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PENINGKATAN ALGORITMA PELENTANG-LATE BERSAMA ETL 

ATAS-PERMINTAAN UNTUK PENCAPAIAN DATA RAYA  

 

 

ABSTRAK 

Pertumbuhan informasi digital adalah luar biasa. Dokumen digital menguasai 

hampir setiap aspek perniagaan sehingga sukar untuk dibayangkan tanpanya. Dengan 

potensi yang belum pernah berlaku sebelum ini, revolusi informasi digital yang sedang 

berjalan juga memberikan risiko dan cabaran, terutamanya apabila berurusan dengan 

pengekstrakan dan analisis data digital. Kaedah konvensional ETL pemprosesan Big 

Data terdiri daripada Pengekstrakan, Transformasi dan Pemuatan yang disepadukan 

ke dalam gudang. Penggunaan kaedah ini tanpa sebarang pengoptimuman selalunya 

membawa kepada kelewatan dalam pengambilan data, yang dikenali sebagai masalah 

straggler, iaitu situasi yang timbul apabila tugasan ditangguhkan kerana pemprosesan 

yang rendah pada beberapa nod. Masalah straggler dianggap sebagai masalah utama, 

terutamanya apabila sumber data adalah penting dan jika sumber ini digunakan secara 

tidak cekap. Oleh itu, mengesan dan, oleh itu, menghapuskan masalah straggler lebih 

awal adalah penting untuk meningkatkan prestasi ETL. Kerja ini mencadangkan 

pendekatan ETL hibrid yang menggabungkan MapReduce dengan Pemintaan 

Extraction Transformation Loading (ETL). Kajian menunjukkan bahawa Longest 

Approximate Time to End (LATE) muncul sebagai Algoritma Pengendalian dalam 

MapReduce, kerana ia mengatasi prestasi Hadoop penjadual sebenar Mantri, MonTool 

dan algoritma Dolly. Combinatory Late-Machine (CLM) yang dicadangkan 

menggabungkan algoritma prestasi CPU dengan algoritma LATE dan mengurangkan 

masa pelaksanaan sebanyak kira-kira 33% kepada Penjadual LATE dan 42% kepada 
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Hadoop sebenar berdasarkan metrik yang digunakan. Menggunakan pendekatan H-

ETL yang dicadangkan, peningkatan dalam mempercepatkan masa yang diperlukan 

untuk pemprosesan dicapai apabila bilangan tugasan meningkat dalam Pemetaan. Pada 

masa yang sama, bilangan Mapper berkurangan. Penjimatan masa yang ketara dicapai, 

di mana penjimatan masa ialah 6 minit (8%), 29 minit (24%), dan 35 minit (35%) 

apabila bilangan Mapper meningkat daripada 25 kepada 30, 30 kepada 38 dan 25 

kepada 38, masing-masing. Oleh itu, pendekatan H-ETL yang dicadangkan adalah 

lebih cekap daripada pendekatan sedia ada, seperti ETL tradisional dan pendekatan 

Pengagihan Berbutir halus yang dicadangkan oleh Mahfoud Bala. 
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ENHANCED LATE-STRAGGLER ALGORITHM WITH ON-DEMAND ETL 

FOR BIG DATA RETRIEVAL 

 

ABSTRACT 

The growth of digital information is phenomenal. Digital documents dominate 

nearly every aspect of doing business to the point that it is hard to imagine doing 

without them. With an unprecedented potential lurking in its depths, the ongoing 

digital information revolution also presents risks and challenges, mainly when dealing 

with the extraction and analysis of digital data. The conventional method ETL of Big 

Data processing consists of Extraction, Transformation, and Loading integrated into a 

warehouse. Using this method without any optimization often leads to a delay in data 

retrieval, known as the straggler problem, which is a situation that arises when tasks 

are delayed due to low processing on some nodes. The straggler problem is considered 

by many as a major problem, especially when the data resources are important and if 

these resources are inefficiently used. Hence, detecting and, therefore, eliminating the 

straggler problem early is crucial to enhancing the ETL performance. This work 

proposes a hybrid ETL approach that merges MapReduce with Extraction 

Transformation Loading (ETL) on demand. Investigations show that Longest 

Approximate Time to End (LATE) Scheduler pops up as a Handling Algorithm in 

MapReduce, as it outperforms Hadoop native scheduler Mantri, MonTool, and Dolly 

algorithms. The proposed Combinatory Late-Machine (CLM) combined CPU 

performance algorithm with the LATE algorithm and decreased the execution time by 

about 33% to LATE Scheduler and 42% to Hadoop native based on the used metrics. 

Using the proposed approach H-ETL, an improvement in the speed-up of the time 

required for processing is achieved when the number of tasks increases in Mapping. 
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At the same time, the number of Mappers is decreased. A significant timesaving is 

achieved, where the time saving is 6 minutes (8%), 29 minutes (24%), and 35 minutes 

(35%) when the number of Mappers is increased from 25 to 30, 30 to 38 and 25 to 38, 

respectively. Therefore, the proposed H-ETL approach is more efficient than the 

existing approaches, such as the traditional ETL and the fine-Grained Distribution 

approach proposed by Mahfoud Bala. 
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CHAPTER 1  

INTRODUCTION 

1.1 Overview 

In the last decades, data would stay and be consumed in one place when there 

were no interconnected systems. At the beginning of Internet technology, the ability 

and demand for exchanging and transforming data are urgent. It conducts the 

utilization of Extraction Transformation Loading (ETL) (Patel, 2018). ETL helps in 

transforming, reloading, and reusing the data. For this purpose, the companies made 

an essential investment in ETL infrastructure, both data warehousing and Big Data 

hardware and software (Marr, 2015). Big data analytics hurdles include rapid growth 

of data, organizational resistance, data validation, integration of disparate sources of 

data, and timely generation of insights from data collected from populations of interest 

(Arulmurugan, 2019). These hurdles involve data capturing, curation, storage, 

searching, sharing, transfer, analysis, and presentation (Verma, 2017). ETL provides 

the solution for these challenges with efficient Extraction (E) of data coming from 

heterogeneous sources, Transformation (T), and Loading (L) into a designated 

database (Kaushik, 2017). MapReduce is a framework and attempts to accomplish the 

task by detecting and managing positions of stragglers through a set of algorithms, a 

situation that arises when tasks are delayed due to reduced processing in some nodes. 

Straggler is a big challenge while implementing MapReduce due to parallelism and 

distributed processing of data. The EA algorithm is one of the algorithms that work to 

detect stragglers tasks (Bhandare et al., 2016). 
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The researchers propose an enhancement in the big data retrieval method by 

combining enhanced LATE-STRAGGLER ALGORITHM WITH ON-DEMAND 

ETL FOR BIG DATA RETRIEVAL. 

1.1.1 Big Data 

One of the core areas in concurrent research and practice is Big data analytics, 

which refers to collecting, organizing, and analyzing huge datasets (Debortoli et al., 

2013). Data analysis is being transformed into wide-ranging approaches based on data, 

including huge data access, and providing better chances in science, commerce, and 

digital applications (Lee et al., 2014; Shamsi et al., 2013). These applications are 

perfectly parallel and suitable for MapReduce programming that enables users to do 

large-scale data analysis such as handling the task scheduling by the application, 

system architecture, and data partitioning (Jain et al., 2013).  

Data analysis has been the backbone of any big data in all enterprises, and it 

will continue moving forward. According to the statistics provided by the Hadoop and 

Big Data Market, there will be a market growth from $17.1B in 2017 to $99.31B till 

2022 and result in 28.5% growth, as illustrated by Figure 1-1. 
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Figure 1.1 Big Data and Hadoop Market Worldwide From 2017 to 2022 

1.1.2 Hadoop  

Hadoop is a distributed system that runs on commodity hardware at a low cost. 

The input data is divided into chunks and dispersed among several nodes. The Node 

Manager in slave nodes communicates with the master node by sending a heartbeat 

message. Hadoop features a master-slave design. The master node distributes the work 

to slave nodes to process large-scale data based on the metadata and heartbeat 

messages. Hadoop comprises four primary modules: Hadoop common, YARN (yet 

another resource negotiator), HDFS (Hadoop Distributed File System), and MR. 

Hadoop common includes Hadoop configuration tools, libraries, and support functions 

for other modules. YARN uses the scheduler and application manager to manage 

cluster resources such as slave node resources, task scheduling, and data node 

monitoring. 
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Hadoop represents a programming framework that enables large data sets to be 

processed in a distributed computing environment. Apache's Hadoop ecosystem 

consists of the Hadoop kernel, MapReduce, Hadoop Distributed File System (HDFS) 

and several different components like Apache Hive, Base and Zookeeper (S. Lee et 

al., 2019). As its name says, Hadoop Distributed File System (HDFS) is a file system 

whose design is based on being distributed and handles large data sets running on 

commodity hardware in the Hadoop framework, so Hadoop is a suitable environment 

for ETL implementation. 

1.1.3 MapReduce in Extract, Transform and Load (ETL) 

MapReduce is a technique for simultaneously processing huge datasets over 

several cores. The scheduler first creates various containers in the slave nodes to divide 

the job into multiple tasks. A container is a YARN Java virtual machine process linked 

to a set of physical resources, such as a CPU core, disc space, and memory. 

MapReduce is a Java-based computing model that manages the processing on 

distributed servers by converting input data into another set of data and summary 

methods. MapReduce generates enormous information. MapReduce is utilized in big 

information applications in big companies such as Yahoo, Cloudera, Amazon, and 

Google, among several others (Xu et al., 2017). 

MapReduce architecture has two functions: Map and Reduce. The data input 

process occurs by dividing them by the Hadoop Distributed File system (HDFS) in the 

form of fixed-size blocks. In contrast, the process is done in a parallel way. The Map 

task work by acquiring the data in the form of key-value pair. After that temporary 
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(intermediate) result is produced using the same form. Since it's intermediate, 

it's used as input for the Reduce task that shares the results. 

Despite a lot of ETL and MapReduce compatibility," data partitioning" is a 

missing aspect of the classic ETL process. To distribute and parallelize the ETL 

process, we must add a "data partitioning phase" after the data extraction (E). The 

transforming phase (T), which consists of cleansing, filtering, merging, conforming, 

and aggregating data, must be adapted according to the MapReduce model. In the ETL 

scheme, the T phase will be divided into two phases: (i)" transforming phase" 

(cleansing/standardizing) and (ii)" merging/aggregating phase". Thus, the ETL can 

handle very large data and tasks (El Akkaoui et al., 2019). The similarity between the 

ETL and the MapReduce process makes it easy to adapt the classic ETL scheme 

quickly. The MR process on Hadoop can be broken into small stages as shown in 

Figure 1.2. 

 

Figure 1.2 Use the Home tab to apply 0 to the text that you want to appear here. 

MapReduce stages 
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1.1.4 Straggler Detection Algorithm 

For issues like Web indexing, data sorting, data searching, and other issues, 

MapReduce, a fundamental model for preparing and creating massive data sets, offers 

a straightforward, ad hoc solution. MapReduce (Dean & Ghemawat, 2004)  has been 

utilized by organizations like Google, Facebook, and Yahoo as a component of many 

Big Data Applications structures. 

Differences in network traffic and CPU accessibility frequently result in 

stragglers.  

Even a few stragglers can greatly reduce the overall response time for the job 

because a job in the MapReduce Framework does not finish until all map and reduce 

tasks are finished. Therefore, it is essential to identify stragglers early and move them 

to other, equally speedier frameworks. Better will be the overall response time for the 

employment before the straggler is found.  

Innocently, one could assume that providing straggler care would be a 

straightforward process of double slower tasks. 

It is actually a complicated problem for a number of reasons. First off, 

speculative assignments are not free; they require certain resources, such a system with 

other active tasks (Isard & Budiu, 2007). Second, choosing the node on which to 

conduct speculative tasks is just as important as choosing the task itself. Third, it may 

be difficult to identify stragglers and nods that are just a little bit slower than the norm 

in heterogeneous environments (Ananthanarayanan et al., 2008). Finally, Stragglers 

should be acknowledged for arriving as promptly as was predicted.  
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Numerous stragglers regulating approaches have lately been developed, and 

The Problem of Stragglers has recently received substantial discussion 

(Ananthanarayanan et al., 2013). These tactics could be fully considered. Speculative 

execution and blacklisting. 

Examples of Stragglers detection and mitigation tools include the Hadoop 

native scheduler, LATE, Mantri, MonTool, and Dolly. 

1.2 Research Motivation 

With the advent of digital technology and smart devices, a massive amount of 

digital data is being generated daily. Systems based on digital sensors and their remote 

connectivity have a communication addendum as another massive amount of data 

capturing valuable information for enterprises (Zdravevski et al., 2019). Big data is 

difficult to process using traditional technologies and necessitates massive parallel 

processing (Chen et al., 2020). Technologies that can store and process terabytes, 

petabytes, zettabytes of data without raising the data warehousing cost are the need of 

this time (Kozielski & Wrembel, 2009). The aptitude for drawing insights from this 

massive data can transform how people live, think and work. Big data open-source 

technologies have gained quite a bit of transaction due to the demonstrated ability to 

process large amounts of data in parallel. Both parallel processing and the technique 

of bringing effective computation of data have made it possible to process large 

datasets at high speeds (Zdravevski et al., 2019). These key features and the ability to 

process vast data have been a great motivation to investigate the architecture of the 

industry-leading big data processing framework by Apache, Hadoop. Distributed 

computing accomplished broad appropriation because of consequently parallelizing 

and transparently executing tasks in distributed environments. Straggling tasks is an 
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essential test confronted by all Big Data Processing Frameworks for example 

MapReduce, Dryad, and Spark. Stragglers are the assignments that run much slower 

than different tasks and since a job  completes  just  when  it’s  last  undertaking  

completions, stragglers postponement work fruition.. Understanding how big data 

storage and analysis is achieved and experimenting with ETL vs Big Data 

environments can provide a great insight into the much talked about technology. 

1.3 Research Problem 

The extensive increase in the amount of digital data has dramatically changed 

the way organizations' functionalities impact our lives directly or indirectly.  

ETL can revisit the emergence of new paradigms such as MapReduce to 

improve the ETL performance because with MapReduce the data is divided into 

partitions in a parallel manner (Yoo et al., 2019). Stragglers are jobs that take 

significantly longer to complete than comparable ones. There are various reasons for 

the task to take longer, including broken equipment, hardware heterogeneity, the 

amount of data to analyze, system obstruction, and competition for current assets. 

When stragglers occur, it will result in an increased time required for task 

execution, which means that the performance of the entire job will suffer due to several 

reasons such as imperfect machines, the proportion of information to process, 

framework blockage, heterogeneity among equipment, and communication bandwidth 

(Gill et al., 2020) (Karagiannis et al., 2013). Existing approaches based on cloud 

computing such as prophet, quasar, bubble-up and others (Chen & Guo, 2017), NoSQL 

models (Yoo et al., 2019) showed that stragglers problem still appear when using 



9 
 

models such as Dolly, the Hadoop native scheduler, MonTool, LATE, and Mantri 

(Arpitha et al., 2017).  

In addition, those approaches are not considered node resources (CPU and 

memory) because they focus on task problem only. Therefore, a concentrated effort is 

vitally needed to effectively detect and mitigate strugglers' effects (Bhandare et al., 

2016; Liya Thomas, 2014; Brahmwar et al., 2014). 

1.3.1 ETL Performance 

Meanwhile, another reason for the degradation in the performance of ETL, is 

the dealing with a variety of Big Data sources, while Traditional ETL works well with 

clean and consistent data; however, it fails to deal with the variety of Big Data sources 

effectively (El Akkaoui et al., 2019; Karagiannis et al., 2013). 

1.3.2 ETL Synchronization 

ETL should be performed at off-peak hours, which means analysis and 

operational activities must be stopped (Muddasir & Raghuveer, 2017; Naeem et al., 

2008; Naik et al., 2019; Zuters, 2011). This condition will be not suitable for the 

systems that are running 24/7 (Muddasir & Raghuveer, 2017). 

1.3.3 ETL Extraction Problem 

In the ETL process before performing any user query operations on them. In 

some cases, this may be unsuitable since the data is not offered by the provider for 

free or become difficult due to their large size, which means the whole data would be 

fetched and that is translated into consumed time and hence increased cost (Baldacci 
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et al., 2017; Nesrine et al., 2018) on the other hand to this, direct execution of query 

on the data source limits the ability for data to be updated which by time leads to 

inadequate results and thus high costs (Machado et al., 2019).  

1.3.4 Research Problem is summarized as follows: 

i. Existing approaches lacks in overcoming the straggler problems which 

suffers from low performance because of an unexpected slow task 

execution time.  

ii. Some algorithms such as Hadoop native scheduler, MonTool, LATE, 

and Mantri are not considered node resources because they focus on 

task problem only. 

1.3.5 Research Problems related to ETL 

i. Existing approaches face a big challenge to synchronize the changes or 

updates that happen in the data source with the data centre or 

warehouse. 

ii. Existing approaches focus on the data extraction without identifying 

what data to be queried and retrieved and thus return a huge amount of 

data that incur more time and more costs. 

1.4 Research Objectives 

The main goal of this research is to propose a hybrid approach for big data 

retrieval based on Enhanced Transform and Load (ETL) and MapReduce. The 

following objectives are set to achieve the main research goal: 
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i. To propose a straggler detection algorithm based on improvement 

of LATE algorithms to enhance MapReduce performance in terms of 

time execution. 

ii. To enhance ETL by introducing on demand usage model for 

improvement of big data retrieval using MapReduce. 

iii. To propose a hybridization based enhanced ETL algorithm & 

enhanced MapReduce mechanism for the big data retrieval. 

1.5 Scope and Limitation 

Our research focuses on two Big Data analytical tools, namely, ETL and 

MapReduce, whereby the limitations of the techniques have been identified and 

discussed. It has been noted that inefficiencies, particularly of stragglers, result in the 

high cost of data processing and a waste of resources such as time, storage, and 

memory. The data used in this experiment was derived from the Stack Overflow posts 

of questions and answers along with their metadata dataset. The limitations of this 

research are the type of data which is text, and the size of data, 200 GB. 

Table 1.1 Scope and Limitation 

Data Set    Stackoverflow question 

Evaluate matrix Sort, Grep and WordCount 

Type of data TEXT 

Data Set Size 200GB 
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1.6 Research Contributions 

We will study 5 straggler algorithms used in HADOOP, choosing the best 

one among them and working on improving it. 

i. An enhancement of MapReduce performance by using an improved 

straggler detection algorithm. 

ii. An enhancement of the ETL approach through the utilization of ETL 

on-demand process. 

iii. An enhancement in big data retrieval method by combining enhanced 

ETL and MapReduce mechanism. 

The first contribution will be combined with the second to get faster data 

processing and retrieval data in this research work. In this contribution, we will 

improve the ETL on demand by solving the problem of updating the source data. 

1.7 Thesis Organization 

This thesis is structured into the following six chapters: 

Chapter 2 discusses the background of the research and related studies. This 

chapter critically reviews the existing approaches for the straggler detection algorithm, 

ETL and ETL approach presents their advantages and limitations. Finally, this chapter 

comprehensively discusses the gaps in the existing approaches. 

Chapter 3 explains the methodology phases of the proposed approach for the 

Hybrid Approach for big data retravel. Additionally, it describes the integrated phases 

of the proposed approach. 
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Chapter 4 presents the design and tools used for the proposed approach. This 

chapter contains the HETL, and rules designs of the proposed approach. This chapter 

also explains the implementation of the phases in detail. 

Chapter 5 reports the experiments and their results. It also presents a 

comprehensive analysis of the results achieved using the proposed approach. In 

addition, this chapter evaluates the performance of the proposed approach in 

comparison with existing approaches. 

Chapter 6 presents the conclusions drawn from our work and suggests possible 

directions for future research. 

 

Figure 1.3 Thesis Organization 
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CHAPTER 2  

LITERATURE REVIEW 

2.1 Introduction 

This chapter presents literature survey of Big Data and its various tools & 

techniques which are used for the Big Data analysis. ETL on Demand, MapReduce, 

and Stragglers Detection are all discussed in detail in Chapter 2. This chapter is divided 

into four sections: section 2.1 presents the background, section 2.2 discusses ETL 

architecture, section 2.3 discusses MapReduce design, section 2.4 discusses Related 

Work, Section 2.5 discusses about Research gap analysis and section 2.6 concludes 

with a summary. 

2.2 Big Data 

The researchers have proposed a strategy for 'blending' large and dense 

analytical insights to address this underlying issue. They establish a methodological 

framework based on the cognitivist linguistics term "blending." (Bornakke & Due, 

2018). 

Beyond standard transactional data, the growth of data kinds from numerous 

sources such as social media, mobile devices, etc., provides a tremendous degree of 

diversity. As a result, the data are no longer in easy-to-consume net structures but 

rather in many structures, such as organized, unstructured, and semi-structured data. 

Big Data encompasses all these data kinds. The architecture level in the data sources 

layer is the starting point for all subsequent Big Data processing. This layer directly 

connects to the Ingestion layer, which is responsible for validating, cleaning, 
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transforming, reducing, and integrating data for the Hadoop ecosystem to utilize its 

eventual sources and Big Data Ingestion layers. The researcher feels it is vital to point 

out that their work continues the first two comparison studies on the main five Hadoop 

Big Data distributions. They have used a Model-Driven Engineering "MDE" 

methodologies to propose a universal Meta-modelling for data sources and Big Data 

Ingestion layers (Erraissi et al., 2018). 

The authors have investigated data integration options because one of the 

primary benefits of having many data types available is the capacity to fuse 

information. They also investigate data quality issues and time-related factors like 

recency and change frequency. Most of the data is structured and published in standard 

forms that are straightforward to analyze; there is sufficient possibility to combine 

diverse data sets, and the volume of data is continually expanding. They have identified 

several issues that must be addressed for these data to be effectively utilized (Barbosa 

et al., 2014). 

Semi-structured data, on the other hand, is made up of both structured and 

unstructured forms of information (Suchitra 2017). This type of data is usually 

structured but the form in which it is organized remains unknown. 

The researchers have created a competency taxonomy for big data and business 

intelligence by evaluating and interpreting the LSA's statistical results. Their main 

findings are that: 1) Business knowledge is just as important as technical skills for 

working successfully on BI and BD initiatives. 2) BI competency is defined by skills 

related to commercial products from large software vendors, whereas BD jobs demand 

strong software development and statistical skills. 3) The demand for BI competencies 

is still far greater than BD competencies. 4) BD initiatives are currently much more 
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human-capital-intensive. Individual professionals, businesses, and academic 

institutions can use their findings to measure and improve their BD and BI skills 

(Debortoli et al., 2014). 

The authors examine huge data that spans years, from the past to the present 

and into the future. Map Reduce with Hadoop distributed File System (HDFS) is also 

discussed to handle the problem space of unstructured analytics. Some technologies 

and strategies are available to analyze terabytes of data efficiently daily and the 

challenges, issues, and benefits of big data (Devakunchari, 2014). 

2.2.1 Applications of Big Data 

By delivering analytics and predictive methodologies, big data analytics assists 

businesses and entrepreneurs in making better-educated business decisions. Big Data 

is almost everywhere. Big data analytics could be used in any industry, such as health 

care or general living standards. Big data is a field that we can use in any industry to 

use a large amount of data to one's benefit. The most common uses for big data are 

given below (Misra et al., 2014). 

Healthcare 

Electronic health records have resulted in a vast amount of data. Clinic data, 

patient data, and machine-generated/sensor data are the three forms of data created in 

a hospital or clinic.  

The Third Eye-Data idea 

It is becoming increasingly important to businesses around the world. Big Data 

analytics is a one-stop-shop for practically any business; it aids in predicting client 

purchase patterns and detecting fraud and abuse.  
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Banking 

The utilization of user data may exacerbate privacy concerns. Big Data 

Analytics may be able to reveal sensitive personal data by finding hidden connections 

between seemingly unmistakable bits of data. According to research, 62 percent of 

financiers are cautious in using Big Data due to isolation difficulties (Mukherjee et al., 

2016).  

Agriculture 

A biotechnology company uses sensor data to improve procurement efficiency. 

It collects and runs reenactments to discover how plants react to various environmental 

changes. Its information environment adapts to changes in the quality of data, such as 

temperature, water levels, soil arrangement, development, yield, and quality 

sequencing of each plant in the proving ground. These games allow you to find the 

best ecological conditions for the best quality types. 

2.2.2 Extract, Transform and Load (ETL) 
 

 

Figure 2.1 ETL Stages  

https://www.spec-india.com/tech-in-200-words/what-is-etl) 
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The Extract-Transform-and-Load (ETL) method is devoted into the extraction 

of required source data, which is then prepared for transformation, followed by 

cleansing, then standardization and conforming, and finally loading in the warehouse, 

which provides important information for analysis and decision-making, as shown in 

Figure 2.1 and corresponding discussion is done further in this section. 

Step 1: Extract 

Data extraction from many source systems is the initial step in the ETL 

process. Most data storage systems combine data from many sources. Each design 

can organize data differently or utilize alternative formats. The data is converted to a 

form that we may use to begin the transformation process during the extraction 

procedure. The extraction process includes analyzing the extracted data, which leads 

to a check to see if the data matches the predicted pattern or structure. If this is not the 

case, we will discard the data. The extraction task must meet several key requirements: 

it has as little influence on the source system as possible. Extraction procedures in 

large systems are frequently scheduled during times or days when the impact is zero 

or minor. 

During data extraction, raw data is exported or transferred from source sites to 

a staging area. Information can be retrieved from a variety of structured and 

unstructured data sources by data management teams. SQL or NoSQL servers, CRM 

and ERP systems, flat files, email, and web pages are just a few of these. 

Step 2: Transform 

The extraction data is transformed into data that we will load during the 

transformation step. Some data sources will necessitate a little amount of data 
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processing. In other circumstances, transformations may be required, for example, to 

merge data from several sources, generate totals from many rows of data, divide one 

column into several, or reject the entire record of incorrect data. 

Data processing is done on the raw data at the staging area. In this step, the 

data is transformed and consolidated to get it ready for its intended analytical use case. 

We may include the following tasks in this phase: 

i. Data filtration, cleaning, removing duplicity, validation, and 

authentication of the data. 

ii. Carrying out computations, translations, or summaries using the raw 

data. It may involve modifying text strings, changing row and column 

headings for consistency, converting money or other units of 

measurement, and more. 

iii. Ensuring data quality and compliance via audits. 

iv. Removing, encrypting, or protecting data governed by industry or 

governmental regulators 

v. Data Formatting into tables or join tables for matching the schema of 

the target data warehouse. 

Step 3: Load 

The data from the previous phase is loaded into the destination system during 

the loading phase. Old data gets erased with new data in some databases. The data 

warehouse keeps track of the records to be audited, and we may trace a value's whole 

history across time. When it is desired to maintain many levels of granularity, the 

rolling process is used. 
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This last step involves moving the modified data from the staging area to the 

desired data warehouse. A full load of all data is typically the first step, followed by 

periodic incremental data updates and, less frequently, full refreshes to completely 

replace all the data in the warehouse. Most businesses that employ ETL have an 

automated, clearly defined, batch-driven process. ETL is often carried out off-peak 

hours when there is little to no traffic on the data warehouse and the source systems. 

At the Internet-scale, scientific study necessitates access to, analysis of, and 

exchange of data dispersed across numerous heterogeneous data sources. As a first 

phase, an eager ETL process creates an integrated data repository, combining and 

loading data from all data sources. This approach' bootstrapping is inefficient for 

scientific research that necessitates access to data from very big and often scattered 

data sources. The metadata is loaded in a lazy ETL operation, but it is still eagerly. In 

terms of bootstrapping, lazy ETL is faster. However, queries on eager ETL's integrated 

data repository run faster since all the data is available ahead of time. The authors 

suggest a novel ETL approach for scientific data integration in this research, a 

combination of eager and lazy ETL approaches that can apply to both data and 

metadata (Kathiravelu et al., 2018). 

Large organizations began to aggregate and store information from many 

sources with diverse data types, such as payroll systems, sales records, inventory 

systems, and so on, in the 1970s, and ETL was born. The need to combine this data 

arose naturally, opening the route for ETL to emerge. 

The authors focus on the issue of "Volume" to assure high performance for 

Extracting-Transforming-Loading (ETL) operations, which is one of the so-called 

"4Vs" (volume, velocity, variety, and veracity) that characterize the complexity of Big 
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Data. They present a new fine-grained parallelization/distribution strategy for 

populating the Data Warehouse. Unlike previous techniques, which only distributed 

the ETL at the coarse-grained level of processing, their methodology allows for several 

levels of parallelization/distribution at the process, functionality, and elementary 

function levels. They outlined the ETL process in terms of basic capabilities that may 

be run on a cluster of computers using our approach's MapReduce (MR) paradigm. 

This novel technique allows the ETL process to be distributed at three levels: coarse-

grained distribution at the "process" level, fine-grained distribution at the 

"functionality" and "elementary functions" levels. Their findings showed that using 25 

to 38 parallel tasks allows the unique approach to speed up the ETL process by up to 

33% while maintaining a linear improvement rate (Mahfoud Bala et al., 2017). 

Designing an extract, transform, and load (ETL) process is tough because of the 

ambiguity of user needs and the complexity of data integration and transformation; 

designing an extract, transform, and load (ETL) process is tough. Current research has 

looked towards using an ontology-based method to solve these restrictions by 

harmonizing the semantics of user requirements within the ETL process design to 

make the ETL process specification easier to generate. The authors used the 

Requirement Analysis Method for ETL Processes (RAMEPs) to create the ontology 

for ETL process activities. They gathered from the organization's perspectives, 

decision-maker, and developer. As a result, the ETL process specification for the 

student affairs data warehouse (DW) system is generated using ontology. They verified 

the accuracy of the ontology model. Furthermore, the case study's ontology creation 

process is described, demonstrating how the ontology-based approach successfully 

executed the design and developed the ETL process specification (Simitsis, 2007). 
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Enterprises' expectations for lower data processing delays and real-time 

requirements are accompanied by the rapid development of data warehouse technology 

and its applications. Unfortunately, most present systems are unable to provide these 

essential functionalities. The authors presented a real-time Extract, Transform, and 

Load (ETL) solution based on the Enterprise Service Bus (ESB). The ETL 

functionality was implemented as a component on the ESB platform. To load real-time 

records, they constructed a real-time partition. Experiments show that this design 

method successfully achieves the real-time property while maintaining a high 

modularity and extensibility level (GAO, 2008). 

ETL management is essentially the metadata management of ETL procedures 

& for the construction of a DW. A well-designed metadata management system can 

greatly improve ETL efficiency. However, the huge number and extensive spread of 

metadata in ETL procedures lead to metadata mismanagement, for which there is 

currently no acceptable solution. The authors recommend that ETL be managed 

intensively through a metadata repository to address this issue. Metadata repository 

can display metadata to DBAs in a clear, simple, and focused manner, making 

metadata easier to comprehend. As a result, metadata management becomes more 

direct, simple, and focused. ETL methods based on metadata repositories provide a 

considerably better optimization effect than traditional ones (Li, 2010). 

The data generated by social media platforms such as Facebook, Twitter, and 

YouTube introduce additional problems, and we must address challenges for the 

decisional support system (DSS) & Keeping in mind, the authors suggest a novel 

technique for ETL (Extract-Transform-Load) development termed as BigDimETL 

(Big Dimensional ETL). Their method integrates Big Data using the MapReduce 
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paradigm with the consideration of the Multi-Dimensional Structure (MDS) (Mallek 

et al., 2017). 

Extraction-Transformation-Loading (ETL) tools are pieces of software that 

extract data from various sources, cleanse it, customize it, and load it into a data 

warehouse. The authors investigated the logical optimization of ETL operations in this 

study, representing it as a state-space search issue. They treat each ETL workflow as 

a state, and the state constructed space using a collection of proper state transitions. 

Furthermore, they present an exhaustive approach and two heuristic techniques for 

reducing the execution cost of an ETL Workflow. The heuristic method with greedy 

characteristics greatly beats the other two algorithms for a vast range of experimental 

scenarios (Simitsis et al., 2005). 

2.2.3 Traditional vs On-Demand ETL 

Traditional ETL approaches, which typically operate on a single machine (ETL 

server), are incapable of handling large data volumes (at the terabytes and petabytes 

scale). On the other hand, after the introduction of new techniques such as Cloud 

Computing MapReduce and NoSQL, the ETL can be considered (Biswas et al., 2019). 

The datastore and data processing are receiving more and more attention in 

extracting crucial information as data exploration has risen fast in recent years. Finding 

a scalable way to process large-scale data in either the relational database system or 

the developing NoSQL database is a significant issue. MapReduce is appealing for 

processing big data in parallel because of Hadoop's inherent scalability and fault 

tolerance. Most past studies have focused on integrating the Hadoop distributed file 

system with SQL or SQL-like queries translators. However, it may not be easy to 
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update data regularly in such a file system. As a result, we require a flexible datastore 

like HBase to store data on a scale-out storage system and handle dynamic data 

transparently. The authors have proposed the JackHare framework, which includes a 

SQL query compiler, JDBC driver, and a systematically way for processing 

unstructured data in HBase using the MapReduce architecture. After importing the 

JDBC driver into a SQL client GUI, they use HBase as the underlying data store to run 

the ANSI- SQL queries. The results of our experiments suggest that our methods can 

perform well in terms of efficiency and scalability. In the following scenarios, the ETL 

process method could be deemed centralized: (a) the ETL process is done on a single 

machine (an ETL server), (b) in a single instance (one execution per time), and (c) the 

data size is medium (Chung et al., 2014). 

The authors aim to present a survey on NOSQL Models, particularly a column-

oriented NoSQL database, to provide the user with the benefits of utilizing NoSQL 

databases rather than relational databases to overcome the relational database's 

limitations (Gajendran, 1998). 

The author examines the NewSQL data management system and contrast it 

with the NoSQL and classic database systems. He discusses the architecture, 

properties, and classification of NewSQL databases for Big data management using 

online transaction processing (OLTP). In separate category tables, it also lists popular 

NoSQL and NewSQL databases. He further compares SQL-based RDBMS, NoSQL, 

and NewSQL databases using a set of metrics and various NoSQL and NewSQL 

research challenges (Moniruzzaman, (2014)). 

 


