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PEMBELAJARAN KOLABORATIF TIDAK BERPUSAT CEKAP 

KOMUNIKASI DARIPADA MODEL HETEROGEN PEMBELAJARAN 

MENDALAM MENGGUNAKAN TEKNIK PENYULINGAN DAN 

BERASASKAN INSENTIF 

ABSTRAK 

Peranti pintar, secara kolektif, mempunyai data masa nyata dan sangat 

berharga yang boleh digunakan untuk melatih model pembelajaran mendalam yang 

sangat cekap untuk aplikasi kecerdasan buatan. Walau bagaimanapun, disebabkan sifat 

sensitif data ini, penyelidik lebih mengambil berat tentang privasi data mereka dan 

tidak rela untuk berkongsinya. Oleh itu, terdapat keperluan untuk belajar daripada data 

berharga ini secara tak terpusat dengan penahanan data yang disetempatkan pada 

peranti yang digunakan ini dan melaksanakan pengiraan yang diperlukan secara cekap 

pada peranti ini dengan mengeksploitasi sumber perkomputan mereka. Keheterogenan 

statistik dan keheterogenan model sepenuhnya adalah antara cabaran utama dalam 

menggunakan pendekatan Pembelajaran Tidak Terpusat (PTT) dalam senario sebenar. 

Lazimnya, semua teknik PTT sedia ada mengandaikan bahawa semua peranti akan 

mempunyai seni bina model homogen. Walau bagaimanapun, dalam aplikasi sebenar 

PTT, disebabkan sumber perkomputan yang berbeza dan keperluan perniagaan yang 

berbeza bagi peranti, adalah intuitif bahawa mereka mungkin mempunyai seni bina 

model yang berbeza sama sekali. Kajian yang dilakukan untuk menangani masalah 

heterogeniti model sepenuhnya adalah sangat terhad. Dengan cara yang sama, 

beberapa kajian telah dilakukan untuk menangani keheterogenan statistik namun 

kebanyakannya sukar untuk digunakan dalam senario sebenar atau hanya untuk kes 

guna yang terhad. Sumbangan kajian ini adalah kepada dua pendekatan utama; yang 



xv 

pertama ialah memelihara privasi, kecekapan komunikasi dan pendekatan PTT yang 

teguh, DL-SH, untuk menangani keheterogenan statistik dengan cekap dan yang kedua 

ialah DL-MH untuk menangani cabaran model penuh heterogeniti dengan cekap di 

samping melengkapi keheterogenan statistik. di samping itu, kerja ini juga menambah 

baik pendekatan kedua dan mencadangkan DL-MH (I-DL-MH) berasaskan insentif 

pelanggan yang berkesan dan kos efektif untuk membolehkan pelanggan mendapat 

beberapa insentif terhadap latihan Federated Learning (FL). Eksperimen yang meluas 

telah dilakukan untuk menilai prestasi pendekatan yang dicadangkan menggunakan 

seni bina model yang berbeza ke atas taburan data yang pelbagai dan pada beberapa 

set data. Analisis empirikal dengan pelbagai keadaan seni pendekatan menunjukkan 

hasil yang menguntungkan untuk pendekatan yang dicadangkan. DL-SH memberikan 

kira-kira 153% peningkatan prestasi kepada model global berbanding dengan standard 

FL dan sekitar 150% peningkatan berbanding pendekatan Out of Distribution Detector 

in Neural Network (ODIN) di bawah taburan data paling kompleks (bukan IID) dengan 

FMNIST menggunakan ResNet18. Begitu juga, I-DL-MH memberikan sekitar 225% 

peningkatan prestasi dengan hanya satu pusingan penyulingan daripada model global 

di bawah taburan data bukan IID dengan Cifar10 menggunakan ResNet18. 
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COMMUNICATION EFFICIENT DECENTRALIZED 

COLLABORATIVE LEARNING OF HETEROGENEOUS DEEP LEARNING 

MODELS USING DISTILLATION AND INCENTIVE-BASED 

TECHNIQUES 

ABSTRACT 

Smart devices, collectively, have very valuable and real-time data which can 

be used to train very efficient deep learning models for AI applications. However, due 

to the sensitive nature of this data, people are more concerned about the privacy of 

their data and not willing to share it.  Therefore, there is a need to learn from this 

valuable data in a decentralized fashion by withholding data localized on these 

intended devices and efficiently performing necessary computation on these devices 

by exploiting their computational resources. Statistical heterogeneity and fully model 

heterogeneity are among the key challenges in applying the Decentralized Learning 

(DL) approaches in real scenarios. Typically, all existing DL techniques assume that 

all devices would have homogeneous model architecture. However, in real 

applications of DL, due to different computational resources and distinct business 

needs of devices, it is intuitive that they may have completely different model 

architectures. Very limited work has been performed to address fully model 

heterogeneity problem. In the same way, some work has been performed to address 

the statistical heterogeneity however mostly is hard to apply in real scenarios or is only 

for limited use cases. The contribution of this work is mainly two approaches; the first 

is privacy-preserving, communication efficient and robust DL approach, DL-SH, to 

efficiently address the statistical heterogeneity and the second is DL-MH to efficiently 

handle the full model heterogeneity challenge while satisfying the statistical 
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heterogeneity. Additionally, this works also extends the second approach and proposes 

an effective and cost-effective, client incentive-based DL-MH (I-DL-MH) to enable 

the clients to get some incentives against FL training. Extensive experiments were 

performed to evaluate the performance of proposed approaches using different model 

architectures on various data distributions and on multiple datasets. Empirical analysis 

with various SOTA approaches shows auspicious results for proposed approaches. 

DL-SH gives around 153% performance gain to the global model as compared to 

standard FL and around 150% improvement as compared to the ODIN approach under 

the most complex data distribution (non-IID) with FMNIST using ResNet18. 

Similarly, I-DL-MH gives around 225% performance improvement with only one 

round distillation from the global model under non-IID data distribution with Cifar10 

using ResNet18. 
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CHAPTER 1  
 

INTRODUCTION 

1.1 Overview 

Recently, deep learning has achieved a very high peak of acceptance in the 

artificial intelligence and machine learning research community due to its ability to 

automatically extract and learn high-level complex features by the composition of low-

level features. One of the most prominent features of deep learning which typically 

differs from traditional machine learning is its remarkable ability to extract and 

sufficiently learn these complex features automatically i.e. without the specific need 

for hard-coded rules or domain expert knowledge or more intermediate steps to solve 

a problem. Deep learning has already outperformed the numerous traditional 

approaches in many fields including image recognition, face detection, speech 

recognition, fraud detection and human action recognition (Simard, Steinkraus and 

Platt, 2003; Hinton et al., 2012; Graves, Mohamed and Hinton, 2013; Hannun et al., 

2014; Taigman et al., 2014; Krizhevsky, Sutskever and Hinton, 2017; Sezavar, Farsi 

and Mohamadzadeh, 2019; Gheitasi, Farsi and Mohamadzadeh, 2020; Salehi and 

Pouyan, 2020; Savadi Hosseini and Ghaderi, 2020; Shaeiri and Kazemitabar, 2020). 

The optimal performance of deep learning models greatly depends upon the 

availability of a significantly enormous amount of valuable data and the availability of 

high computational resources. So, to get a robust and efficient deep learning model, 

we typically need a large amount of valuable data and ample computational resources. 

As smart devices (including smart mobile phones, smart tablets and smart 

wearable devices) are being empowered with high computational resources with large 

memory storage and incredibly powerful sensors, people are rapidly switching from 

laptops and conventional desktop computers to these smart devices as primary 
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computing sources (Pew Research Center, 2016).  Particularly, the invention of AI-

based smart chips (Neuromation, 2018) being incorporated in almost all the latest 

smartphones, has more significantly boosted this trend where companies’ goal is to 

add neural network power to smart devices. These devices are generating very large 

and valuable data including their location history, pictures, typing patterns, medical 

history, life logging data, etc. So, there is a lot of valuable real-world data, however in 

a decentralized fashion, which can be used to train deep learning models to get more 

accurate and intelligent applications. 

Though these devices, collectively, possess a large amount of data, however, 

usually, the nature of this data is highly sensitive, and people are not willing to 

compromise their privacy by sharing their personal data for model training.  

Furthermore, people have expressed more serious concerns about the privacy of their 

data, especially, after the recent breach of Facebook and other top companies’ data 

(Hill and Swinhoe, 2021). Taking this into account, recently, European Union and 

many other countries have enforced different data protection laws (KPMG, 2017; 

GDPR, 2018; Act, 2020) and have made it almost impossible for companies to collect, 

transfer, use or integrate user’s data without their consent for any purpose. 

Traditionally in the distributed learning environment, to train a model, we 

typically collect all data at a central location and properly distribute it to separate 

parties for processing however, now, due to more privacy concerns of people and 

extremely strict privacy laws, it’s almost impossible to collect updated real-time users’ 

private data. However, on the other hand, such smart devices and many commercial 

organizations like Banks, Hospitals, etc. have significantly valuable user data that 

could be leveraged to build more accurate and state of art applications by training deep 
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learning models on this valuable users’ data. Therefore, such factors inspired 

researchers to tend to (pure) decentralized learning ensuring the privacy of data. 

In this scenario, it is intuitive to keep the private data of users stored locally 

and perform the necessary computation (model training) on these devices. Thus, 

ensuring the privacy guarantee of users’ personal data and, on other hand, also utilizing 

the computational resources of client devices. Therefore, in this way, different devices 

will collaborate with each other to train a more efficient deep learning model(s). 

Different collaborative learning techniques (Shokri and Shmatikov, 2015; Konečný et 

al., 2016; Brendan McMahan et al., 2017; Jeong et al., 2018; Corinzia and Buhmann, 

2019) have been proposed to train deep learning models where different clients 

collaborate with each other to update their models by leveraging the learned 

knowledge of other clients rather than their private data. Specifically, recently, Google 

has coined a very promising decentralized learning technique called Federated learning 

(Konečný et al., 2016; Brendan McMahan et al., 2017) which has instantly attracted a 

large research community in Machine learning towards this research direction i.e., 

rather transferring data to code (computing), we move the code to data(model). 

In federated learning, we typically assume some clients want to collaborate to 

train a global model for some specific tasks. All devices collaborate with each other 

through a centralized server (aggregation server). In the first place, the centralized 

server forwards the copy of the global model to all participants (active devices), these 

devices train their copy of the global model on their private data and send this updated 

model back to the server. After receiving all model updates from clients, the 

centralized server performs weighted aggregation on these local models 

(parameters/gradients) to update the primary global model. Subsequently, the 

centralized server again sends this updated model to all active clients, so active clients 
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again train this model, and this process continues until the global model is converged. 

This thesis has discussed the fundamental federated learning concept thoroughly in 

section 2.3. 

FL has many advantages as compared to traditional distributed machine 

learning approaches (Dean et al., 2012; Shamir, Srebro and Zhang, 2014; Konečný et 

al., 2016; Reddi et al., 2016) like privacy, where devices do not need to share their 

private data with other devices including a centralized server; Low latency, as devices 

would have updated model locally, so they do not need to wait for inferencing from 

cloud-server. Huge computational resources, as usually hundreds of devices, could 

participate in FL so a lot of computational resources would be available to train the 

model. Similarly, FL can help to utilize the network bandwidth more efficiently as 

there is no need to transmit raw data to the cloud server rather just need to share the 

trained model parameters. 

FL is a comparatively new research domain and recently, researchers have 

categorized FL into three main subcategories based on the distribution of data named 

1) Horizontal FL where devices may have different samples of the dataset with the 

same feature space 2) Vertical FL where devices may have different samples but with 

different features, and 3) Federated transfer learning where devices may have a 

different sample with different features (Yang et al., 2019). These subcategories are 

further discussed in chapter 2. This thesis focuses mainly on horizontal federated 

learning where usually small devices with less computational resources, but valuable 

data collaborate to train a single global model. 

Though federated learning has been emerging as a very efficient decentralized 

learning framework to leverage the massively distributed, highly unbalanced, and non-

independent and identically distributed (non-IID) private data of smart devices, 
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however, it comes with many (unique) challenges related to data, model architecture, 

communication and privacy. Like, here, data is typically expected to be massively 

distributed, non-IID, unbalanced and inaccessible by other devices or centralized 

servers due to privacy constraints. Communication cost could be much higher as 

compared to computation cost and could experience challenges of limited and 

inconsistent bandwidth for different devices and of passive sampling. Participating 

devices may naturally require specialized or more personalized models based on their 

specific requirements. Similarly, Privacy is one of the primary focus of decentralized 

learning so local data of devices would not be accessible to any other party. Though 

the primary focus of this thesis is on model heterogeneity and statistical heterogeneity 

(non-IID) while reducing the communication and computation overhead however 

comprehensive overview of core challenges of federated learning along with recent 

research work has been covered in section 2.3.5. 

The primary goal of federated learning is to train a single global model and it 

works with the assumption that all clients would have reasonable computational 

resources and all participating devices would be able to train the same complex model 

architecture. However, in the real scenario, this assumption is not logical as more 

complex deep learning models are being developed to get more accurate performance 

on real word complex tasks and, due to different constraints, it is not possible for all 

devices having valuable data to be capable to train the same complex model. More 

specifically, In model heterogeneity cases, due to different computational resources 

and different business needs (tradeoff between speed and accuracy), it is intuitive that 

devices may have different sizes of deep networks (different no. of layers) or may have 

entirely different network architectures like some devices may be using CNN, some 

device may be using ResNet, and some devices may be using Inception. This model 
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heterogeneity problem becomes more challenging if we further relax the assumption 

that, even, heterogeneous clients should have the same number of target nodes in the 

output layer. Actually, this scenario becomes more intuitive in real applications of 

federated learning where clients would have non-IID data. So, all devices should have 

personalized models based on their categories of data. For instance, in healthcare 

applications, if a device can measure samples of only two diseases, then its model 

should have only two output nodes to classify those two diseases and if a device has 

more disease samples, then its’ model should have more output nodes. In the existing 

literature, it is assumed that all collaborating models should have the same output layer 

which results in unnecessary computation and communication overhead. 

Recently some research works have been performed to partially address the 

model heterogeneity however most of them work with some strong assumptions or are 

not feasible to be applied in practical FL scenarios. More specifically, these approaches 

are difficult to employ in our scenario, where entirely different model architectures, 

having different output layers based on available data, can also collaborate in FL 

settings. Some researchers (Wang, Kolar and Srebro, 2016; Smith et al., 2017; 

Corinzia and Buhmann, 2019; Sattler, Muller and Samek, 2021) have leveraged 

distributed Multitask learning to address the model heterogeneity. However, some 

approaches can only be applied to convex problems (Smith et al., 2017), or are very 

costly to scalable in large FL scenarios (Corinzia and Buhmann, 2019). Similarly, to 

make a global model personalized, most personalization techniques suggest retraining 

the (collaboratively trained) global model on the users’ local private data (Sim, 

Zadrazil and Beaufays, 2019). Some researchers have proposed model personalization 

approaches using transfer learning (K. Wang et al., 2019; Schneider and Vlachos, 

2019; Mansour et al., 2020). In transfer learning, usually, the last layers of a trained 
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model are replaced with new layers to leverage the learned knowledge of the trained 

model on some new tasks. some researchers (Finn, Abbeel and Levine, 2017; Jiang et 

al., 2019; Khodak, Balcan and Talwalkar, 2019; Fallah, Mokhtari and Ozdaglar, 2020) 

have also leveraged meta-learning to solve the personalization problem. Meta-learning 

is generally defined as “Learning to Learn” where a model is made adaptive by training 

it on multiple tasks in such a way that it can learn new tasks by providing very few 

examples of new tasks.  

Recently some researchers (Jeong et al., 2018; He, Annavaram and 

Avestimehr, 2020; Ma, Yonetani and Iqbal, 2021) have employed a communication-

efficient and very effective approach, called distillation (Hinton, Vinyals and Dean, 

2015; Anil et al., 2018) to partially leverage the heterogeneous models in FL settings. 

Distillation has been proven to be a very efficient approach to effectively transfer 

knowledge among independent models, more specifically, by efficiently distilling the 

knowledge from a trained model to an untrained model. As FL, also, typically require 

all the models to transfer their knowledge (trained model) to the centralized server for 

aggregation so here distillation seems to be a potential approach which could be 

leveraged in FL settings to also address the model heterogeneity challenges. However, 

distillation also has its specific limitations in that it only works on IID data distribution 

whilst in FL, data distribution is naturally expected as non-IID so it could be 

challenging to properly apply distillation in the FL setting. Like, recently (Jeong et al., 

2018) proposed a Federated distillation algorithm which could be employed as a 

variation scheme of FL to learn in a decentralized environment. Though the author just 

adopted this approach to demonstrate that codistillation (a variant of distillation) is a 

more communication-efficient technique as compared to standard FL, however, the 

author applies the codistillation approach after making all data distributions as IID 
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using Generative Adversarial Network (GAN) approach. Distillation and 

Codistillation have been explained thoroughly in section 2.4 and section 2.5 

respectively. 

1.2 Problem Statement 

In decentralized settings where we assume that there is no centralized server to 

properly manage the distribution of data so it is very likely that clients would have 

highly unbalanced and non-IID data as each device or user may have their specific 

preferences. For instance, in healthcare applications, some devices might have samples 

of only two diseases whilst others may have samples of 10 diseases. So, all devices 

would have a different number of samples (unbalance) and samples of different 

diseases (non-IID). Many techniques have been proposed to sufficiently address the 

statistical challenges however most of them work with some unrealistic assumptions 

or are difficult to implement in a real FL scenario. Like the initial work in FL, FedAvg 

(Brendan McMahan et al., 2017); a state of art algorithm based on SGD, shows that it 

can handle a certain amount of non-IID data however (Zhao et al., 2018) show 

empirically that for high skewed non-IID data, the performance of the convolutional 

neural network, trained using FedAvg can drop reasonably by 51 % on CIFAR10. 

Some researchers (Smith et al., 2017; Corinzia and Buhmann, 2019; Sattler, 

Muller and Samek, 2021) leveraged Multitask Learning to efficiently handle the non-

IID distribution by personalizing each task (device model) on their private data. (Jeong 

et al., 2018; Zhao et al., 2018) tackle the statistical heterogeneity by properly 

distributing some public or private data among local clients. Although it could be 

reasonable solutions to address the statistical challenge, however, it could be difficult 

to carefully arrange labelled public data or to convince local clients to breach their 
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privacy by distributing their private data. The more feasible and realistic approach 

could be if unlabelled data could be properly utilized to efficiently handle the statistical 

challenge as getting some unlabelled data is much more convenient rather than 

collecting correctly annotated labelled public data or sharing private data. 

Likewise, the model heterogeneity (having different model architectures) 

brings some new challenges like naïve federated learning can’t be applied directly to 

this setting when clients have a different number of parameters (simple averaging of 

parameters or gradients is not possible) so tackling this scenario, there is a need to 

investigate some other collaborative learning techniques which might be leveraged in 

this specific real-world scenario of decentralized learning. 

To address the model heterogeneity challenge, some researchers (Smith et al., 

2017) have leveraged distributed Multitask learning to handle the model heterogeneity 

challenge however in a significantly limited way as their work only focuses on convex 

problems and could not be applied to deep learning (non-convex) problems. In a 

similar fashion (Corinzia and Buhmann, 2019) has used the Bayesian network with 

multitask learning for model heterogeneity which is applicable to non-convex 

problems however is very costly to be scalable in large, federated learning scenario as 

they refine the models sequentially. One more recent work (Sattler, Muller and Samek, 

2021) proposed a secondary method to improve the performance of client models. It 

uses the clustering approach with multitask learning to further improve the 

performance of models by personalizing the separate models of different devices once 

the federated learning has been performed. Therefore, significantly limited work has 

been performed to properly address the model heterogeneity challenges as mentioned 

earlier. 
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Furthermore, in FL, when a centralized server performs aggregation on the 

client’s update then the server assigns some weights to these updates before 

aggregation. These weights are assigned based on the number of training samples on 

which a model was trained. However, it might not be an efficient way to assign 

weightage like a device might have more samples, however, its model is not well 

trained (due to diff. factors as discussed later). Similarly, a model trained on a few 

training examples might be more efficient. Therefore, there is a need to devise a more 

efficient way to assign weightage to different models’ output. For instance, it could be 

a more promising solution if weights are based on the client model’s learning so if a 

client is more confident about its output, then the server may give it more weightage. 

Typically, the main objective of federated learning is to train the global model 

where all participating devices collaborate to share their knowledge with the global 

model. In federated learning settings, typically, it is assumed that clients would be 

voluntarily convinced to participate in federated learning training however, in practical 

scenarios, it could be very difficult to convince the clients to allow someone to 

consume their computational and communicational resources along with valuable data 

with no incentives. In pioneer work (Konečný et al., 2016; Brendan McMahan et al., 

2017) of federated learning by Google, they use the complete model sharing approach 

where in each round, participating clients can also get the updated trained model from 

the server (as incentives) so they can also use that updated model on their devices. 

Moreover, Google has access to (android) operating systems (OS) of millions of 

devices, so they can return the incentives in the form of OS updates. However, for 

small third-party developers/organizations, it might not be possible to give incentives 

to participating clients in the same manner. Particularly, under fully model 

heterogeneous settings, this could be more difficult where all clients may have entirely 
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different model architectures including different targets. Thus, the client cannot distil 

the knowledge from the global model straightforwardly. Thus, cost-efficient incentive 

schemes are required to motivate the client devices to participate in federated learning 

training. 

Therefore, there is a need to propose a more robust and communication-

efficient decentralized learning framework by appropriately addressing their specific 

limitations to learn from fully heterogeneous models (having different model 

architectures with different target nodes) while reasonably satisfying the statistical 

heterogeneity. 

1.3 Research Questions 

• How to efficiently handle statistical heterogeneity with unlabeled public data 

in FL settings. 

• How fully heterogeneous models (having different architectures along with 

different target labels) could be leveraged in the current federated learning 

framework. 

• How to encourage clients to participate in current federated learning training 

1.4 Research Objectives 

• To propose an efficient decentralized learning approach to address the 

statistical heterogeneity using unlabeled data. 

• To propose a model agnostic approach to enable the fully heterogeneous model 

architectures to efficiently perform decentralized learning whilst satisfying the 

statistical heterogeneity. 
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• To propose a cost-effective approach to encourage clients to participate in 

federated learning settings. 

1.5 Key contributions 

The key contributions of this thesis are; 

1. A confidence matrix is computed for each client by training a binary 

classifier on unlabeled data to address the statistical heterogeneity problem. 

It gives around 153% performance gain to the global model as compared 

to standard FL under the most complex data distribution (non-IID) with 

FMNIST using ResNet18. 

2. Cost-effective mapping and masking schemes are applied to clients' outputs 

to enable fully heterogeneous model architectures to participate in 

federated learning training under non-IID settings. It reduces the 

communication cost by around 99% as compared to standard FL under the 

most complex data distribution (non-IID) with CIFAR100 using ResNet18. 

3. Very appealing incentives are provided to clients in the form of updated 

knowledge from the global model with negligible additional 

communication costs. Client models get almost similar performance to the 

global model by following this incentive approach. 

1.6 Scope of Thesis 

Figure 1.1 illustrates the scope of this research work. It shows the target areas 

of this research work. For instance, it addresses the challenges in horizontal FL under 

cross-device FL settings. Similarly, it selects partially and fully heterogeneous models 

with various data distribution settings including IID, non-IID and hybrid IID data 
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distributions. Furthermore, it considers various image classification models1 for the 

evaluation of proposed techniques on benchmark datasets. it considers two very 

popular deep learning models (ResNet (He et al., 2016), and DenseNet (Huang et al., 

2017)) as deep and shallow model architecture respectively to check the impact of our 

proposed approach under different model architecture settings. 

 

Figure 1.1 Scope of thesis 

 

1.7 Thesis Organization 

This thesis has been divided into multiple chapters for a better understanding 

of the viewers.  

Chapter 2 presents the basic concepts of various model learning approaches 

including data parallelism and model parallelism. It further discussed the overview of 

decentralized/federated learning including its definition, types, applications, and key 

challenges of FL. It extensively presents the critical overview of existing approaches 

to address these challenges following the overview of knowledge-sharing approaches 

like distillation and codistillation. 

 
1 Though, here only two image classification model architectures are selected (as they are more 

commonly used in literature), however this work is not specific to just these algorithms rather it is almost 

architecture independent and can be extended to other deep learning model architectures. 
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Chapter 3 first presents an overview of the proposed research methodology 

followed in this thesis. This clearly illustrates the general steps followed to achieve the 

research objectives stated in section 1.4 along with the relationship between research 

questions and research objectives. Subsequent sections comprehensively explain the 

proposed approaches including their technical details. Finally, it explains the 

implementation details and evaluation metrics used to implement and evaluate the 

proposed approaches in this thesis. It explains in detail all the datasets, data 

distributions, model architectures and benchmarks used in this thesis.  

Chapter 4 presents the empirical analysis and results of the proposed 

approaches DL-SH and DL-MH. Moreover, it also presents the empirical analysis of 

the I-DL-MH approach.  

Chapter 5 presents the conclusion and future directions related to this research 

work. 
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CHAPTER 2  
 

LITERATURE REVIEW 

This chapter provides an in-depth review of basic concepts, essential knowledge 

and recent works related to this research work. This chapter first illustrates a brief 

overview of different categories of model learning approaches. Subsequently, an 

overview of centralized learning approaches including data parallelism and model 

parallelism is presented in section 2.1. An overview of different decentralized learning 

approaches is discussed in section 2.2. Section 2.3 explains federated learning, and its 

types followed by its core challenges. The concept of distillation is explained in section 

2.4 while Codistillation approaches including distillation are illustrated in section 2.5. 

Finally, section 2.6 present a comprehensive summary of this chapter. 

Traditional machine learning models, usually, have few parameters and aren’t 

data hungry such that even a small but reasonable amount of input samples are sufficient 

to learn a model. This traditional machine learning requires human intervention for 

hand-crafted features. This works well for such applications where relevant features can 

be constructed by domain experts easily. However, traditional machine learning doesn’t 

perform well for complex machine learning problems where it is required to extract 

complex features from unstructured data like images, video, speech, etc.  

Deep learning comes into action to properly address these limitations by 

automatically extracting and learning these complex features from raw data. Deep 

learning has been enjoying unprecedented success in many fields including image 

recognition, face detection, speech recognition, fraud detection and human action 

recognition (Simard, Steinkraus and Platt, 2003; Hinton et al., 2012; Graves, Mohamed 

and Hinton, 2013; Hannun et al., 2014; Taigman et al., 2014; Krizhevsky, Sutskever 

and Hinton, 2017; Sezavar, Farsi and Mohamadzadeh, 2019; Gheitasi, Farsi and 
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Mohamadzadeh, 2020; Salehi and Pouyan, 2020; Savadi Hosseini and Ghaderi, 2020; 

Shaeiri and Kazemitabar, 2020). However, to learn these complex features and to 

achieve superior accuracy, deep learning requires very deep and complex models 

(containing a significantly ample number of parameters) and an enormous amount of 

training data. It means that a lot of computational resources are required to train these 

very deep and complex models and to keep a huge amount of data.  

Standalone machines having some GPUs might be able to train some small deep 

models with a limited amount of data, however, it limits the size of the model and data 

on a single machine. These limitations motivated the researchers to develop the 

distributed system to train very large deep and complex networks (Dean et al., 2012; 

Chilimbi et al., 2014). Where multiple machines collaborate to train a more efficient 

and accurate model by sharing their resources. 

We can further classify distributed learning (aka collaborative learning) into two 

key categories; Centralized learning and Decentralized learning based on the 

distribution of data and model training. More Precisely, the primary difference between 

Centralized and Decentralized learning (DL) approaches is the existence of a centralized 

server to properly manage the distribution of data or training. Though, decentralized 

learning approaches, usually, also include a centralized server however that is just used 

for parameter averaging and assert no control over the distribution of data. 

2.1 Centralized distributed learning approaches 

Centralized distributed learning is a kind of client-server architecture where all 

devices are linked to a centralized computation node (server). This centralized server 

takes the responsibility to properly distribute the model (training) or data among 

connected devices in a balanced and IID manner. These devices typically perform the 
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necessary computation on input data/model and then return it to the server. Then server, 

further, processes these computed results as per specific requirements/objectives. 

Centralized distributed learning could be further categorized, mainly, in two 

subcategories called data parallelism (for very huge data) and model parallelism (for 

very deep models). 

2.1.1 Data Parallelism  

Data parallelism becomes effective, usually, in a scenario when there is an 

enormous amount of data that can’t be processed on a single machine due to limited 

memory resources or it could take a very long time to process it on a single machine. In 

data parallelism, as illustrated in Figure 2.1, a centralized server splits the training data 

in a balanced way and properly distributes it to multiple computing nodes. Where each 

worker performs the training on its sub-dataset and calculates the updates (model 

parameters). After performing training on their sub-datasets, all clients send these 

updates to the centralized computing node (server) which synchronized these updates 

until the objective is complete. 

(Dean et al., 2012) proposed a very large-scale distributed framework called 

DistBelief to train a very large deep network (with 1 billion connections) using clusters 

of thousands of machines to get very high accuracy on the ImageNet 22K category 

classification task. They proposed Downpour SGD (asynchronous SGD) and 

Sandblaster to increase the training speed of deep networks. Firstly, they properly 

distribute the model parameters on multiple servers, called parametric servers. 

Furthermore, there are many workers, linked to these parametric servers, to 

independently process a minibatch of data. These workers download the updated 

parameters of the model from these parametric servers, efficiently compute gradients of 

the loss to these parameters after training on their minibatch of data, and finally, send 
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these updated gradients to parametric servers which further updates the model by 

aggregating these updates asynchronously. Though this method scales well up to 

hundreds of workers however faces the problem of stalled updates due to its 

asynchronous nature. Furthermore, in this method, parameters may often diverge 

because these parameter servers don’t communicate with each other. 

Similarly, DANE (Shamir, Srebro and Zhang, 2014) and its variants (Reddi et 

al., 2016) have also shown communication efficient performance on convex problems 

with the assumption that data is properly distributed in IID fashion with few clients. 

Apparently, it seems that federated learning also works in the data parallelism 

fashion, however, data parallelism approaches in a centralized learning environment 

work with the key assumptions of IID data distributions and there is a centralized server 

to properly control the distribution of data while these assumptions strongly contradict 

with the federated learning environment. 

 

Figure 2.1 Data Parallelism example 

2.1.2 Model Parallelism 

Model parallelism is more effective in cases when there is a very large model 

having billions of parameters which can’t be trained on a single machine due to limited 

memory and computational resources. In model parallelism, a centralized server splits 



19 

the large model and distributes the sub-parts like different layers of a large network to 

multiple computing nodes as illustrated in Figure 2.2. These computing nodes train their 

assigned sub-part of a network (model) and then returned it to a centralized server which 

combines all these computations by aggregation or using some other methods. As 

compared to data parallelism, model parallelism is more complex and as there are so 

many different machine-learning model architectures therefore there is no standard to 

distribute the model. 

Recently, different techniques have been proposed for the parallelization of deep 

models. For instance, (Teerapittayanon, McDanel and Kung, 2017; Ko et al., 2019) 

argued that we can train the first few layers of a neural network on the local device(s) 

and the last layers can be trained on a server or cloud. Similarly, we can also use this 

model parallelism technique for more efficient data scoring. 

Another very efficiently scalable large-scale deep learning framework named 

Adam (Chilimbi et al., 2014) has shown very good classification performance on 

ImageNet 22K category tasks using only a cluster of 120 machines. Though in a naïve 

federated learning setting, we don’t assume model parallelism, however recently 

another potential approach (Split Learning aka SL) based on model parallelism is also 

being used to perform privacy-preserving decentralized learning (Gupta and Raskar, 

2018). FL has been discussed in detail in section 2.3. 
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Figure 2.2 Model Parallelism example 

2.2 Decentralized learning approaches 

In decentralized collaborative learning, usually, there is no centralized server to 

properly distribute the data or model training among computing nodes. We can, loosely, 

explain it as a kind of peer-to-peer network where there is no single entity to claim the 

ownership of data and model training. Here we are considering the more practical 

scenario of decentralized computing where there are hundreds of devices having 

valuable but private data. These devices are not willing to compromise their privacy so 

they are not willing to share their data however still, they show consensus to participate 

in model training by performing some model training on their local devices and then 

these updated models could be shared with other devices. So, in this way, participating 

devices would collaborate with each other without compromising the privacy of their 

private data. 

There are many decentralized learning approaches (Shokri and Shmatikov, 

2015; Konečný et al., 2016; Brendan McMahan et al., 2017; Lalitha et al., 2018; 

Corinzia and Buhmann, 2019) to learn from decentralized data however current state of 

art decentralized learning approach, called federated learning, pioneered and coined by 



21 

Google   has been extensively used to learn from a highly unbalanced, massively 

distributed and private decentralized data. federated learning has been explained in 

detail in section 2.3. 

Contrary to traditional distributed learning, in decentralized learning (federated 

learning)2 there are a lot of unique challenges related to data, model architecture, 

communication, and privacy. Like, here, data is expected to be massively distributed, 

non-IID, unbalanced and inaccessible by other devices or centralized servers due to 

privacy constraints. Communication cost could be much higher as compared to 

computation cost and could face challenges of low and inconsistent bandwidth for 

different devices and, stagnant data. Participating devices may require specialized or 

more personalized models based on their requirements. Similarly, Privacy is one of the 

primary focuses of decentralized learning so local data of devices would not be 

accessible to any other party. 

The FL works in such a way that its primary goal is to train a single global model 

with the collaboration of several devices whilst in practical scenarios, there are many 

situations where this assumption might not be true like for devices with different 

computational resources, it is intuitive that they might not have the capacity to train the 

same model architecture rather different devices might have different model 

architectures. Similarly, in the case of large organizations like hospitals and bank 

sectors, which also have private and sensitive information, it is intuitive that due to 

different business needs, they may have different model architectures so in such 

scenarios, sticking with the assumption of naïve federated learning to train the same 

deep learning model is not practical. 

 
2 As current privacy preserving decentralized learning domain has been first coined by Google as 

Federated Learning so almost all research work, being done in such decentralized learning environment, 

refer this domain as Federated Learning. 
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The model heterogeneity (having different model architectures) brings some 

new challenges like naïve federated learning can’t be applied directly to this setting 

when clients have a different number of parameters (simple averaging of parameters or 

gradients is not possible) so to tackle this scenario, there is a need to investigate some 

other collaborative learning techniques which might be leveraged in this specific real-

world scenario of decentralized learning. 

Recently researchers have proposed some approaches to overcome the different 

challenges of federated learning like (Lalitha et al., 2018) propose a fully decentralized 

learning approach to omit the need for a centralized server and clients only collaborate 

with just one hop device using a Bayesian-like approach however it’s not scalable to 

real federated learning settings as it does not address the system heterogeneity and 

statistical heterogeneity issues of FL.  

To address the statistical heterogeneity challenge of FL, some research work 

(Jeong et al., 2018; Zhao et al., 2018; Guha, Talwalkar and Smith, 2019) suggest 

sharing some local private data of clients or using some proxy labelled data on the server 

however these approaches could be difficult to implement like it could be difficult to 

annotate the data to make it labelled data, it could also create communication overhead 

and, in addition, it may also violate the key assumption (privacy) in FL.  

There are some approaches (Smith et al., 2017; Corinzia and Buhmann, 2019; 

Sattler, Muller and Samek, 2021) that reveal that Multi-Task Learning (MTL) could be 

a natural way to handle statistical heterogeneity by training separate but related models 

(tasks) on the client. However, these approaches also have different limitations. For 

instance (Smith et al., 2017) only work for convex optimization problems. (Corinzia 

and Buhmann, 2019) is not scalable for large FL settings as it refines the models 

sequentially which could be much more expensive. Some researchers (Jeong et al., 
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2018; Duan et al., 2019) also suggest using data augmentation to make the local data 

distributions of clients as IID using GAN or some other approaches however these 

approaches could be computationally expensive and may risk the data privacy of 

participating clients. 

To address the model heterogeneity challenge, Some researchers (Smith et al., 

2017) have leveraged distributed Multitask learning to handle the model heterogeneity 

challenge however in a significantly limited way as their work only focuses on convex 

problems and could not be applied to deep learning (non-convex) problems. In a similar 

fashion (Corinzia and Buhmann, 2019) has used the Bayesian network with multitask 

learning for model heterogeneity which is applicable to non-convex problems however 

is very costly to be scalable in large, federated learning scenario as they refine the 

models sequentially. One more recent work (Sattler, Muller and Samek, 2021) proposed 

a secondary method to improve the performance of client models. It uses the clustering 

approach with multitask learning to further improve the performance of models by 

personalizing the separate models of different devices once the federated learning has 

been performed. Therefore, significantly limited work has been performed to properly 

address the model heterogeneity challenges as mentioned earlier. 

Some researchers (Jeong et al., 2018; Lalitha et al., 2018) have also proposed 

alternatives or modified schemes of federated learning like (Lalitha et al., 2018) 

proposed one-hop federated learning where they omit the centralized server and devices 

only communicate with only their one hop devices. However, they work with the 

assumption of IID distribution and homogeneous model architectures. Similarly, some 

researchers (Gupta and Raskar, 2018) have proposed split learning (SL) as an alternative 

approach. In SL, usually, all devices try to train a single copy of the model by training 

different parts/layers of a single model. It mainly adopts the model parallelism approach 
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and has two variants 1) with weight sharing: in this variant, devices are assumed to 

share the training weights among each other for synchronization, however it comes with 

a high risk of information leakage and high communication overhead. 2) without weight 

sharing: in this variant, devices are assumed to take an alternating turn of epochs to 

work with the server which is also a not realistic assumption in real DL settings. As in 

real DL settings, there is also a big challenge of the dropout of participating devices. 

Another potential alternative approach called Distillation (Hinton, Vinyals and 

Dean, 2015; Anil et al., 2018) has been proven to be a very efficient approach to 

efficiently transfer knowledge among independent models, more specifically, by 

efficiently distilling the knowledge from a trained model to an untrained model. As FL, 

also, typically require all the models to transfer their knowledge (trained model) to the 

centralized server for aggregation, Thus, apparently, distillation seems to be a potential 

approach which could be leveraged in FL settings to also address the model 

heterogeneity challenges. However, distillation also has its limitations in that it only 

works on IID data distribution whilst in FL, data distribution is naturally expected as 

non-IID so it could be challenging to properly apply distillation in the FL setting. Like, 

recently (Jeong et al., 2018) proposed a Federated distillation algorithm which could be 

employed as an alternative scheme of FL to learn in a decentralized environment. 

Though, the author just adopted this approach to demonstrate that codistillation (a 

variant of distillation) is a much more communication-efficient technique as compared 

to standard FL however the author applies the codistillation approach after making all 

data distributions as IID using Generative Adversarial Network (GAN) approach. 

Distillation and Codistillation have been explained thoroughly in section 2.4 and section 

2.5 respectively. 




