

Second Semester Examination 2022/2023 Academic Session

July / August 2023

EEE270 - Analogue Electronics II

Duration: 3 hours

Please check that this examination paper consists of <u>EIGHT</u> (8) pages of printed material including appendix before you begin the examination.

<u>Instructions</u>: This paper consists of FIVE (5) questions. Answer ALL questions. All questions carry the same marks.

1. Design a differential amplifier as shown in Figure 1. The gain, A_{DM} for the amplifier should be around 26 dB, and differential-mode output resistance, R_{od} of 20 k Ω . Given a value for $V_{DD} = V_{SS} = 10$ V. Assume $V_{TN} = 1$ V and $K_n = 25$ mA/V². Then, find:

a)	Transconductance, g _m	(20 marks)
b)	Resistance, R _D and R _{SS}	(45 marks)
c)	Current, ID	(20 marks)
d)	Estimation value of CMRR (dB) for this circuit	(15 marks)

Figure 1

2. Analyze the circuit in Figure 2 below. Given values are: $V_{DD} = V_{SS} = 10 \text{ V}$, $I_1 = 750 \text{ }$ μA , $I_2 = 2 \text{ mA}$, $I_3 = 5 \text{ mA}$. Assume $V_{TN} = 0.7 \text{ V}$, $\lambda_n = 0.02 \text{ V}^{-1}$, $K_n = 5 \text{ mA/V}^2$, $V_{TP} = -0.7 \text{ V}$, $\lambda_p = 0.015 \text{ V}^{-1}$, $K_p = 2 \text{ mA/V}^2$, $R_L = 2 \text{ k}\Omega$. Based on the given values, find:

a)	Q-points	(30 marks)
b)	Differential mode voltage gain, A _{dm}	(50 marks)
c)	Output resistance, R _{out}	(10 marks)
d)	CMRR (resistance of current source I_1 , $R_1 = 1.5 \text{ M}\Omega$)	(10 marks)

Figure 2

3. a) Find the output current, I_o and output resistance, R_{out} of the current source in Figure 3 (a) if V_{CC} = 12 V, R_1 = 100 k Ω , R_2 = 200 k Ω , R_E = 47 k Ω , β_o = 75, and Early Voltage, V_A = 50 V.

(50 marks)

Figure 3 (a)

- b) An amplifier with a dc gain of 60 dB has a single pole, high-frequency response with a 3-dB frequency of 100 kHz.
 - i. Give an expression for the gain function Av(s) (5 marks)
 - ii. Sketch Bode diagrams for the gain magnitude (10 marks)
 - iii. What is the gain-bandwidth product? (5 marks)

c) Find the midband gain, poles and zeros, and cut-off frequency for A_H(s) transfer function below.

(30 marks)

$$A_{H}(s) = 50 \frac{\left(1 + \frac{s}{10^{9}}\right)}{\left(1 + \frac{s}{10^{6}}\right)\left(1 + \frac{s}{10^{8}}\right)}$$

- 4. a) For the common-source amplifier in Figure 4, draw,
 - i. ac small-signal circuit, and
 - ii. circuits for determining the time constant of each C₁, C₂ and C₃.

(44 marks)

b) Find the short circuit time constants for the amplifier.

(24 marks)

c) What is the lowest cut-off frequency of the amplifier if I_D = 1.5 mA and V_{GS} - V_T = 0.5 V. Assume λ = 0.015/V.

(32 marks)

Figure 4

5. a)

Figure 5 (a)

...7/-

i. Find the midband gain and upper-cutoff frequency of the common-emitter amplifier shown in Figure 5 (a). Assuming β_0 = 100, f_T = 500 MHz, C_μ = 0.5 pF, r_x = 250 Ω , g_m = 64.0 mS and a Q-point of 1.60, 3.00 V.

(30 marks)

ii. Find additional poles and zeros of the common-emitter amplifier. Assume C_L =0, C_1 = C_3 =3.9 μ F, C_2 =0.082 μ F.

(20 marks)

b) Figure 5 (b) shows an ideal voltage amplifier having a gain of -100 V/V with an impedance Z connected between its output and input terminals. Find the Miller equivalent circuit when Z is a 1 M Ω resistance. And use the equivalent circuit to determine V_0/V_{sig} .

(50 marks)

Figure 5 (b)

-0000000-

...8/-

SULIT

APPENDIX

Question	Course Outcome (CO)	Programme Outcome (PO)
1	1	2
2	1	2
3	1	2
4	1	2
5	1	2