simulated datasets.  

1.7 Outline of the thesis 

This study was carried out by employing a quantitative research technique 

detecting feature structure of datasets using a hybrid method of TDA and unsupervised 

ML (TDA-uML); meanwhile, validity was established, variances were obtained, and 

a comparison was made to establish the benchmark in the context. This research is 

structured as follows    

•In Chapter 1, a brief discussion on the background and the motivation of this 

study, followed by the research problem, research questions, research objectives, and 

significance of the study. 

•In Chapter 2, a summary of previous literature works related to this study and 

some reviews categories like the development of TDA, the limitation, and why TDA 

hybrids with other methods are described. The flood, mathematical, statistical, and 

machine learning modelling were portrayed. Persistent Homology and clustering are 

discussed for a theoretical and empirical understanding of the improved model. 



11 

•In Chapter 3, interpolation that was used to estimate the missing values were 

presented. The procedure for implementing the TDA-uML method are portrayed. Five 

steps that the study maintained to achieve results are also presented in this chapter. 

•In Chapter 4, the results of the selected datasets considered in this result are 

presented. The new k-means cluster, the validity tests, the variance, and the Persistent 

homology were discussed. Tables of the results, the graphical plot, and views of the 

optimal results from the datasets are displayed. A concise discussion on the results and 

the reason for choosing the methods and the benchmarks are explained here. 

•In Chapter 5, this is the final chapter containing a summary of the whole study 

carried out and a brief discussion on the research questions, contributions, and concept 

of the future works. 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

Some past pieces of literature have contributed significantly to the 

development of this study. It covers the goal, brief, and analytic outline of printed 

materials useful to the methodology used in this study. This thesis focused on 

Topological data analysis (TDA), flood modelling, and TDA with flood modelling 

which is  relevant to the topic of this study. Therefore, this chapter critically evaluates 

the precious and relevant works in TDA to discover the vital gaps relevant to the topic 

as mentioned above. 

This chapter is structured in the following sections and subsections to achieve 

the purpose: Section 2.1 Introduction, Section 2.2 Topological data analysis (TDA), 

2.2.1 discusses the development of TDA, 2.2.2 is the limitation of TDA and why 

hybrid with other methods, 2.2.3 is the application of TDA, 2.2.4 is the critical review 

to find the gap. Section 2.3 is on Flood modelling, 2.3.1 is on mathematical modelling, 

2.3.2 is on statistical modelling, 2.3.3 is on machine learning modelling, 2.3.4 is the 

critical review to find the gap. Section 2.4 TDA and Flood modelling, 2.4.1 is on the 

development of TDA and flood modelling, 2.4.2 is the critical review to find the gap. 

Finally, Chapter 2.5 is the summary.   

2.2 Topological data analysis (TDA) 

 Topological data analysis (TDA) was recently discovered as a researchable 

area in statistics that uses algebraic topology tools to capture the shape and structure 

of data. TDA was established under some theories that data have shapes and patterns 
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that possess inherent topological summaries (Angarita et al., 2019). Gholizadeh and 

Zadrozny (2018) defined TDA as a collection of mathematical tools that capture the 

dataset's structure and that the primary purpose of TDA is to find the intrinsic structure 

of shapes in the dataset. Biscio and Møller (2019) defined TDA as a statistical method 

that utilises algebra in mathematical topology to compact and picture compounded 

datasets. The TDA blends topological algebra with computer sciences to become a 

new area of study in statistics.  

The concept of TDA is also a technique that accumulates and analyzes datasets 

to identify the shapes in the dataset; an example includes cluster methods (k-means), 

persistent-homology, estimation of manifold, estimation of mode, and estimation of 

the ridge (Wasserman, 2018). The rigorous study of shape combines algebra and 

topological aspects of mathematics to provide a novel way of describing the structure 

of a dataset known as topological features. Many statisticians are not familiar with 

TDA, the concept, and the main ideas behind the tools since it is a recent research area 

in statistics.  

2.2.1 Development of TDA 

Topology can be described as a mathematical field that analyzes, synthesizes, 

and visualises the shapes and structures of datasets. Topology has been commonly 

used to study the shape and surface of abstract objects; applying topology knowledge 

in evaluating and visualizing high dimensional and complicated datasets has 

developed the Topological data analysis (Hwang et al., 2021). Topology has been 

recently (10-15 years ago) coded into a point cloud world, a world where you have a 

finite sample from a geometrical object (finite dataset). The formalism for measuring 

and representing shape has been pure mathematics since the 1700s and has recently 

pulled into the point cloud world to what topologists call TDA. The development of 
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the TDA and other TDA methods, like Persistent homology (PH), has been driven by 

algorithm development (Vejdemo-Johansson, 2012). 

In the 90s, the area started with computational geometry and with researchers 

(geometers) interested in studying the algorithmic aspect of the classical subject of 

algebraic topology in mathematics. The area flourished in the 80s’ and 90s’ by 

addressing different practical problems and enriching the area of discrete geometry in 

the course. A small number of computational geometers felt that similar to this 

development, and computational topology can address the area of shape and data 

analysis while drawing upon and perhaps developing further the area of topology in 

the discrete context (Edelsbrunner & Harer, 2010). 

The fundamental object in a topological space is an underlying set whose 

elements are called points. A topology on these points identifies connection by listing 

out the points that constitute a neighborhood. The expression “rubber-sheet topology” 

commonly associated with the term ‘topology’ exemplifies this idea of connectivity of 

neighborhoods, and more attention should be focused on the topological properties 

(Dey et al., 1999; Edelsbrunner, 2001). If we fold or apply force to enlarge the size of 

an expansible object like rubber, the structure will distort and transform to other 

shapes, but it still retains neighborhoods in terms of the points and manner of their 

connections. These ideas (notions) were first developed and formed the backbone in 

the study of properties in topology like manifold, isotopy, and other maps used later to 

study algorithms for Topological data analysis. Perhaps, it is more natural to 

understand the concept of topology in the presence of a metric because metric balls 

such as Euclidean space can be used to define neighborhoods. Topological spaces 

provide a way to abstract out this idea without a metric or point coordinates, so they 

are more general than metric spaces: The connectivity can be encoded in place of a 



15 

metric of a point set by supplying a list of all of the open sets (Delfinado & 

Edelsbrunner, 1995; Bern et al., 1999; Biasotti et al., 2011). 

Richeson (2019) in his work, mentioned the impact of Euler’s formula (Euler’s 

polyhedron formula) in the field of geometry that led to the historical development of 

Topological data analysis (TDA). Euler’s formula was named after Leonhard Euler, 

the founder. The first example of a topological invariant, which is one of the 

characteristics of TDA, was first established in the Euler characteristic; it is a quantity 

that can be calculated and gives back the same value on many different representations 

of the same topological shape. These illustrated equality below must be satisfied in 

Euler’s polyhedron; the number of vertices (V), edges (E), and faces (F) are integrated 

into the equation, V – E = 2 – F. For instance, Figure 2.1 has twelve loops, six voids, 

and eight connected components, then 8 –12 = 2 – 6.  

 

Figure 2.1 Diagram of a cube (hexahedron) 

The formula is the same as the natural characteristics of a defined structure or 

object. Equivalently, 

𝑥 = #(Connected Components/Vertices) −  #(Loops/Edges) + #(Void/Face), 
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where # is equal to “the number of” the word inside the brackets.  

All convex polyhedra process 1 connected component and 1 void, the Euler 

characteristic 𝑥 is 1 − 0 + 1 = 2 (i.e., Vertices – Edges + Faces = 2). One can easily 

view the numbers in Euler’s equation in other objects. An example is a solid torus (a 

doughnut) shown in Figure 2.2 with one connected component, edge, and zero faces; 

The Euler’s formula is +1 − 1= 0 −  0. Euler’s formula transformed into Topology and 

was first applied to study the intrinsic shape (Richeson, 2019). 

 

Figure 2.2  A Solid Torus 

Source: https://imgbin.com/png/torus-mathematics-geometry-topology-shape-png 

 Suppose we apply the Euler characteristic to Topological data analysis (TDA) 

by taking note of the quantity of structures made up of simplexes. In that case, its 

topological features are incidentally summarized as recorded in Amézquita et al. 

(2020). The polyhedron formula propounded by Euler for the simplicial complex is 

expressed as 

                                      𝑒𝑖𝑥 = cosine 𝑥 + 𝑖𝑠𝑖𝑛𝑒 𝑥,                                      

(2.1) 

where 𝑥 is a real number, 𝑑 is the base of a natural logarithm,  𝑒  is known as 

Euler’s number (i.e., approximately equal to 2.7182 and can be evaluated in many 

ways). The real number can also be evaluated using a metric dataset (Euclidean 

distance) and Gaussian density (Calinger, 1996; Sandifer, 2007; Offroy & Duponchel, 
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2016). Legendre (1752-1833) proved the Euler polyhedron equation to estimate a 

spherical object; the proof as recorded was mathematically correct. Legendre 

polynomials were equivalent to Bernoulli, Euler, and Bernstein polynomials. After 

that, Legendre discovered that his result could be larger polyhedra (Araci et al., 2013). 

Feng and Porter (2020) and Vejdemo-Johansson and Skraba (2016) explained 

the steps in the formulation of TDA, and in the first step, called partition, the lens with 

the metric measurements are chosen. The circle file or lens can be a function in 

mathematics used to view datasets, and metric measures are the calculated distances 

or similarities between two or more points in a dataset (Vejdemo-Johansson & Skraba, 

2016; Feng & Porter, 2020). Lenses can be seen in the statistical enclave (average, 

maximum, minimum, etc.), or mathematics; the lens derives the sections from datasets 

and further transforms them into sub-population (super-imposed circular files) (Offroy 

& Duponchel, 2016). A set is viewed sequentially using various kinds of the lens 

through the multiplication of outcomes they produce. The partition is analyzed in the 

second step (called cluster analysis); data are clustered within these bins so that the 

group will have aligned rows resembling one another. Because the datasets are divided 

into bins (circular files) overlapping, each row is oversampled and falls into more than 

one cluster (partition). In the third step, called network generation, data are 

reassembled to generate the final network. If two clusters in different bins share one 

or more rows, an edge is used between the two clusters to form the final network, as 

presented in Figure 2.3. 
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Figure 2.3 Visualization of general framework of TDA 

Source: (Offroy & Duponchel, 2016) 

 

2.2.2 The limitation of TDA and why hybrid with other methods 

Some limitations are peculiar to the TDA methodology, including that the 

entire nature of what it explains is entirely not clear (complex to understand), 

especially when explained to those with no background knowledge in mathematics. 

The use of the software is also a limitation since not all software can be used to 

compute TDA. The computational procedure is also a limitation.  

Topological data analysis (TDA) was shown to have limited usefulness for 

event-related functional magnetic resonance imaging (fMRI); the reason, as recorded, 

was that the fMRI dataset is too noisy to allow representation to be detected by TDA 

(Ellis et al., 2018). The same study was updated in 2019, and it specified that Persistent 

homology (PH) is the kind of TDA that has limited relevance for fMRI. It was 

summarized that PH is potentially important to the study of cognitive neuroscience in 

that it can recover topological signals from event-related fMRI datasets (Ellis et al., 
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2019). Another reviewed work on human brain mapping revealed TDA patterns in 

fMRI; functional near-infrared spectroscopy, fNIRS; MEG, magnetoencephalography 

(Knyazeva et al., 2016; Bassett & Sporns, 2017). Using multiple fMRI datasets, the 

Topological data analysis approach detected structure within and between-task 

transitions at a much faster time scale (Saggar et al., 2018). Therefore, improper use 

of the TDA code and the wrong code are limitations to TDA.  

Another limitation lies in the generation of simplexes which can discretize the 

spaces in data points by building a set of points, especially when the dimensionality 

3d   (Pereira & de Mello, 2015). Topological data analysis (TDA) also is limited to 

making scientific claims which can be statistically verifiable. Topological data 

analysis (TDA) has not used the statistical procedure as part of its approach, so there 

is an issue of statistical reliability despite being a recent research area in statistics 

(Adler et al., 2017).  

 A little close observation of the Euler characteristic formula in Equation (2.2) 

shows that x can represent a set of points in a dataset, where 𝑥𝑖 is a row vector defining 

sample 𝑖 for which a lens value is calculated and 𝑥𝑗, are all the other samples in the 

dataset. Drastic topological changes can happen at vertices 𝑥, when Euler 

characteristic 𝐺(𝑥) changes, based on the addition of critical points with non-zero 

indexes. The critical points of zero do not lead to Euler characteristics; therefore, the 

point 𝑥𝑖,  𝑥𝑗 = 0 is beyond the limitation. Offroy and Duponchel (2016) reported that 

the lens uses a Gaussian kernel estimator over the data, and it is stated as 

     𝐺(𝑥) = ∑ 𝑒−𝑑2(𝑥𝑖, 𝑥𝑗)
𝑥𝑗 ∈ 𝑑𝑎𝑡𝑎 𝑠𝑒𝑡                                                                  (2.2) 

Therefore, this limitation may depend on the algorithm hybrid of TDA with 

other methods; it is also limited to the use of code (i.e., the use of package and the kind 
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of algorithm combination used in the TDA’s analysis) procedure of the code. Ellis et 

al. (2019) had incorrectly used the TDA code in their publications where Persistent 

homology (PH) was employed to detect structures in fMRI datasets. The correct code 

was discovered in their 2020 research study, and its proper application to detect 

structures in fMRI dataset was also conducted according to Ellis et al. (2020). 

Why TDA hybrid with other methods  

Topological data analysis (TDA) hybrids with other methods produce more 

robust methods due to some characteristics listed in this section. It has joint topological 

and geometric attributes; and applies both methods to obtain a high dimensional 

dataset (Lei, 2020).  

The Topological data analysis has dependent attributes of a dataset, which 

continue over various scales; it produces a firm description of the dependable structure 

of inputted dataset; it possesses high efficiency, especially during perturbation of input 

dataset. The implementation and coding of TDA have a free source that uses a 

compounded algorithm; the users always need to update and get the latest version since 

the newer version contains more current and efficient usage (Otter et al., 2017).  

Topological data analysis (TDA) has theories upon which geometric 

morphometrics is formed; it starts with a set of vertices, the shape of manifolds, 

procrustean metrics, and complex projective spaces (Amézquita et al., 2020). 

Chevyrev et al. (2018) mentioned that embedding two methods minimizes the potency 

of intolerance that is not in line with the standard dataset in terms of combination with 

other algorithms. The flexibility implies that the TDA in a combined procedure will 

reduce the benchmark that might come from any kind of dataset in a particular study 

(Chevyrev et al., 2018). 
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Another reason is that the Topological data analysis (TDA) uses an idea that 

considers a dataset as a sample collection of numerous datasets in a high dimension of 

metric. Each process of superimposing sets of coordinates allows a metric space to 

measure the shape and representation of the same when hybrids with other methods 

(Chazal & Michel, 2017; Chen et al., 2021).  

Offroy and Duponchel (2016) revealed that Topological data analysis (TDA) 

have topology properties that are good and useful in analyzing complex datasets in 

diverse fields of study: It was mentioned that simplices are constructed from the 

sample data, and those simplices develop intervals, which combined and provided a 

network approximately to a manifold as shown in Figure 2.4 (i). 

 Three key properties that give TDA the power for analyzing and understanding 

shape are: 

(a) coordinate invariance (freeness); the principal idea says it should not matter 

how we represent the dataset in terms of coordinate provided we keep in track with the 

internal similarities (distances). The measure of topological shape does not change if 

you change the coordinate system of viewing the shape. The two A letters could 

constitute a set of data samples analyzed with two forms of analysis, and the topology 

constructed brings out the actual feature in it Figure 2.4 (ii). 

 (b) the property of invariant deformation remains unchangeable even if there 

is stretching of its; the letter A in figure 2.4 (iii) is a loop with two legs and a closed 

triangle, maintaining the key features retrieved in the topological representation. 

Different fonts of the letter A can be recognized in a topologically way due to how our 

brain captures it.   
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(c) compressed representation. If we observe more closely, the illustration of 

important attributes in the letter A can be observed as having three bounded angles 

with two stands (legs) see Figure 2.4 (iv). In consideration of this characteristic, the 

letter A has many connected data points. The TDA in the object is capable of producing 

a network of five edges and nodes.  

 

Figure 2.4  (i) Vital idea of TDA. The three key properties: (ii) coordinate   

invariance, (iii) deformation invariance and (iv) compression representation 

Source: (Offroy & Duponchel, 2016) 

2.2.3 Application of TDA 

Topological data analysis (TDA) is fast growing. It has cut across various fields 

of study such as sciences, social science, natural sciences, biology, education, and 

financial econometrics, physics, chemistry, medicine, neurosciences, natural language 

classification, data sciences, engineering, remote sensing, natural imaging, 

climatology, epidemiology and health. Topological data analysis (TDA) is applied in 

the natural language classification, gene ontology, developmental biology, and other 
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biological systems to detect topological features and the timing of their formation; 

there is a problem with interpreting feature persistence (Ciocanel et al., 2021). 

Topological data analysis (TDA) also has been successfully applied in finance, 

financial econometric and cryptocurrencies: It has been successfully used to detect the 

early warning signals of potential market crashes, which help investors to make good 

decisions (Gidea & Katz, 2018; Gidea et al., 2018; Kim et al., 2018).  

Topological data analysis (TDA) has been applied to time series analysis, 

dynamical systems, and signal to process; the same method is used in risk analysis and 

prediction of critical transitions in financial markets (Gholizadeh & Zadrozny, 2018). 

The TDA has been applied in Biology, medicine, and ecology;  the combination of the 

theory of Persistent homology (PH) is summarized in persistent diagram and clustering 

technique. The approach reduces the number of input points required for the 

discretization step, but the traditional clustering techniques failed when applied as they 

rely on point-to-point dissimilarity measures such as Euclidean distance (Pereira & de 

Mello, 2015).  

In medicine, for instance, it has been used to discover preclinical spinal cord 

injury and traumatic brain injury; it has also been used in molecular biology to assess 

skin function. It was revealed that TDA provides a lot of potential for decision-making 

in basic research and clinical concerns like outcome evaluation, neurocritical care, 

therapy planning, and rapid, precision diagnosis. But there is complexity in the 

implementation procedure of their method (Nielson et al., 2015; Koseki et al., 2020). 

Dindin et al. (2020) used a combined method, TDA and auto-encoder, to tackle the 

problem of individual differences in heartbeats. Their method achieved Arrhythmia 

detection and categorization techniques. Future work, as suggested is focused on using 

larger datasets since the benchmark did not use large datasets. Therefore, there is no 
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evaluation in the accuracy of Arrhythmia detection and classification in their TDA 

method. There is no validity of their method’s performance and their study is yet to be 

applied to new environment to compare the performance. 

In education, TDA has been applied in measuring IQ in the study of the gifted 

and the underlying results across various measurements of intelligence (Farrelly, 

2017). The result produced using PH is robust and, it has close values compared with 

different TDA tools. The method is also robust in small samples; it needs to be applied 

in a large sample to see how well it will work in large sample sizes. Future studies may 

focus on these individuals with exceptional ability across tests (representing a 

fundamentally distinct population that appears across different psychometric 

measures). Their research lacks the application of TDA to a large sample data set as 

well as other environmental scenarios and no test was conducted to measure the 

validity of their study. 

 Bruno et al. (2017) applied Topological data analysis (TDA) methods in health 

(psychometry), where they identified two big divisions concerning the patterns of the 

structure of the images in the brain. The study stated that longitudinal TDA was chosen 

and used in separating individuals from Fragile X syndrome, compared to the cross-

sectional TDA method. Other mental illnesses have not been studied using longitudinal 

TDA. They have not applied their method to other extreme events (floods) or 

environments. There is no validity test carried out to evaluate their study’s method like 

the TDA-uML method in this study.   

 The Persistent homology, PH, has been used to analyze poetry data; the 

mapper algorithm (another TDA method) has been applied to analyze and visualize 

datasets in natural language classification (Lei, 2020). The study did not measure the 

performance of the two TDA methods used or explore to find the variation between 


