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INTEGRASI KUANTITATIF 3D BAGI DATA ELEKTROMAGNETIK DAN 

SEISMIK UNTUK MENGOPTIMUMKAN HASIL PENYONGSANGAN 

KESAMAAN STRUKTUR DI PESISIR BARAT LAUT BORNEO, MALAYSIA 

ABSTRAK 

Songsangan 3D data seismik dan elektromagnetik (EM) yang digandingkan 

dengan kriteria kecerunan silang adalah dikenali dapat memaksimakan ketepatan dan 

mengurangkan ketidakpastian dalam eksplorasi subpermukaan. Tetapi ia memerlukan 

penyelesaian terhadap masalah penyongsangan berskala besar menggunakan kaedah 

regularisasi yang masih tidak difahami sepenuhnya dan memerlukan penyelidikan 

lanjut. Kajian ini menyiasat berkenaan pengoptimuman penyongsangan 3D 

menggunakan data seismik, EM sumber terkawal (CSEM), magnetotellurik (MT) dan 

data sumur dari pesisir lautan barat laut Borneo. Kesan pemberat regularisasi dikaji 

dengan melakukan beberapa penyongsangan data MT sintetik yang realistik. 

Menggunakan pemberat regularisasi yang terbaik, pemberat kecerunan silang yang 

optimum dijumpai dengan membandingkan hasil penyongsangan MT 3D dengan log 

resistiviti untuk beberapa nilai pemberat cubaan. Interpolasi log keberintangan 

menggunakan halaju seismik sebagai pembimbing kedua dipilih sebagai kaedah yang 

terbaik dalam membina model keberintangan awal. Penyongsangan MT yang 

dibimbing oleh seismik didapati menghasilkan model yang lebih munasabah 

berbanding model dari kaedah konvensional. Akhirnya, penyongsangan anisotropik 

bersama 3D CSEM-MT dan penyongsangan seismik dijalankan. Attribut baru yang 

diberi nama projeksi seismik-EM (SEMP) telah didefinisikan untuk memberi nilai 

kualiti bagi takungan yang berpotensi berdasarkan sifat-sifat elastik dan nilai 

keberintangan. Untuk mengelakkan risiko menjumpai takungan air garam berkeliangan 
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rendah, kaedah impedans elastik dilanjutkan (EEI) telah digunakan untuk meramalkan 

keliangan dalam 3D. Attribut SEMP dan EEI telah mengesan beberapa geobodi yang 

berpotensi sebagai takungan hidrokarbon. Kajian korroboratif geologi seperti geologi 

struktur dan permodelan sistem petroleum cekungan adalah disarankan untuk lebih 

memahami geobodi-geobodi ini. 

 

 

 

 

 

 



xxviii 

QUANTITATIVE 3D INTEGRATION OF ELECTROMAGNETIC AND 

SEISMIC DATA TO OPTIMIZE STRUCTURAL SIMILARITY INVERSION 

RESULTS IN OFFSHORE NORTHWEST BORNEO, MALAYSIA 

ABSTRACT 

Three-dimensional (3D) inverse modelling of seismic and electromagnetic (EM) 

geophysical data coupled by the cross-gradient criterion is well known to maximize 

accuracy and reduce uncertainty in subsurface exploration but this requires solving a 

large-size inverse problem by regularization methods whose optimization is not fully 

understood and require further research. This study investigated the optimization of 3D 

regularized inversion using seismic, controlled source EM (CSEM), magnetotelluric 

(MT) and well data from offshore northwest Borneo. The effect of regularization was 

studied by performing several inversions of realistic synthetic 3D MT data. Using the 

best regularization weight found, the optimal cross-gradient weight was found by 

comparing 3D MT inversion results against the available resistivity well logs for several 

trial weights. Interpolation of resistivity logs with seismic velocity as secondary guide 

was found to be the best approach for building the initial resistivity model. The 

optimized seismic-guided MT inversion was found to produce a more geologically 

plausible model as compared to the model from the conventional approach. Finally, 3D 

anisotropic joint CSEM-MT inversion and seismic inversion were conducted. A new 

attribute termed the seismic-EM projection (SEMP) was defined to further qualify 

potential reservoirs based on elastic properties and resistivity values. To avoid the risk 

of encountering tight brine reservoir, the extended elastic impedance (EEI) approach 

was used to predict total porosity in 3D. The SEMP and EEI attributes have highlighted 

several geobodies with hydrocarbon potential. Corroborative geological studies such as 
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structural geology and petroleum system modelling is recommended to further 

understand these geobodies. 
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CHAPTER 1  
 

INTRODUCTION 

 

1.1 Overview 

Seismic and electromagnetic (EM) methods are two wavefield methods that are 

useful in imaging the structure and characterizing the physical properties of the 

subsurface. Seismic are sensitive to variation in elastic properties, while EM are 

sensitive to variation in electrical properties, such as resistivity. The elastic and 

electrical properties can be used to infer bulk properties such as porosity, lithology 

proportion such as volume of shale and water saturation.  

Both seismic and EM data can be acquired on land and marine environments for 

various applications, such as oil and gas exploration, mineral exploration, and finding 

groundwater reservoir. Seismic and EM methods have advantages and disadvantages of 

their own. For exploration in the order of several kilometers beneath earth’s surface, 

seismic method is useful in detecting interfaces between rock beds with different elastic 

property contrasts at higher resolution than EM method.  

However, seismic method is less sensitive to hydrocarbon saturation as 

compared to EM method. Therefore, there are benefits in interpreting or inverting both 

seismic and EM methods jointly. The advantages broadly fall into two categories, 

namely the improvement of subsurface imaging and enhanced characterization of 

subsurface physical properties (MacGregor, 2020). It is the main thrust of this thesis to 

investigate and exploit these advantages through integrated interpretation of both 

seismic and EM methods on a field dataset using novel methodologies. 
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1.2 Problem statement 

EM has relatively poor structural resolution as compared to seismic method. The 

EM signal bandwidth is smaller than seismic method, and it tends towards low 

frequency. Hence, its capability to image thin layers is inferior to seismic method. In 

marine settings, EM surveying is also affected by spatial aliasing since in marine 

settings, EM receivers are deployed at sparse receiving distance due to cost limitation 

and limited number of available receivers per survey vessel. Seismic image-guided EM 

inversion (Zhou et al. 2014; Scholl et al., 2017; Kim et al., 2019; Mackie et al., 2020) 

is an emerging methodology that has been shown to be effective in producing resistivity 

models that are structurally consistent with seismic data. However, there are detailed 

aspects of this approach that are less studied. For example, selection of the values of 

regularization and structure-constraint weights are often not explained or studied 

thoroughly.  

EM inverse problem is highly nonlinear. Suboptimal inversion parameters & 

inaccurate forward modelling solution will give inaccurate inversion results. Meju et al. 

(2018a) shows that depending on the choice of inversion algorithm and regularization 

methods, the inversion results of a common dataset may vary significantly due to strong 

non-linearity in EM inverse problem (Figure 1.1). The recovered resistivity structure 

may not closely follow geological structure and appear to be too smooth. Inadequate or 

too strong regularization may also cause inversion artifacts that cut across stratigraphic 

boundaries. Using optimum inversion parameter and including anisotropy in the 

forward modelling solution (Newman et al., 2010) is expected to improve accuracy and 

reduce non-uniqueness of the EM inversion results.  
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Figure 1.1 Sample results of a blind test of state-of-the-art unconstrained anisotropic 

(VTI) 3D CSEM inversion technologies available in the oil and gas industry as of 

January 2017 (Meju et al., 2018a). In each row is shown the ρh and ρv depth sections 

from different service companies (C1, C2, C3, and C4) for a dip-line passing through 

the location of an exploration well completed in January 2017, which sampled gas and 

oil in the bottom part. The coincidentally located seismic image is shown in the 

background for structural comparison. The standard induction resistivity log is shown 

at the well location; (a) C1, (b) C2, (c) C3, and (d) C4 models.  

 

It is well known and can be demonstrated by using Gassman fluid substitution 

(Smith et al., 2003) that seismic amplitude is strongly affected by residual hydrocarbon 

(Constable, 2010). Low saturation of gas in the pore space will significantly drop the 

compressional wave (P) velocity (Figure 1.2) and density of rocks hence lowering the 

acoustic impedance of the rock significantly. Without well data as a reference, brine-

bearing sand formation with high porosity, encased by acoustically hard shale can easily 

be mistaken as class III amplitude versus offset (AVO) response which is represented 

by seismic amplitude that gets more negative with increasing offset (Rutherford and 

Williams, 1989). It is sometimes associated with hydrocarbon-bearing sand. Hence, it 
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represents the key risk in hydrocarbon exploration using seismic data alone. In Figure 

1.3, an example is shown where despite two wells having similar amplitude response, 

one of them encountered gas reservoir, while another one encountered reservoir with 

residual gas saturation, or fizz gas (O’Brien, 2004). On the other hand, it can be 

demonstrated based on Archie’s equation (Archie, 1942), that resistivity value of porous 

rock will only increase with high amount of gas saturation (Figure 1.2). Therefore, 

seismic and EM methods should be jointly interpreted to reduce risk in hydrocarbon 

exploration (e.g., Hoversten et al., 2021).  

 

 

 

Figure 1.2 Seismic P-wave velocity (from Lee, 2004) and electrical resistivity of a 

porous (50%) sandstone as a function of gas saturation in the pore fluid (Constable, 

2010). The largest effect on acoustic velocity occurs for the first few percent of gas 

fraction, but disconnected bubbles have little effect on resistivity, which does not 

increase significantly until gas saturations of 70% to 80% are achieved. The Hashin-

Shtrikman (HS) bound is probably the most reasonable mixing law for the resistivity of 

gas bubbles in water, but Archie’s law is provided for reference. 
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Figure 1.3 Seismic sections showing no significant differences between a discovery 

well (west) and a well with low gas saturation (east) (O’Brien, 2004). 

 

1.3 Objectives 

To address the research problems as elaborated in the previous section, the 

research objectives are determined as the following: 

1.3.1 To optimize the seismic-guided EM inversion workflow 

There are several key aspects of seismic-guided EM inversion that requires 

further optimization. Given that there are several aspects that needs to be optimized, it 

will be advantageous to perform the test in a systematic, hierarchical manner so that the 

results are easier to follow. The learnings from this exercise will be useful for any follow 

up CSEM or joint CSEM-MT inversion. 
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1.3.2 To improve the accuracy of EM inversion results  

In EM forward modelling, more accurate physics should be incorporated, such 

as by honoring electrical anisotropy. For structural consistency, the ρh and ρv will be 

encouraged to be structurally consistent by using cross-gradient constraint (Gallardo 

and Meju 2003; 2004).  

1.3.3 To develop an effective workflow to identify prospective targets using 

combined application of seismic and EM methods 

A semi quantitative approach will be used in the interpretation of the EM and 

seismic data. Both data types will be inverted separately and then jointly interpreted to 

locate the zone of interest for exploration drilling. 

 

1.4 Geology of the study area and legacy geophysical datasets 

The geology of the study area and legacy geophysical datasets that are available 

are discussed in this section. 

1.4.1 Geology of the study area 

The study area is in the fold-thrust belt of offshore northwest Borneo in the 

South China Sea. The regional setting and the location of the study are shown in Figure 

1.4. The water depth in the study area ranges from about 500 to 1600 m. This area is 

known to has a working petroleum system, as it hosts several commercial hydrocarbon 

discoveries, such as Gumusut Kakap and Kikeh fields (Abdullah et al, 2018). The 

sedimentary rocks here are mostly stacks of thin bedded sand in shale characterized by 

low resistivity and low contrasts (Meju et al., 2019). This region is known to has 

undergone a complex tectonic history. The structural style here is characterized by 
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northeast-southwest trending ridges that are formed by elongated thrust anticlines, with 

intervening mini basins and toe thrust zones (Figure 1.5). The hanging wall anticline 

with four-way dip closure is the main sought-after trap style for hydrocarbon 

exploration in this area, while stratigraphic plays remain under-explored. The 

stratigraphic column for this study area (Jong et al., 2015) is shown in Figure 1.4c. The 

reservoir targets in this deepwater area are turbidites that are deposited in basin floor 

system. Six of the turbidite formations are shown in Figure 1.5 as the seismic markers. 

1.4.2 Legacy geophysical datasets and well data 

This area has been chosen as our study area since it has excellent coverage of 

EM and seismic data (Figure 1.4b). There are also four wells located in the study area.  

The EM data were acquired and processed by Electromagnetic Geoservices ASA 

(EMGS) in 2015 and 2016. Figure 1.4b shows the survey layout of the CSEM-MT 

survey, seismic survey and well data that are available in this study area. The data 

acquisition parameters of the CSEM-MT surveys are provided in Appendix D. The 

combined number of CSEM-MT receivers from both surveys was 647. The 2016 

CSEM-MT survey is the densest EM survey ever-acquired in offshore Malaysia. 

The seismic data acquisition parameters are given in Appendix D. These 

parameters were decided based on a pre-survey modelling design to optimize imaging 

of exploration targets within the survey area. The seismic data uses dual-sensor 

broadband seismic technology (Widmaeir et al., 2015). The data were acquired and 

were processed up to Anisotropic Prestack Depth Migration (APSDM) stage by 

Petroleum Geoservices ASA (PGS ASA). The seismic dataset consists of seismic 

velocity, fullstack and angle stack data. Other data that were available include seismic 

horizons and well data from four wells (wells A, B, C, and D). All these data were 

provided courtesy of PETRONAS for this study.
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Figure 1.4 (a) Regional setting and study location. Shown are the main physiographic elements in offshore Borneo in southeast Asia. The general 

bathymetric chart of the oceans (GEBCO - British Oceanographic Data Centre, 2003) is shown in colour. The red box shows the location of our 

study area, (b) Geophysical survey map of the study area in northwest Borneo, and (c) Stratigraphic column of the study area (after Jong et al., 

2015). 
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Figure 1.5 Top Kamunsu structural map from seismic data. The grid in the survey map 

shows the bathymetry (in meters). The inverted triangles in green and black are 2015 

and 2016 EM receivers respectively, while the well symbols show the locations of wells 

A, B, C and D. TF denotes inferred transfer fault separating thrust segments of different 

relative motion. AA to AA’ and BB and BB’ are the dip line and strike lines 

respectively, where the inversion results shall be shown later. 

 

1.5 Scope of study 

The scope of this study includes the integrated interpretation of 3D EM (CSEM 

and MT), seismic, and well log data. Emphasis is given on the study of geophysical 

inversion and optimization of the key components of the inversion, such as 

regularization and cross-gradient weights, initial model, and input data. Among the 

inversion approach being studied are seismic-guided 3D MT inversion, joint 3D CSEM-

MT inversion, and seismic inversion. The scope includes development of novel, 

integrated seismic and EM data interpretation approach. Finally, the scope includes the 

interpretation of the inversion results in terms of regional and local geology for 
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hydrocarbon prospecting in an area with complex, fold-thrust structures in deepwater 

offshore Northwest Borneo. 

 

1.6 Novelty and significance 

The hierarchical workflow of selecting optimal seismic guided EM inversion 

workflow is novel. Among the crucial part of the workflow are the selection of the 

regularization weights based on field-realistic synthetic model. It is a more objective 

method for determining the weights, as compared to other conventional approach such 

as analysis of L-curve (Hansen, 1992) that has been shown to be subjective (Constable 

et al., 2015). The cross-gradient weight was also found to ha have significant impact on 

the inversion results. Using well resistivity logs as calibration, optimal cross-gradient 

weight was derived for this study. 

 Another novel aspect of this study was the use of seismic velocity as secondary 

guide to interpolate resistivity log during initial resistivity model building. This 

approach was shown to produce superior result as compared to the other options, based 

on the comparison of the results with well logs, convergence, data misfit analysis. This 

approach is reasonably simple and does not require complex rock physics relationship. 

Another advantage of this approach is that it produces a 3D resistivity model that is 

structurally consistent with the seismic velocity, which will be beneficial for any joint 

seismic and EM interpretation process.  

 A new seismic-electromagnetic projection (SEMP) attribute was proposed 

through a combination of SI-AI projection and log (resistivity). The SEMP attribute is 

novel, and further improves the pay sand facies separation from non-pay facies based 

on well log data. Extended elastic impedance (EEI) attribute (Whitcombe, 2002) was 
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also applied to produce total porosity volume as a secondary attribute to further polarize 

the delineated targets. The interpretation results correlate well with the observations 

from the three wells available in the study area. Several prospective targets, residing at 

structural flanks and synclines were identified by using the SEMP attribute in 3D 

geobody analysis.  

 

1.7 Thesis outline 

 

This thesis started in Chapter 2 by reviewing the fundamental aspects of MT, 

CSEM and seismic methods. Previous studies related to the integration of EM and 

seismic methods, forward and inverse theory, acquisition and processing of MT, CSEM 

and seismic data were reviewed. In Chapter 3, a summary was given on the location and 

geology of the study area, data availability and the software and hardware used for this 

study. Then, the methodology for optimization of seismic-guided 3D MT inversion, 

joint CSEM-MT inversion, seismic inversion and the integrated interpretation approach 

were explained. In Chapter 4, the results were presented, analyzed and discussed 

following the order as described in methodology. Finally, this thesis concludes in 

Chapter 5 where overall summary and recommendation for further improvement in 

future studies are given.  



12 

CHAPTER 2  
 

LITERATURE REVIEW 

 

2.1 Introduction 

In this chapter, literature on geology and petroleum system of the study area will 

be reviewed first, followed by some preliminaries on MT, CSEM and seismic methods 

shall be reviewed. The related forward and inverse theories that are necessary to 

estimate electrical and elastic models given the input data shall also be reviewed. 

Finally, the CSEM, MT and seismic data acquisition and processing aspects shall be 

discussed.  

 

2.2 Petroleum geology of the study area 

Some of the key elements of the petroleum system in this study area are 

discussed in this section. 

2.2.1 Stratigraphy and structural geology 

The source of sediment input to the study area is suggested to start during early 

Miocene, when Crocker fold-thrust was uplifted and exhumed due to series of 

deformation events (Kessler and Jong, 2015). During this time, West Crocker formation 

was exposed onshore and eroded. The resulting sediments were then transported 

offshore as prograding clastic deltas (Jong et al. 2016). The deepwater offshore Sabah 

basin are a complex interplay of turbidite sands and hemipelagic shales, interbedded 

with Mass Transport Deposits (MTDs) resulting from episodes of major slope failure 

(Jong et al., 2016).  
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NW Sabah is dominated by numerous structural trends of tightly folded and 

thrusted Miocene to Pleistocene sediments forming the Sabah deepwater fold-thrust 

belt, resulting from the complex interaction between gravitational forces and 

compressional tectonics (Legrand et al. 2015; Khamis et al., 2018). The turbidite sand 

deposition that occurs in deepwater can be divided into pre-kinematic, syn-kinematic 

and post kinematic phases by understanding the structural evolution of the study area. 

Turbidite sands that are deposited during pre-kinematic period tend to be unconfined. 

Meanwhile, turbidite sands that are deposited syn- and post-kinematic are usually 

confined between structural ridges, forming ponded turbidites (Khamis et al., 2018). 

This understanding of turbidite fans depositional pattern variation based on geological 

age is important in facies modelling in the study area. 

Through structural restoration study (Figure 2.1), it was determined that the 

deformation history of the study area could be separated into two main kinematic 

phases, which are pre-kinematic and syn-kinematic (Jong et al., 2015). Pre-kinematic 

phase occurs during approximately middle Miocene (equivalent to Kinarut and 

Kebabangan fan deposit), during which high sediment influx caused slope failures that 

creates mass transport complex (MTC) that were mobilized to deepwater (Jong et al., 

2015). Then, the MTC was underlain by the Kinarut fan. Then, in syn-kinematic phase 

from mid-late Miocene to early Pliocene (equivalent to later time of Kamunsu fan 

deposition) the toe-thrust anticlines were formed in the deepwater environment with 

turbidites deposition in confined settings and ponded turbidites (Jong et al., 2015). The 

pre- and post-kinematic period are separated by the Shallow-Regional Unconformity 

(SRU) that is aged about 8.5 Ma. 
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Figure 2.1 Deformation history of Sabah fold-thrust belt (Jong et al., 2015). Note that 

structuration in the outboard area continued to recent times, while in the 

inboard/proximal area deformation has ceased around top Lingan times. 

 

 

2.2.2 Petroleum system 

In our study area, the reservoir targets are the turbidite fans. MTD shales below 

Kebabangan fan is the primary source rock, aside from shales below Kamunsu and 

Kinarut turbidite fans (Jong et al., 2015). Understanding the timing of sedimentation, 

trap formation and hydrocarbon generation and expulsion is critical in assessing risk 

and probability of success of a prospect. From basin modelling study (Jong et al., 2014), 

it was determined that the expulsion of the hydrocarbon occurs after the trap has been 

formed (Figure 2.2). Hence, it was decided that the petroleum system in this study area 

is working, as evidenced by several successful drilling around this study area.  



15 

 

 

Figure 2.2 Peak oil and gas generation in the study area took place after the toethrust 

structures were well-developed, thereby providing a favorable timing for HC trapping 

and oil/gas accumulations (Jong et al., 2015). 

 

 

2.3 Preliminaries on MT, CSEM and seismic methods 

Since MT and CSEM are both of EM methods, the physics of both methods are 

governed by the Maxwell’s equation (equations 2.1 to 2.4). Meanwhile, the physics of 

seismic method is governed by the elastic wave equation (Robinson and Clark, 2017). 

Brief overview of MT, CSEM and seismic method are discussed in the following 

sections. 
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2.3.1 MT method 

MT method is a passive, inductive EM method that uses naturally occurring 

magnetic fields as its source (Cagniard, 1953; Chave and Jones, 2012). At short period, 

the signal comes from lightning discharges (also known as sferics) at equatorial region 

which travels in between ionosphere and earth’s surface as wave guide. At short period, 

the signal comes from interaction between solar wind and earth’s magnetosphere. There 

is a frequency band with reduction in MT signal which is termed as dead band between 

0.1 to 10 Hz. The MT source spectrum is shown in Figure 2.3 The time varying 

magnetic field induce currents in the subsurface, which is more conductive as compared 

to the very resistive air. The interaction of the telluric current with the subsurface 

produce measurable electric and magnetic fields at the earth surface that contain 

information about the subsurface conductivity, or its inverse, resistivity structure. MT 

is an inductive EM method and hence is preferentially more sensitive to conductors.  

The MT data are routinely acquired on land and marine for various purposes. 

For example, it is useful for tectonics (e.g., Maurya et al., 2018; Bai et al., 2010), 

geothermal (e.g., Maryanto et al., 2017; Soyer et al., 2018), carbon capture and 

sequestration (Streich, et al., 2010), and hydrocarbon exploration (e.g., Meju et al., 

2018a, 2018b). On land, the setup of MT survey consists of two orthogonal electric 

dipoles that are oriented North-South and East-West respectively (Figure 2.4). Three 

magnetic induction coils that records x, y and z components of the magnetic fields are 

used and buried to avoid noise. The electric dipoles and the coils are connected to data 

logger. Remote reference receiver that measures horizontal magnetic field is used to 

perform remote reference processing to remove correlated noise (Gamble et al., 1979). 

On marine case, the MT data is often acquired with CSEM data, although it can be 

acquired independently.  
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Figure 2.3 Typically observed magnetic field amplitude spectrum (Vozoff, 1991). 

 

 

 

Figure 2.4 Setup of magnetotelluric survey on land (Ostrander, 1999). Two electric 

dipoles are laid orthogonal to each other and oriented North-South and East-West, 

connected to the instrument tent via radio link and sometimes trenched in to minimize 

noise. Three components induction coils are connected to the data logger and buried in 

the ground to minimize noise arising from wind and ground vibrations due to vehicular 

traffic. 
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2.3.2 CSEM method 

The CSEM method uses artificial sources. Controlled Source Audio 

Magnetotellurics (CSAMT) (Goldstein and Strangway, 1975) and transient or time 

domain EM (TEM) (Nabighian, 1979) are examples of CSEM methods that are applied 

on land. For CSAMT, remote grounded dipole is used as EM signal source. The 

resulting CSAMT data are interpreted in similar way to the passive MT method. For 

TEM, time-varying current is supplied into ungrounded transmitter loop. Then, it is 

rapidly turned off to generate rapidly changing magnetic fields that will induce eddy 

current in the ground. The eddy currents will flow in conductive bodies and generate 

secondary magnetic field that decays with time. The rate of decay of these magnetic 

fields are recorded as voltages induced in the receiver loop. Good conductors produce 

magnetic field that decay rapidly and vice versa.  

In marine environments, there are several variants of CSEM surveying systems 

that are available (Figure 2.5) (MacGregor and Tomlinson, 2014). The standard 

configuration in Figure 2.5(a) uses a horizontal electric dipole (HED) source towed 

above the seafloor, while the EM receivers are deployed at the seafloor. Configuration 

in Figure 2.5(b) is a variant of Figure 2.5(a) where three-component EM receivers are 

put behind the HED source up to 1 km offset. The configuration in Figure 2.5(c) uses a 

linked HED source and EM receivers towed at depth of about 10 to 100 meters from 

sea surface, with source-receiver offset from 500 to 8000 meters (Mattsson et al., 2012). 

Finally, configuration Figure 2.5(d) uses sources and receivers that are vertical electric 

dipole (VED). Out of these configurations, Figure 2.5(c) is the most operationally 

efficient and has the closest inline receiver spacing. It is also possible to simultaneously 

acquire two dimensional (2D) seismic while acquiring EM data in this configuration 

(Engermark et al., 2014). However, configuration Figure 2.5(c) inherently lacks in 
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azimuthal coverage that is needed to resolve horizontal resistivity. It is also suitable 

only for shallow water environment of about 20 to 400 meters water depth. Constable 

et al. (2012) describes configuration Figure 2.5(b) as suitable for primarily mapping 

shallow seafloor, since it uses only 1 km source-receiver offset. The shallow seafloor 

features of interest include gas hydrates and shallow gas, which are considered as 

drilling hazards. When rugose seabed is present, it will be challenging to implement the 

Figure 2.5(b) configuration. Configuration Figure 2.5(d) systems using VED sources 

and receivers (Holten et al., 2009) is the most difficult to implement operationally. Only 

small tilt angles can be tolerated for the source and receiver, to avoid the horizontal 

electric field from dominating the response as the vertical electric field is small. The 

receivers are either using extensible tripod or buoy with strong buoyancy, while the 

source electric dipole is attached to the vessel and positioned accordingly to ensure that 

the verticality condition is met. Movement of the whole sources and receivers is 

operationally difficult, especially because the extensible tripod is huge in size. Although 

the usable offset from Figure 2.5(d) configuration is relatively short (about 500 to 1500 

meters), it has been shown from modelling (Cuevas and Alumbaugh, 2011) that the 

VED system is able to resolve resistive subsurface layers at shorter offset as compared 

to the HED system. Hence Figure 2.5(d) configuration has potential to improve the 

subseafloor resistivity lateral resolution (MacGregor and Tomlinson, 2014). The marine 

CSEM acquisition setup shown in Figure 2.5(a) is widely used, where a HED dipole 

source is towed at about 30 meters from seafloor and EM receivers are deployed at the 

seafloor. This configuration has the advantage to be easily setup for 3D survey, which 

provides data with good azimuthal coverage, which then increases the data sensitivity 

to horizontal resistivity. This configuration is used for acquisition of CSEM and MT 

data for this study and will be discussed in more detail in section 2.5.1. 
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Figure 2.5 Schematic diagrams showing various CSEM acquisition systems (Macgregor 

and Tomlinson, 2014). (a) Standard CSEM acquisition with a horizontal towed source 

and seafloor deployed receivers. (b) A variation on the standard in which a 1 km 

streamer of three-component receivers is deep-towed behind the source. (c) Streamer 

CSEM acquisition in which the source and receiver are towed behind the survey vessel. 

(d) Vertical electric dipole acquisition.  

 

2.3.3 Seismic reflection method 

Seismic reflection method is the most routinely used geophysical method in 

hydrocarbon exploration. Seismic sources such as airgun in marine, and explosive or 

vibroseis on land, are used to produce seismic waves that are reflected and transmitted 

at geological formation boundaries (Figure 2.6). On land, the receivers are typically 

geophones which records compressional (P) waves. Shear (S) wave recording is also 

possible using three-components geophones.  
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Figure 2.6 Marine seismic survey configuration. The source signals from the airgun 

penetrate the subsurface and are reflected at geological formation boundaries, travel up 

to surface and is finally recorded by the hydrophones encased in the streamer (Song et 

al., 2012). 

 

In marine environments, streamers containing regularly spaced hydrophones are 

used to record P-wave (Figure 2.6). In special case, a receiver unit can have both 

hydrophones and geophones as in the case of dual sensor streamer (Widmaier et al., 

2015), and ocean-bottom cable (OBC) or ocean-bottom node (OBN) systems (e.g., 

Akalin et al., 2014; Farfour and Yoon, 2016). The dual sensor streamer technology (also 

known as GeoStreamerTM), a proprietary technology by PGS was utilized in this study 

and will be discussed in more detail later.  

2.4 Previous studies 

In this section, previous works related to the research objectives of this study 

are reviewed.  

2.4.1 Image-guided EM inversion 

In image guided EM inversion (Zhou et al., 2014; Scholl et al., 2017; Kim et al., 

2019; Mackie et al., 2020), structural information is derived from collocated auxiliary 
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data and used as a soft constraint in the EM inversion process. The structural 

information is provided in the form of structure tensor (Knutsson, 1989) derived from 

two-dimensional (2D) cross section or three-dimensional (3D) cube which contains 

structural geology information of interest. It improves structural consistency of the 

resulting inverted resistivity models to the presumed subsurface structure. It also restrict 

the number of possible models and in effect reducing the uncertainty in the inversion 

process.  

Zhou et al. (2014) performed 2D DC resistivity inversion using guiding-image 

from ground penetrating radar (GPR) for hydrogeological study. They concluded that 

the result is more acceptable in hydrogeological sense as compared to the conventional 

inversion. Scholl et al. (2017) presented two case studies of image-guided inversion 

from land and marine environments using airborne EM and marine CSEM, respectively. 

For the land case study, they used outcrop observation to constrain the shallow 

structures of the inversion result. They concluded that the guided inversion produced 

resistivity structure that is more geologically realistic than the standard inversion result 

obtained using smoothness constraint only.  

Mackie et al. (2020) applied seismic guided MT and CSEM inversion on the 

same 3D field dataset used in this study. They found that the seismic-guided inversion 

result was comparable to the inversion that used seismic horizons as tear surfaces 

(Figure 2.7). Hence, using this approach increase efficiency and accuracy since horizon 

picking is not required, and possible human error in picking seismic horizons can be 

avoided. However, it was noted that the effect of varying key parameters in seismic-

guided EM inversion such as regularization and cross-gradient weights and choice of 

initial model were not investigated in detail. 
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Figure 2.7 Comparison of results of using seismic horizons (tear surfaces) and structure 

tensors in anisotropic CSEM inversion (Mackie et al., 2020). (a) Conventional 

constrained inversion using horizons as tear surfaces as hard constraints. (b) Seismic 

image guided joint CSEM and MT inversion. 

 

Determination of optimal weighting factors for various constraints is an 

important aspect in image-guided inversion. Peng et al. (2019) applied cooperative 

seismic and MT inversion of synthetic data using cross-gradient constraint. They 

performed sub-iteration inversion to choose cross-gradient weight for each iteration and 

selected the weight that produced the least data misfit. However, it has been shown that 

having least data misfit does not guarantee unique solution (Meju et al., 2018a). 

Robertson et al. (2020) studied various aspects in 3D MT inversion such as the 

regularization weights and choice of the initial model. They found that the 

regularization weight affects the inversion result significantly. However, their study is 

regional in nature and did not consider seismic and well log data as a priori information. 

Hoversten et al. (2021) performed seismic-guided CSEM inversion of CSEM data and 

determined the cross-gradient weight using well log as control data. They founded that 

seismic-guided CSEM inversion with optimal cross-gradient weight gives resistivity 
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that matches the resistivity log. It is noted that testing of cross-gradient weight using 

CSEM data is compute intensive due to high data density and will need to be made more 

efficient. 

 Based on the above studies, more objective criteria are needed in determining 

the regularization and cross-gradient weights for seismic-guided. Aside from that, a 

more efficient method is needed in evaluating the inversion parameters. In this study, 

well logs, section analysis and comparison with seismic structure shall be used in 

determining the weights. Inversion parameter testing shall also be done using MT data 

as inverting MT data is much more efficient than inverting CSEM data.  

2.4.2 Improvements in EM inversion accuracy 

The importance of honoring anisotropy in CSEM modelling has long been 

recognized (e.g., Tompkins et al., 2004). Advances in numerical modelling allowed 

anisotropy to be included in forward and inverse modelling successfully (Newman et 

al., 2010). However, in some inversion results, structural inconsistency between 

horizontal resistivity (ρh) and vertical resistivity (ρv) have been observed which are 

geologically not plausible (Figure 1.1). Meju and Fatah (2017) suggested that cross-

gradient constraint between can be applied to encourage the structural similarity 

between the ρh and ρv inverted models. Meju et al. (2019) formulate the problem for the 

non-linear cross-gradient constrained anisotropic CSEM inversion and its solution for 

small- and large-scale problems. If collocated seismic data is available, linear cross-

gradient constraint can be applied by encouraging the inverted ρh and ρv structures to 

follow the seismic structure (Mackie et al. 2020) as have been explained in section 2.3.1. 

However, selection of optimum cross-gradient weight is often done in either subjective 

or heuristic manner. 




