UNDERSTANDING THE CELLULAR AND MOLECULAR MECHANISM OF ANTICANCER EFFECT OF TUALANG HONEY ON BREAST CANCER *in vivo* and *in vitro* MODEL

URMILA BANIK

UNIVERSITI SAINS MALAYSIA

2023

UNDERSTANDING THE CELLULAR AND MOLECULAR MECHANISM OF ANTICANCER EFFECT OF TUALANG HONEY ON BREAST CANCER *in vivo* and *in vitro* MODEL

by

URMILA BANIK

Thesis submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy

September 2023

ACKNOWLEDGEMENT

I would like to express my special appreciation to my current main supervisor Associate Professor Dr Wan Faiziah Wan Abdul Rahman and my ex-main supervisor, Professor Emerita Dr Nor Hayati Othman who has been a great help and support during my research work. I would like to recognize their invaluable guidance in thesis corrections, publication, and presentations at the International Academy of Pathology and Post Graduate Colloquium. I am thankful to my co-supervisors Dr. Nur Asyilla Che Jalil and Dr. Nur Arnida Mohd Safuwan from School of Medical Sciences, USM and my field Supervisors Dr. Lau Wai Kwan, Acting Director, IPharm, Pulau Pinang and Dr. S. Parasuraman from AIMST University for helping and guiding me continuously in the lab work.

I would like to acknowledge Dr. Lau Nyok Sean from the Centre for Chemical Biology for her invaluable discussions on laboratory techniques, skills, and knowledge in the field of Next-Generation Sequencing. I am deeply grateful to the School of Medical Sciences USM for providing the necessary research facilities and partial financial support through RUI GRANT: 1001.PPSP.8012299 for which I am sincerely appreciative. A special expression of gratitude goes to my husband, a remarkable individual, Dr. Arun Kumar Adhikary for his enduring support, guidance, and encouragement. I draw endless inspiration from my daughter, little Aditi Adhikary, who has been the heart of all my motivation. I extend my heartfelt thanks to my father, Dr. Ratan Lal Banik, my mother, Mrs. Shikha Banik, and my siblings, Dr. Shikhar Banik and Mrs. Ludmila Ghosh, for their unwavering care and encouragement. Their constant support has been pivotal in shaping the successful completion of this research, and I am deeply grateful for their presence in my life. I also cherish the blessings of my mother-in-law Late Durga Bala Adhikary throughout my life.

TABLE OF CONTENTS

AC	KNOV	VLEDGEMENT	ii
ТА	BLE O	DF CONTENTS	iii
LIS	ST OF	TABLES	ix
LIS	ST OF	FIGURES	xi
LIS	ST OF	ABBREVIATION	xvi
AB	STRA	K	xviii
AB	STRA	CT	XX
СН	APTE	R 1 INTRODUCTION	1
1.1	Resear	rch Background	1
	1.1.1	What is breast cancer?	1
	1.1.2	Breast cancer epidemiology	2
	1.1.3	In vivo and in vitro models for breast cancer experiments	4
	1.1.4	Natural product honey as a new therapeutic agent for breast cancer	6
		1.1.4(a) Targeting cancer cell apoptosis and cell cycle by natural products in breast cancer as an inventive therapeutic strategy	7
		1.1.4(b) miRNAs can act as pivots in natural product- mediated modulation of apoptosis and cell cycle in breast cancer	9
1.2	Proble	em statement: Present Study	11
	1.2.1	Histomorphological evidence of the anti-cancer effect of honey against breast cancer	12
	1.2.2	Role of miRNA in the anticancer effect of honey in breast cancer	12
1.3	Resear	rch Questions	14
1.4	Object	tives	14
	1.4.1	General objectives	14
	1.4.2	Specific objectives	14

1.5 Hypothesis	15
CHAPTER 2 LITERATURE REVIEW	16
2.1 How is breast cancer classified?	16
2.2 Pathogenesis of breast cancer	21
2.2.1 Molecular carcinogenesis of familial breast cancer	22
2.2.2 Molecular carcinogenesis of sporadic breast cancer	23
2.3 Treatment options for breast cancer	27
2.4 Targeting cancer cell apoptosis and cell cycle as growth inhibitory anticancer strategy	29
2.5 Natural products with anticancer effects on breast carcinogenesis	32
2.6 MiRNA biogenesis and how they cause gene silencing in cancer	37
2.7 Mechanisms by which natural products modulate miRNA expression in cancer	41
2.8 Honey as a natural anticancer agent against breast cancer	44
2.8.1 Update on Malaysian tualang honey research	47
CHAPTER 3 METHODOLOGY	51
3.1 Study Design	51
 3.2 Part1: Analysing the histopathological alterations in N-Methyl-N-nitrosourea (MNU) induced breast cancer in female Sprague Dawley (SD) rats treated with honey by examining retrieved histopathology slides 3.2.1 Flow of work 	52 52
3.2.2 Procedures that were done to procure the specimen and prepare the routine histopathology slides	53
3.2.3 Routine histopathological analysis of the slides	54
3.2.4 Statistical Analysis	54
3.3 Part2 in vitro study: Analysing microRNA mediated modulation of cell cycle progression and cell death in MCF-7 breast cancer cell line treated with tualang honey and its comparison with that of the anticancer drug doxorubicin	55

3.3.1 Flow of work	55
3.3.2 Honey sterilization and preparation	57
3.3.3 MCF-7 cell line and culture protocols	57
3.3.3(a) Establishment of MCF-7 cell culture	57
3.3.3(b) Trypsinization for monolayer cells	58
3.3.3(c) Cell preservation	58
3.3.4 MTT assay	59
3.3.5 Treatment of MCF-7 cells	61
3.3.6 Cytomorphological examination of untreated and treated MCF-7 cells	61
3.3.7 Annexin-V FITC/PI dual staining assay	61
3.3.7(a) Preparation of cells	64
3.3.7(b) Annexin-V Apoptosis Detection Assay	65
3.3.7(c) Statistical analysis	67
3.3.8 Cell cycle Analysis	67
3.3.8(a) Preparation of cells	68
3.3.8(b) BD Cycletest Assay	69
3.3.8(c) Statistical analysis	71
3.3.9 MCF-7 cell culture, treatment and total RNA extraction	71
3.3.10 Extracted RNA quality check and library construction	73
3.3.11 Small RNA Sequence Analysis	75
3.3.11(a) Raw data processing and quality check	76
3.3.11(b) Genome Mapping	77
3.3.11(c) sRNA categorization and quantification	78
3.3.11(d) Known and novel miRNA analysis	78
3.3.11(e) MicroRNA expression analysis	78

3.3.11(f) Differential expression	79
3.3.11(g) Target prediction and Enrichment study	81
CHAPTER 4 RESULTS	85
4.1 Histopathological alterations in MNU-induced breast cancer in female SD rats treated with honey	85
4.1.1 Histological types and patterns observed in honey treated MNU induced BC in SD rats	85
4.1.2 Degenerative changes observed in honey treated MNU induced BC in SD rats	90
4.2 Honey sterilization and preparation	95
4.3 MCF-7 cell line and culture characteristics	96
4.4 MTT Assay	98
4.5 Cytomorphological analysis of honey-treated MCF-7 cells	99
4.6 Annexin-V/PI dual staining assay	101
4.6.1 Light scattering and gating	101
4.6.2 Single-Parameter or Univariate Histogram1 and 2 to analyse the gated cells	103
4.6.3 Statistics of the untreated and treated MCF-7 cells	106
4.6.4 Annexin V FITC-A vs Propidium Iodide-A (PI-A) plot	106
4.7 Cell cycle Analysis	111
4.7.1 SSC-A vs FSC-A plot with a gate for nuclei	112
4.7.2 Propidium Iodide-W vs Propidium Iodide-A with a gate for the singlet nuclei population	112
4.7.3 Histogram of Propidium Iodide-A from the singlet gate to display the phases of the cell cycle	115
4.7.4 Polyploidy (>4N)	118
4.8 RNA sequencing	118
4.8.1 Quality of extracted total RNA	118

4.8.2 RNA sequence raw data statistical analysis by NGS Illumina and quality check	119
4.8.3 Transcriptome mapping and Small RNA annotation of MCF-7 cells	119
4.8.4 MicroRNA expression analysis	119
4.8.4(a) Analysis of the known miRNAs of untreated and treated MCF-7 cell	120
4.8.4(b) Analysis of the predicted novel miRNA of untreated and treated MCF-7 cell	122
4.8.5 RNA-Sequence correlation	124
4.8.6 Differential expression analysis of known and putative novel miRNAs	125
4.8.7 Clustering of DE miRNAs	132
4.8.8 Enrichment study	135
4.8.8(a) Enrichment analysis of DE miRNAs of the four compare groups of MCF-7 cells	135
4.8.8(b) Enrichment analysis of 19 DE miRNAs commonly expressed in all tualang honey vs untreated MCF-7 cells	141
CHAPTER 5 DISCUSSION	145
5.1 Part1: Histopathological alterations in MNU-induced breast cancer in female SD rat	145
5.1.1 Histological types and patterns observed in honey treated MNU induced BC in SD rats	146
5.1.2 Degenerative changes observed in honey treated MNU induced BC in SD rats	146
5.2 Part2: Effect of tualang honey on cell cycle progression, apoptotic cell death and microRNA expression pattern of MCF-7 BC cell	149
5.2.1 Cytotoxicity of tualang honey and its effect on the cytomorphology of MCF-7 BC cell line	150
5.2.2 Effect of tualang honey on the apoptotic cell death of MCF-7 BC cell line	151

5.2.3 Effect of tualang honey on cell cycle progression of MCF-7 BC cell line	151
5.2.4 Comparative analysis of posttreatment cytological changes, proapoptotic and cell cycle modulatory effect of tualang honey and doxorubicin	152
5.2.5 Tualang honey mediated modulation of miRNAs in MCF-7 BC cell	153
5.2.6 Expression of miR-21-5p, mir-148a-3p and miR-151a-3p	156
5.2.7 Differential expression of miRNAs of untreated and tualang honey-treated MCF-7 BC cell	159
5.2.8 Comparison between differentially expressed miRNAs of doxorubicin and tualang honey-treated MCF-7 BC cell	161
5.2.9 Common 5 upregulated miRNAs of tualang honey treatment	163
5.2.10 Common 14 downregulated DE miRNAs of tualang honey treatment	168
5.2.11 Additional 19DE miRNAs induced by TH3% on MCF-7 BC cell	180
5.2.12 Enrichment study	180
CHAPTER 6 SUMMARY AND CONCLUSION	186
6.1 Summary of research findings	186
6.2 Strengths and novelty of the study	192
6.3 Conclusion	193
6.4 Limitations of the present study and future recommendations	194
REFERENCES	196
APPENDICES	

LIST OF PUBLICATIONS AND PRESENTATIONS

LIST OF TABLES

Table 2.1	Molecular classification of invasive breast cancer	19
Table 2.2	Most common single-gene mutations associated with	
	hereditary susceptibility to breast cancer	22
Table 2.3	Contemporary targeted therapy against breast cancer	27
Table 2.4	Summary of anticancer study of tualang honey in various	
	cancer models	49
Table 4.1	Histological types of breast cancers seen in non-treated control	
	and honey-treated female SD rats	85
Table 4.2	Distribution of different combinations of histologic patterns	
	of invasive breast cancers seen in the non-treated control and	
	honey-treated cancers of female SD rats	87
Table 4.3	Degenerative alterations seen in non-treated control and	
	honey-treated breast cancers	90
Table 4.4	Comparison and correlation among the untreated and treated	
	MCF-7 cells in early apoptosis.	109
Table 4.5	Comparison and correlation among the untreated and treated	
	MCF-7 cells in late apoptosis	109
Table 4.6	Comparison and correlation among the untreated and treated	
	MCF-7 cells in necrotic phase	110
Table 4.7	Comparison and correlation among the untreated and treated	
	MCF-7 viable cells	110
Table 4.8	Detection of apoptosis and necrosis in MCF-7 cells with	

	24 hours of TH treatment	111
Table 4.9	Comparison of the cell cycle progression between Doxorubicin	
	treated MCF-7 cells with the untreated MCF-7 cells	117
Table 4.10	Comparison of the cell cycle progression between TH2% treated	
	MCF-7 cells with the untreated MCF-7 cells	117
Table 4.11	Comparison of the cell cycle progression between TH3% treated	
	MCF-7 cells with the untreated MCF-7 cells	117
Table 4.12	Comparison of the cell cycle progression between TH3.5%	
	treated MCF-7 cells with the untreated MCF-7 cells	118
Table 4.13	Comparison of the cell cycle progression between TH4%	
	treated MCF-7 cells with the untreated MCF-7 cells	118
Table 4.14	Analysis of polyploid DNA content (%>4N) in Tualang	
	honey and DOX-treated MCF-7 cells.	118
Table 4.15	Statistics of known and novel miRNA in untreated	
	and treated MCF-7 cells	120
Table 4.16	Read count of 25 miRNAs that are not expressed in untreated	
	MCF-7 cells but expressed lowly in TH-treated MCF-7 cells	121
Table 4.17	List of novel miRNAs expressed in untreated and treated	
	MCF-7 cells	123
Table 4.18	List of up-and down-regulated miRNAs in different compare	
	groups and their predicted targets	126
Table 4.19	Expression of the DE miRNAs of DOX vs untreated MCF-7 cell	
	in the TH3%, TH3.5% and TH4% vs untreated MCF-7 cells	130
Table 4.20	MiRNA target gene enriched pathways in DOX vs UT,	
	TH3% vs UT, TH3.5% vs UT, and TH4% vs UT MCF-7 cells	136

LIST OF FIGURES

Page

Figure 1.1	A schematic segment of the breast lobe showing	
	the lobules and the duct system	1
Figure 1.2	Estimated number of new cancer cases and cancer	
	deaths in 2020 among females of all ages	2
Figure 1.3	Estimated number of new cancer cases in 2020 among	
	females of all ages in Malaysia	4
Figure 1.4	Schematic representation of the possible mechanistic	
	path of tualang honey-mediated anticancer effect on	
	breast cancer cells	13
Figure 2.1	Traditional histological types of primary breast carcinoma	17
Figure 2.2	Molecular classification of invasive breast cancer	21
Figure 2.3	Key carcinogenic pathways of breast cancer development	26
Figure 2.4	Cell cycle showing the stages and ploidy.	31
Figure 2.5	Wide range of effects of natural products on cancer cell hallmark	35
Figure 2.6	Natural products with proapoptotic and antiproliferative effects	
	on breast cancer cells	36
Figure 2.7	Biogenesis of microRNAs and their mode of action in regulating	
	gene function	38
Figure 2.8	Mechanistic understanding of the anticancer effect of honey	47
Figure 3.1	The overall research overview of the present study	52
Figure 3.2	Workflow followed for the microscopical analysis of the routine	
	histopathology slides of breast cancers that were grown in	
	MNU-induced female SD rats	53

Figure 3.3	Workflow for analysing microRNA mediated modulation	
	of cell cycle progression and cell death in tualang honey treated	
	MCF-7 breast cancer cell line and its comparison with that of	
	anticancer drug doxorubicin	56
Figure 3.4	Diagrammatic image showing the change in the molecular	
	structure of the cell membrane of cells undergoing cell death	63
Figure 3.5	Overview of the total RNA Isolation using the mirVana TM	
	miRNA Isolation Kit	72
Figure 3.6	Flow chart showing the library construction with the	
	extracted RNA	75
Figure 3.7	Schematic presentation of the workflow for the small RNA	
	sequence analysis of MCF-7 breast cancer cell	76
Figure 4.1	Histologic patterns in MNU-induced breast carcinoma	86
Figure 4.2	Different combinations with two or more histological patterns	
	seen in MNU induced breast cancers of SD rats	89
Figure 4.3	Degenerative features in the honey treated MNU induced	
	breast carcinoma	93
Figure 4.4	Comparison of the degenerative features of honey-treated and	
	non-treated control breast cancer in female SD rats	94
Figure 4.5	Appearance of Tualang honey	96
Figure 4.6	Growth of MCF-7 cells	97
Figure 4.7	MTT assay	98
Figure 4.8	Cytomorphology of tualang honey treated MCF-7 cells	100
Figure 4.9	FSC-A vs SSC-A plots for analysing light scattering	
	and gating	102

Figure 4.10	Doxorubicin and tualang honey treated MCF-7 cells exhibit	
	decrease in the FSC	103
Figure 4.11	Propidium iodide (PI) relative fluorescence vs count in	
	untreated and treated MCF-7 cells	104
Figure 4.12	Annexin-V/FITC relative fluorescence vs count in untreated	
	and treated MCF-7 cells	105
Figure 4.13	Annexin-V FITC-A vs Propidium Iodide-A two colour dot	
	plot and statistical analysis	107
Figure 4.14	Stages of cell death in untreated and treated MCF-7 cells	108
Figure 4.15	SSC-A vs FSC-A plot with a gate for nuclei	113
Figure 4.16	Propidium Iodide-W vs Propidium Iodide-A with a gate	
	for the singlet nuclei population in order to distinguish	
	singlet nuclei from doublets and aggregates	114
Figure 4.17	Propidium Iodide-A vs count plot to display the phases of	
	cell cycle and DNA >4N polyploidy of untreated and treated	
	(for 24hrs) MCF-7 cells	116
Figure 4.18	Cells fraction among three major phases of cell cycle	
	in untreated and treated MCF-7 cells	117
Figure 4.19	Top eleven highly expressed miRNAs of untreated	
	MCF-7 cell and their expression after treatment	
	with tualang honey and doxorubicin	122
Figure 4.20	The secondary structure of the novel miRNAs on	
	partial schematic matches	124
Figure 4.21	Correlation scatter diagram presenting the correlation	
	among the different MCF-7 cell samples	125

Figure 4.22	Volcano plot to infer differentially expressed miRNAs	
	in MCF-7 cells	128
Figure 4.23	Common up- and down-regulated microRNAs of DOX vs	
	untreated, TH3% vs untreated, TH3.5% vs untreated and	
	TH4% vs untreated MCF-7 cells	129
Figure 4.24	Overview of differentially expressed miRNAs in three	
	concentrations of TH treated MCF-7 cells compared with	
	the untreated MCF-7 cell line	131
Figure 4.25	K-means clustering of differentially expressed miRNAs	
	in TH and DOX treated MCF-7 cells	133
Figure 4.26	Heat map presenting the hierarchical clustering of 100	
	DE miRNAs of the untreated and treated MCF-7 cells	134
Figure 4.27	Gene Ontology (GO) annotation analysis of differentially	
	expressed miRNAs between the pairs of MCF-7 cells	
	in the four compare groups	140
Figure 4.28	KEGG pathway enrichment of the predicted targets of 5	
	upregulated common DE miRNAs of tualang honey	
	treatment on MCF-7 cell	141
Figure 4.29	KEGG pathway enrichment of the predicted targets of	
	14 downregulated common DE miRNAs of tualang	
	honey treatment on MCF-7 cell	143
Figure 5.1	Posttreatment histopathological observations of honey-	
	treated breast cancer and further study on honey	149
Figure 6.1	Synopsis of the anticancer growth inhibitory effect of honey	
	revealing that honey affects breast cancer progression by	

modulating miRNAs and thereby affecting cell cycle

progression and apoptosis

194

LIST OF ABBREVIATION

BC	Breast cancer			
TH	Tualang Honey			
MH	Manuka Honey			
HER2	Human epidermal growth factor receptor 2			
TNBC	Triple-negative breast cancer			
MNU	N-methyl-N-nitrosourea			
SD rats	Sprague Dawley Rats			
H&E	Hematoxylin and eosin			
NP	Natural products			
MCF-7	Michigan Cancer Foundation-7			
EMEM	Eagle's minimum essential medium			
FBS	Fetal bovine serum			
DMSO	Dimethyl sulfoxide			
%	Percent			
°C	Degree Celcius			
MTT	[3-(4, 5-dimethyl thiazole-2-yl)-2, 5-diphenyltetrazolium			
	bromide]			
DOX	0.5 micromolar Doxorubicin			
μΜ	Micromolar			
FITC	Fluorescein isothiocyanate			
PI	Propidium Iodide			
FSC-A	Forward scatter parameter			
SSC-A	Side scatter parameter			
rpm	Revolutions per minute			

RIN	RNA Integrity Number		
TPM	Transcript per million		
RC	Read count		
TMM	Trimmed Mean of M-values		
DE	Differential expression		
miRNA	MicroRNA		
DAVID	The Database for Annotation, Visualization and Integrated		
	Discovery		
BH	Benjamini-Hochberg		
KEGG	Kyoto Encyclopedia of Genes and Genomes		
GO	Gene Ontology		

MEMAHAMI MEKANISME SELULAR DAN MOLEKULAR BAGI KESAN ANTIKANSER MADU TUALANG DALAM MODEL *IN VIVO* DAN *IN VITRO* KANSER PAYUDARA

ABSTRAK

Madu adalah produk semulajadi yang telah menjadi pilihan penting dalam rawatan kanser payudara. Ia terbukti mempunyai sifat antikanser, namun mekanisme tindakannya masih tidak jelas. Kajian ini dijalankan untuk meneroka kesan antikanser madu pada kanser payudara (BC) secara in vivo dan in vitro berhubung dengan keupayaannya untuk meningkatkan apoptosis, memodulasi perkembangan kitaran sel, dan mengawal ekspresi miRNA. Kesan madu tualang (TH) dan madu manuka terhadap histomorfologi BC tikus Sprague Dawley (SD) betina dorongan MNU dikaji di bawah mikroskop. Memandangkan terdapat potensi antikanser TH secara in vitro, analisis kemudiannya dilakukan pada sel BC MCF-7. Madu tualang dicairkan dalam kepekatan akhir 2%, 3%, 3.5% dan 4% (v/v). Sel MCF-7 telah dirawat dengan TH, manakala sel MCF-7 yang tidak dirawat berfungsi sebagai kawalan. Apoptosis dan kitaran sel dikaji oleh sitometri aliran. Penjujukan RNA kecil dilakukan untuk menganalisis kemungkinan modulasi ekspresi miRNA oleh TH berlaku. Kesan TH dibandingkan dengan ubat antikanser Doxorubicin (0.5 micromolar; DOX). Secara histomorfologi, rawatan madu pada BC dorongan MNU dalam model tikus menghasilkan gred histologi kanser yang lebih rendah dengan kehadiran vakuol dalam sitoplasma dan kurang nekrosis berbanding BC yang tidak diberikan rawatan madu. Rawatan madu tualang pada sel MCF-7 menghasilkan peningkatan pecahan sel dalam G2/M, pengurangan dalam fasa S, peningkatan sitotoksisiti yang bergantung kepada dos dan peningkatan apoptosis. Perubahan sitologi yang disebabkan oleh TH, proapoptotik dan kesan modulasi kitaran sel menunjukkan persamaan dengan rawatan DOX. Dalam 100

miRNA yang diekspresi secara berbeza (DE); 63 mengalami regulasi menaik manakala 37 regulasi menurun. Sembilan belas miRNA DE adalah biasa dalam tiga kepekatan TH. Kebanyakan DE miRNA rawatan DOX juga dinyatakan dengan rawatan TH. Peningkatan peraturan miR-129-5p, miR-139-5p, miR-215-5p, miR-184 & miR-574-5p; *downregulation miR-182-5p*, miR-103a-3p & miR-191-5p membuktikan antiproliferatif, modulasi kitaran sel, kesan proapoptotik TH. Analisis laluan KEGG menunjukkan bahawa pelbagai laluan yang berkaitan dengan apoptosis, percambahan sel, pertumbuhan sel, kemandirian dan perkembangan kitaran sel adalah laluan sasaran yang penting oleh miRNA termodulat TH. Maka, madu tualang boleh memberikan kesan antitumor dengan cara mengganggu miRNA dalam sel BC. Kajian ini telah mendedahkan peranan baru madu tualang dalam menghalang perkembangan BC iaitu dengan memodulasi miRNA, seterusnya memberi kesan kepada kitaran sel dan apoptosis.

UNDERSTANDING THE CELLULAR AND MOLECULAR MECHANISM OF ANTICANCER EFFECT OF TUALANG HONEY ON BREAST CANCER *IN VIVO* AND *IN VITRO* MODEL

ABSTRACT

Honey is a natural product (NP) that has become a significant option in breast cancer (BC) treatment. It has been shown to possess substantial anticancer properties, but the mechanism of action remains unclear. Therefore, this study was undertaken to explore honey's anticancer effect on BC in vivo and in vitro in relation to its ability to enhance apoptosis, modulate cell cycle progression, and regulate microRNA expression. Histomorphological effect of Tualang honey (TH) and Manuka honey on MNU-induced BC of female Sprague Dawley rats were studied by analysing archival routine histopathology slides with light microscope. Subsequently, considering the anticancer potentiality of TH in vitro, analysis was done on MCF-7 BC cells. TH was diluted in a final concentration of 2%, 3%, 3.5% and 4% (v/v). MCF-7 cells were treated with TH. Untreated MCF-7 cells served as a control. Apoptosis and cell cycle were studied by flow cytometry. Small RNA sequencing was done, using NGS Illumina platform to analyse possible modulation of miRNA expression by TH. The effect of TH was compared with that of the anticancer drug Doxorubicin (0.5micromolar; DOX). Histomorphologically, honey treatment on MNU-induced BC in SD rat models resulted in a lower histological grade, less necrosis but increased in cytoplasmic vacuolisation compared to non-treated; implicating positive anticancer efficacy of honey. TH treatment in MCF-7 cells resulted in increased cell fraction in G2/M with reduced cell fraction in the S phase, dose-dependent increased cytotoxicity, and enhanced apoptosis. TH-induced cytological changes, proapoptotic and cell cycle modulatory effect showed similarity with that of DOX treatment. One hundred miRNAs were differentially expressed; 63 were upregulated (UR), and 37 were downregulated (DR). Nineteen DE miRNAs were common in three concentrations of TH. Most DE miRNAs of DOX treatment were also expressed with TH treatment. Upregulation of miR-129-5p, miR-139-5p, miR-215-5p, miR-184 & miR-574-5p; downregulation of miR-182-5p, miR-103a-3p & miR-191-5p attests to antiproliferative, cell cycle modulatory, the proapoptotic effect of TH. KEGG pathway analysis showed that multiple pathways related to apoptosis, cell proliferation, cell growth, survival and cell cycle progression are important targeted pathways by TH-modulated miRNAs. Honey may exert an antitumor effect by interfering with miRNAs in BC cells. The study reveals a novel role for honey in inhibiting BC progression by modulating miRNAs, thereby affecting the cell cycle and apoptosis.

CHAPTER 1

INTRODUCTION

1.1 Research Background

1.1.1 What is breast cancer?

Breast cancer (BC) is a malignant tumour of the breast. It is a highly heterogeneous group of genetically and epigenetically distinct diseases that exhibit diverse clinical features (Dai et al., 2017). Cancer in the breast commences in the terminal duct lobular unit (Figure 1.1) and progresses in a stepwise manner (Sinha et al., 2012).

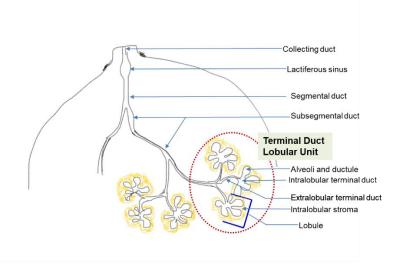


Figure 1.1: Schematic segment of breast lobe showing the lobules and the duct system. The morphofunctional unit of the breast is the terminal duct lobular unit (TDLU). TDLU is a grapelike cluster of small alveoli that comprises lobule and terminal duct. The terminal ducts drain into the subsegmental and segmental ducts, draining into the lactiferous and collecting duct (Banik et al., 2017).

According to traditional classification, primary breast adenocarcinoma is categorised as *in situ* and invasive. *In situ* cancers can be ductal (DCIS) or lobular (LCIS) and have an excellent prognosis. However, while 50–80% of the invasive cancers are invasive ductal carcinoma (IDC), only 25% of invasive BCs are 'special

type' (invasive lobular carcinoma, invasive cribriform carcinoma, tubular carcinoma etc.) (Masood, 2016).

1.1.2 Breast cancer epidemiology

BC became the most commonly diagnosed cancer type in the world in the year 2020. In 2020, International Agency for Research on Cancer (IARC) estimated more than 2.26 million new cases of BC in both sexes (11.7%) (Figure 1.2). ("World Cancer Day: Breast cancer overtakes lung cancer in terms of new cancer cases worldwide. IARC showcases key research projects to address breast cancer – IARC," n.d.). Female breast cancer (BC) has exceeded lung cancer as the most commonly diagnosed cancer, and it was observed that 1 in every 8 cancers diagnosed in 2020 was BC (Arnold et al., 2022). More troublesome is that it has now become the fifth leading cause of overall cancer mortality worldwide, with 685,000 deaths recorded in the year 2020 worldwide (Arnold et al., 2022). As of the end of 2020, there were 7.8 million women alive who were diagnosed with BC within the past five years, making it the most prevalent cancer in the world (Sung et al., 2021).

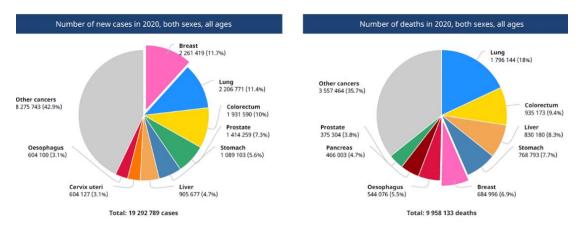


Figure 1.2: Estimated number of new cancer cases and deaths in 2020 among females of all ages, worldwide. Breast cancer is highlighted in pink. Source: <u>https://www.uicc.org/news/globocan-2020-new-global-cancer-data</u>

BC occurs in every country of the world in women at any age after puberty but with increasing rates in later life (Arnold et al., 2022). The global burden of BC mortality

is marked by inequality (Figure 1.3). Again, in high-income countries, where the prognosis for patients with BC is largely quite favourable, there are disparities in survival between different socioeconomic groups. In low- and middle-income countries, barriers to diagnosis and treatment are primary issues leading to the less likely survival of women from this cancer. In 2020, half a million women in low- and middle-income countries died of this cancer; approximately three-quarters of global deaths from the disease occurred in these countries (Arnold et al., 2022). To add to this global problem, there are more lost disability-adjusted life years by women to BC globally than any other type of cancer.

BC incidence in Malaysian multi-ethnic society varies from 1 in 22 Chinese women followed by 1 in 23 Indian women and 1 in 30 Malay women (Htay et al., 2021). Approximately 48% of BC cases in Malaysia are diagnosed late (Ministry of Health Malaysia, 2019). According to the National Cancer Registry, 2018 women who develop BC have an 81% (Stage II) to 88% (Stage I) chance of 5-year survival if their cancer is diagnosed early, whereas it is much lower for diagnosed cancer at Stage III (60%) or IV (23%). Therefore, implementing prevention measures, including screening, can potentially reduce the burden of BC, which is associated with late presentation (Al-Amri, 2005). According to GLOBOCON, in 2020., newly diagnosed cases were 8418 (17.3%) and ranked first among all cancer nationwide (Figure 1.3). GLOBOCON also reported that mortality from BC ranks second in Malaysia, and the country recorded 3503 deaths (11.9%) from BC in 2020.

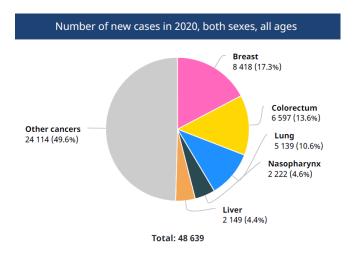


Figure 1.3: Estimated number of new cancer cases in 2020 among females of all ages, in Malaysia. Breast cancer is highlighted in pink. Source: <u>https://gco.iarc.fr/today/data/factsheets/populations/458-malaysia-fact-sheets.pdf</u>)

The above statistics demonstrate the universal problem of the disease. Hence scientists and clinicians are evaluating and exploring various therapeutic modalities for BC for a long-drawn-out period. However, the disease has remained unconquered, and the search for a remedy continues.

1.1.3 In vivo and in vitro models for breast cancer experiments:

Current research on breast carcinomas is derived from *in vivo* and *in vitro* studies using BC cell lines and animal models. These in vitro and in vivo models can offer a limitless basis of homogenous self-replicating data by means of simple yet standard media and approaches.

Among the broad range of BC animal models, rat models have been valuable *in vivo* experimental model systems for the study of BC (Whittle et al., 2015). In rats, the mammary gland is the source of hormone-dependent neoplasms that are, in many ways, show likeness to the human BC (Fantozzi and Christofori, 2006; Korkmaz and Ustun, 2021). The predisposition of the rat breast to neoplasia has made this organ a unique target for testing the carcinogenic potential of specific compounds. These models have developed into premier tools for investigating the mechanisms and

genetic pathways in cancer progression and metastasis and for developing and evaluating clinical therapeutics. Tumours induced in rats by administration of chemical carcinogens such as 7,12-dimethylben z(a)anthracene (DMBA) and Nmethyl-N-nitrosourea (MNU) create useful tools for studying the multistep process of carcinogenesis involving initiation, promotion, and progression (Barros et al., 2004; Zeng et al., 2020). Chemically induced mammary tumours are, in general, hormonedependent adenocarcinomas. MNU-induced BC in SD rats is a commonly used cancer model to study the anticancer mechanism of NPs (Lu et al., 2013; Martinez et al., 2017). MNU can induce mouse BC similar to estrogen receptor-positive human BC (Kassayová et al., 2016). Histo-morphologically, the Russo and Russo classification scheme (Russo and Russo, 2000a) for the MNU-induced BC in SD rats are pretty similar to the traditional classification of human BC. The classification of breast tumours according to their histopathological type and benign or malignant nature is important because those characteristics have implications for interpreting the experimental data. The Russo and Russo recommendations provide a working framework for diagnosing the type of lesions found in the mammary glands of rats treated with chemical carcinogens (Russo and Russo, 2000b).

Cell culture is an extensively used *in vitro* tool for medical and biomedical science research, drug discovery, and development. However, only a handful of cell lines are primarily used for different in vitro BC studies. Cell lines like MCF7, T47D and MDAMB231 account for the major cell lines used in the different experimental studies (Lacroix et al., 2004). Many advantages vest BC cell lines and practicable cancer models for tumours of the same subtype. The molecular features of the cell lines usually remain the same with tissue tumours, with only a few exceptions.

Additionally, their genomic profiles stay invariant with the tumours. (Dai et al., 2017). MCF-7 is an estrogen-dependent BC cell line, a commonly used cell line for BC research for more than 40 years by multiple research groups (G. Chen et al., 2022; Comşa et al., 2015).

1.1.4 Natural product honey as a new therapeutic agent for breast cancer

Contemporary therapeutic options for BC are surgical resection, radiation, chemotherapy and immunotherapy (Arslan et al., 2014; Isakoff, 2010; Ishiba et al., 2015; Shi et al., 2016; Shin et al., 2016; van Rooijen et al., 2015). These are not only costly but may modify many normal gene functions also. The present-day approach to BC therapy and prevention is either combination of a number of drugs or a drug that modulates multiple targets. Nonetheless, it is still unknown how many BC targets there are. Again, how many targets must be confronted to control cancer growth is yet to be explored. BC is a heterogeneous disease sustained by interconnected and intricate signalling pathways (Singhal et al., 2016). Various genetic and epigenetic changes are critical to this carcinogenesis (Khan et al., 2012; Parise et al., 2009, pp. 1999–2004). Thus, aiming a single gene product or cell signalling pathway is unlikely to prevent or treat this cancer. Considering these facts, NPs are now becoming a significant option in BC prevention and treatment. The well-known uses in cancer treatment are due to their effectiveness, less side effect, relatively low cost and, notably, their ability to target various signalling pathways. Selected NPs, substances derived from living organisms like curcumin, green tea and EGCG, resveratrol, honokiol, quercetin, silibinin, genistein, and soy, promote apoptosis and inhibit metastasis and prevent cancer growth (Banik et al., 2017; Noel et al., 2020; Sinha et al., 2016a). As a result, these can potentially suppress BC progression, hence increasing patient survival rates and decreasing the number of BC-related deaths; in this regard, honey is gaining attention as a potential anticancer agent (Waheed et al., 2019a). The anticancer effect of honey is attributable to its anti-proliferative and pro-apoptotic activities (Jaganathan et al., 2015). Furthermore, depending on concentration, honey can demonstrate either an oestrogenic or antiestrogenic mode of action (Jaganathan and Mandal, 2009a). Among the various Malaysian honeys, Tualang honey (TH) has been found to possess the highest anticancer potential due to the exceptional composition of polyphenols and antioxidants (Khalil et al., 2011).

1.1.4(a) Targeting cancer cell apoptosis and cell cycle by natural products in breast cancer as inventive therapeutic strategy

Various genetic and epigenetic alterations are critical to breast carcinogenesis. Like any other cancer, dysregulated cell proliferation and inhibition of apoptosis lie at the centre of breast carcinogenesis. As there are many mechanisms through which these two defects can occur, the efficiency of a targeted therapy rests a large part on the molecular analysis of each tumour to understand the primary pathological process (Evan and Vousden, 2001). Dysregulated apoptosis may lead to tumour formation or even the development of cancer cell drug resistance. Cancer cells evade apoptosis primarily by: i) imbalance of Bcl2 family members with overexpression of antiapoptotic proteins and downregulation of proapoptotic proteins; ii) loss of TP53 functions due to TP53 mutations and indirectly due to impairment of p53 function by amplification of MDM2 that encodes an inhibitor of p53 iii) downregulation of caspases iv) impairment of death receptor signalling v) overexpression of inhibitors of apoptosis proteins and hence binding and inactivating caspases 9 and 3 (Pistritto et al., 2016). Finding ways to tackle these issues can lead to restoring the apoptotic pathway in cancer cells and hence constitute a promising anticancer therapeutic approach. Studies also reported that many tumour promoter

proteins inhibit apoptosis by developing chemoresistance in the cancer cell. Thereby strategies to target proteins that manipulate the apoptotic programs are considered a prominent anticancer therapeutic approach, in which activation of apoptosis in cancer cells is the primary concern. In addition, targeting cell death receptors can be an appealing therapeutic strategy for cancer. Currently, many studies are focusing on the NPs that have been approved for clinical use in cancer treatment to find out their ability to inhibit the growth of cancer cells by inducing apoptosis through one or more than one mechanism. However, despite major efforts, the biological mechanisms involved in the various programmed cell death pathways are still not fully understood. Cell cycle deregulation is another major hallmark of cancer progression, and as such, induction cell cycle arrest is an important cause of inhibiting cancer growth and proliferation (Caglar and Biray Avci, 2020; Hsiao et al., 2012). The mechanisms regulating S phase progression in the cell cycle are essential for maintaining genome integrity and fidelity in any proliferating cell (Takeda and Dutta, 2005; Zhao et al., 2014). Studies show that there are many NPs, the growth inhibitory antiproliferative effect of which targets mainly the components of the cell signalling pathways related to cell cycle and apoptosis (Alghamdi et al., 2021, 2021; Anwar et al., 2018; Banik et al. 2017; Choi et al., 2021; Cui et al., 2020; I. El-Garawani et al., 2019; I. M. El-Garawani et al., 2019; Hosami et al., 2021, 2021; Jiang and Fan, 2020; Khan et al., 2020; Kizaibek et al., 2020; Lang et al., 2019; Lee et al., 2020; Lin et al., 2021; M Franco et al., 2019; Mansour et al., 2019; Mirza et al., 2018; Misir et al., 2020; Mohammed et al., 2018; Moosavi et al., 2021; Ngabire et al., 2018; Okon et al., 2020; Saleh et al., 2019; Virdis et al., 2020; M. Wang et al., 2019; Xie et al., 2019; Zhou et al., 2020). Hence NPs with proapoptotic activity and inhibitory effect on the cancer cell cycle can act as potential anticancer agents.

1.1.4(b) miRNAs can act as pivots in natural product-mediated modulation of apoptosis and cell cycle in breast cancer

One potential therapeutic target for BC is the miRNAs, and numerous studies show that regulation of miRNAs can be achieved by means of NPs. Owing to their significant and versatile roles, miRNAs are emerging as therapeutic tools for many cancers, including BC. However, several miRNAs are dysregulated in BC tissues compared to normal tissues (Elango et al., 2020). Alterations of miRNA expression are one of the most widely studied epigenetic deviations in cancer (Rahman et al., 2019). Deregulation of miRNA function is associated with numerous diseases like cancer (Bracken et al., 2016). These alterations are driven by the dysregulation of miRNA biogenesis and miRNA pool imbalance with up-regulation or down-regulation of miRNA-processing machinery components (Fridrichova and Zmetakova, 2019). Dysregulation of miRNAs is critical in breast carcinogenesis (Di Leva et al., 2014; Khan et al., 2019; Pouya et al., 2021; SANDHU et al., 2013; Søkilde et al., 2019). There is intricate involvement of miRNAs in BC tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression (Benedetti et al., 2021; Fridrichova and Zmetakova, 2019). Studies have demonstrated that miRNAs usually target multiple mRNAs and could act as oncomiR or tumour suppressors in various cancers (Shirjang et al., 2019). Either as a tumour suppressor or oncogene, miRNAs can coordinate multiple cellular processes related to two vital hallmarks of cancer: evading growth suppressors and resisting cell death. Studies show that the Bcl-2 family, TRAIL, Fas (Fas/APO-1/TNFRSF6) and p53 directly or indirectly via MDM2 are the major targets in the miRNA-mediated regulation of apoptosis in different cancers (Cai et al., 2015; Konno et al., 2014; Long et al., 2015; Patron et al., 2012; Shirjang et al., 2019; Tong et al., 2015; Zarogoulidis et al., 2015; T. Zhang et

al., 2016; Zhang et al., 2014). Reduction in anti-apoptotic miRNAs or induction in apoptomiRs might demonstrate the effectiveness of treatment or cancer eradication.

Again miRNAs are crucial transcriptional regulators of the cell cycle (Grolmusz et al., 2016). In cancer cells, microRNAs can control the levels of multiple cell cycle regulators and hence can control cell proliferation (Budakoti et al., 2021; Bueno and Malumbres, 2011; Di Leva et al., 2014; Mens and Ghanbari, 2018). The tumour suppressor miRNAs induce cell cycle arrest by downregulating multiple components of the cell cycle machinery. Recent data also suggest that miRNAs act co-ordinately with transcriptional factors involved in cell cycle regulation, such as c-MYC, E2F or p53 (Ali Syeda et al., 2020; Hill and Tran, 2021). These miRNAs can potentiate the function of these factors. They may also limit the excessive translation of cell cycle proteins upon mitogenic or oncogenic stimuli to protect cells from replicative stress (Ali Syeda et al., 2020).

Therefore, microRNAs can be a crucial pathophysiological component associated with BC progression and a therapeutic target for this cancer. Investigating the molecular regulatory mechanism of the common and drug-specific miRNAs will facilitate well understanding of the mechanism of action for different drugs as well as provide new insight into screening new drugs for BC treatment. Studies show crosstalk between phytochemicals, microRNAs and various cell signalling in the regulation of apoptosis, cellular proliferation, cell cycle regulation, and self-renewing cancer stem cell divisions (Bhardwaj and Mandal, 2019; Fix et al., 2010, p. 60; Kavitha et al., 2018a; Namima et al., 2020; Nwaeburu et al., 2017; Venkatadri et al., 2016; S.-M. Wang et al., 2021; W. Wang et al., 2019). Progressively more studies are needed to evaluate the effect of NP on miRNA modulation in BC. The potential of clinical applications involving miRNAs warrants continued cancer research in this area.

1.2 Problem statement: Present Study

Resistance, recurrence, metastasis and adverse effects are the major glitches in BC treatment and prognosis (Pashayan et al., 2020). Prolonged use of chemotherapeutics and radiotherapy against BC in many circumstances renders the therapy ineffective because of the development of resistance. Identifying alternative treatments is crucial to reduce the mortality rate related to BC. Thus, NPs are now the primary investigative molecules soaring in the hope of discovering new powerful classes of anticancer agents for BC.

Previous studies demonstrated the potentiality of Malaysian Tualang honey (TH) as an anticancer agent. It was found that standard compounds present in gammairradiated (25 kGy) TH are: catechin, p-coumaric acid, benzoic acid, naringenin and Trans-cinnamic acid as detected by HPLC analysis and contain the strongest antioxidant properties(Ahmed and Othman, 2013a; Khalil et al., 2011; Moniruzzaman et al., 2013a). Several studies point to polyphenols as the molecular components behind the anti-carcinogenic effects of TH. Such studies indicate that polyphenols induce apoptosis, cell cycle arrest and inhibition of angiogenesis (Ahmed and Othman, 2013a, 2017; Fauzi et al., 2011; Khalil et al., 2011; Mohd Kamal et al., 2021a).

In their study Ahmed et al, demonstrated that systemic administration of TH and MH (1.0 g/kg body weight/day) for 120 days in female SD rats with MNU induced BC, increased the expression of proapoptotic proteins (Apaf-1, Caspase-9, IFN- γ , IFNGR1, and p53) and decreased the expression of antiapoptotic proteins (TNF- α , COX-2, and Bcl-xL 1) (Ahmed et al., 2017a). In another study by Ahmed and Othman, TH in different concentration (0.2, 1.0 and 2.0 g/kg body weight/day) for 120 days was used in MNU induced BC in female SD rats and it was observed that TH alleviates breast carcinogenesis through modulation of hematologic, estrogenic and proapoptotic

activities (Ahmed and Othman, 2017). The tumours showed lower histologic grade. Thus, it was proposed that honey may be used as a natural 'cancer alleviating' agent or as a supplement to chemotherapeutic agents. However, advanced research is needed to develop an improved understanding of its anticancer effect and thus explore its potential health benefits in BC therapy.

1.2.1 Histomorphological evidence of the anti-cancer effect of honey against breast cancer

Post-treatment histopathological changes in tumour morphology plays a vital role in evaluating the therapeutic response. With increasingly accumulating data on distinct molecular-morphologic correlates, there is a resurgence of attention on the role of tissue evaluation in *vivo* cancer studies. In BC models, diverse histopathologic alterations are observed with the application of different therapeutic modalities. However, the histo-morphological effect of honey on in vivo BC model has not been studied in detail. Detailed analysis and comparison of the pattern of histological alterations in honey-treated MNU-induced BC in female SD rats with that of the nontreated ones are needed to correlate molecular and histological findings of honeytreated BC tissue in an animal model. This will pave the way towards a future anticancer study on honey and its derivatives.

1.2.2 Role of miRNA in the anticancer effect of honey in breast cancer

Till now, the molecular mechanisms underlying the antitumor activity of honey in BC is not well understood. Although anticancer studies of honey on BC primarily focus on the molecular mechanistic effect of honey (Jaganathan and Mandal, 2009b), its detailed mechanism of action is still unclear. Honey has been reported to induce apoptosis and cell cycle arrest in cancer cells. Among the various Malaysian honey, TH is emerging as a promising anticancer agent. TH has been shown to be crucial in apoptosis induction in human cancer cells, including BC cells. Although the broad cellular impact of TH has been investigated, the molecular mechanisms behind such effects remain unclear. After that, considering the potentiality of TH as a possible anticancer agent, its apoptosis-inducing and cell cycle modulatory effect on BC cells needs more investigation. The growth inhibitory antiproliferative and anticancer effect of TH in BC needs more research and analysis. The link between TH-induced apoptosis, cell cycle modulation, and miRNA regulation related to BC has not been explored (Figure 1.4). Previous studies indicated that the expression levels of multiple genes associated with the proliferation of BC cells were altered in TH-treated BC cells. However, to the best of our knowledge, it remains to be investigated whether treatment with TH can regulate the expression of miRNAs in BC cells. Elucidating the effect of TH-mediated miRNA modulation during BC cell death and cell cycle progression will aid in a better understanding of the underlying mechanisms that have a critical anticancer role in BC.

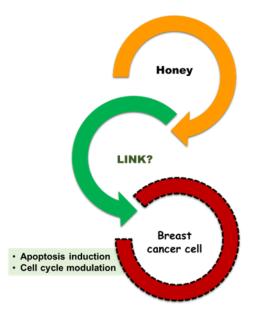


Figure 1.4: Schematic representation of the possible mechanistic path of tualang honey-mediated anticancer effect on breast cancer cells.

1.3 Research Questions

With the above background and coexisting gaps in the research of honey as a potential anticancer agent in BC, the current study was designed to answer the following research questions:

- What are the histopathological alterations observed in the honey-treated MNU-induced BC model that implicates the positive efficacy of honey as an anticancer agent against breast cancer tissue?
- 2. How honey modulates the BC apoptosis and cancer cell cycle?
- 3. Are honey's apoptosis and cell cycle-modulating effects comparable to the anticancer drug Doxorubicin?
- 4. Does miRNA play any role in the anticancer effect of honey? Does it contribute to our understanding of the molecular events of breast carcinogenesis?

1.4 Objectives

1.4.1 **General objectives:** To explore the cellular and molecular mechanism of the anticancer effect of honey on breast cancer *in vivo* and *in vitro* models.

1.4.2 Specific objectives

Part1 in vivo study:

1. To explore the histopathological alterations observed in honey-treated MNUinduced BC in female Sprague Dawley rat model.

Part2 in vitro study:

- To analyse the cytomorphological effect of Tualang honey (TH) on MCF-7 BC cells.
- 2. To investigate the effect of TH-mediated apoptosis in MCF-7 cells and compare it with Doxorubicin-treated MCF-7 cells.

- 3. To investigate the effect of TH on cell cycle phase distribution in MCF-7 BC cell line and compare it with that of Doxorubicin-treated MCF-7 cells
- To explore whether the dose of TH affects apoptosis and cell cycle progression in MCF-7 BC cell
- To analyse the effect of TH on known and putative novel microRNAs in MCF-7 BC cells and compare with that of Doxorubicin.
- 6. To correlate the effect of TH on miRNA expression with its effect on cell cycle and apoptosis in MCF-7 BC cells.

1.5 Hypothesis:

The anticancer mechanism of tualang honey in breast cancer is associated with distinct histo-cyto-morphological alterations and is related with its modulatory effect on cancer cell cycle, apoptosis and miRNA profile.

CHAPTER 2

LITERATURE REVIEW

2.1 How is breast cancer classified?

Breast cancer (BC) has several recognized histological and molecular subtypes with different aetiologies, risk factors profiles, treatment responses, and prognoses. Several different approaches have been used to subclassify BC into clinically meaningful subtypes.

BCs can be primary (originating in the breast) or secondary (metastatic). While more than 95% of the primary BCs are carcinoma being mostly adenocarcinoma (arising from tubules/ductules), the secondary cancers are commonly from a contralateral breast carcinoma, melanoma, carcinoma of the lung, ovary, kidney & stomach. Traditionally primary breast carcinoma is further classified into carcinoma in situ and invasive carcinoma. Carcinoma in situ is classified as DCIS or LCIS. The term "lobular" refers to invasive carcinomas that are biologically related to LCIS, and "ductal" is used more generally for adenocarcinomas that cannot be classified as a special histologic type (Figure 2.1). One-third of invasive/infiltrating carcinomas are of special types. Some of these are strongly associated with clinically pertinent biologic features. The remaining two third are grouped as "ductal" or no special type (NST). Previously known as Invasive Ductal Carcinoma, not otherwise specified (IDC, NOS). This NST group of invasive BCs encompasses all tumours without the specific differentiating features that characterize the other categories of BCs. The diagnosis is made by exclusion of recognized specific BC types (Luo et al., 2022; Sinn and Kreipe, 2013).

In the WHO classification, DCIS and lobular neoplasia are designated precursor breast cancer lesions. Lobular neoplasia is further subgrouped into classic lobular carcinoma in situ (LCIS) and pleomorphic lobular carcinoma in situ (PLCIS)(Sinn and Kreipe, 2013). These precursors possess different clinical behaviour and hence differences in therapeutic recommendations based on the disease biology. Therefore, these lesions need to be distinguished pathologically.

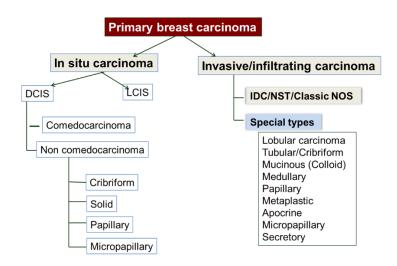


Figure 2.1: Traditional histological types of primary breast carcinoma. Modified from Robbins Pathologic Basis_10E_ 2020: Chapter 23 The Breast p. 1053.

The molecular classification of BC is based on the characteristic changes in DNA, mRNA, protein, and morphology. According to this classification, BCs can be segregated into three major groups distinguished by the expression of two proteins, ER (estrogen receptor) and HER2 (human epidermal growth factor receptor 2). The HER2 protein is a tyrosine kinase known as ERBB2 (Erb-b2 receptor tyrosine kinase 2). The three molecular subtypes correlate reasonably well with ER and HER2 protein expression and can be easily assessed by standard clinical assays like immunohistochemistry (Figure 2.2).

- i) Luminal (ER-positive/HER2-negative) cancers are diverse, ranging from well-differentiated cancers with low proliferative rates and scarce chromosomal changes to poorly differentiated cancers with high proliferative rates and large numbers of chromosomal rearrangements. All these cancers express ER, which is an estrogen-dependent transcription factor. Highly expressing ER cancers usually express high levels of PR (progesterone receptor) as well, which is itself upregulated by estrogen and ER. These ER-positive/PR-positive cancers are usually slow growing and well-differentiated. On the other hand, carcinomas that express low ER and absent PR are typically poorly differentiated, having a high proliferative rate. Cancers detected by mammographic screening are usually small luminal cancers limited to the breast. Interestingly, miRNAs can cluster these cancer subtypes (Aure et al., 2017).
- ii) HER2-positive cancers may be either ER-positive or negative, but when
 ER is present, levels are typically low. It is to be noted that HER2 positivity
 can be identified as an increase in HER2 gene copy number, an increase in
 HER2 mRNA, or an increase in HER2 protein.
- iii) Triple-negative breast cancers or TNBCs (ER-negative/HER2negative; this group largely overlaps with "basal-like" carcinomas defined by mRNA expression) are characterized by genomic instability, a high proliferative rate, and expression of many proteins typical of myoepithelial cells (e.g., basal keratins). These fail to express PR, as it is under the control of ER, often are associated with defects in DNA repair or genomic stability (e.g., due to silencing of BRCA1 or TP53 mutation), and have a relatively poor prognosis. Cytotoxic therapy combined with selectively active agents

against cancers with defective homologous recombination results in complete or almost complete responses in about a third of cases. The cancers that recur usually occur in the first 8 years after diagnosis. Patients who survive 10 years are likely cured, as late recurrences are unusual.

The mRNA expression profiling can also categorise BC into those abovementioned three main groups. These three BC groups vary with regard to patient characteristics, pathologic features, therapeutic response, metastatic patterns, relapse time, and clinical outcome (Table 2.1).

Defining	Luminal (ER-Po	sitive/HER2-	HER2 (HER2	TNBC (ER-
Features	Negative)		Positive)	Negative/
	Low to	High		HER2-
	moderate	proliferation		Negative)a
	proliferation			
Percent of	~40%-55%	~10%	~20%	~15%
breast cancers				
The most	Luminal A	Luminal B	HER2-	Basal-like
similar group			enriched	
defined by			(ER-negative),	
mRNA			luminal B	
profiling			(ER-positive)	
Most common	<i>PIK3CA</i> (45%),	РІКЗСА	PIK3CA	РІКЗСА
gene	<i>TP53</i> (12%)	(29%), <i>TP53</i>	(39%), <i>TP53</i>	(9%), <i>TP53</i>
mutations		(29%)	(70%-80%)	(70%-80%)
Typical	Tubular, grade 1	Grade 3	Some	Medullary
special	or 2	lobular	apocrine, some	features,
histologic	lobular,		micropapillary	metaplastic
types	mucinous,			
	papillary			
Typical	Older women,	BRCA2	Young	Young
patient groups	men,	mutation	women, TP53	women,
	cancers detected	carriers	mutation	women of
	by		carriers (ER	African
	mammographic		positive)	heritage, BRCA1
	screening			-
				mutation carriers
A complete	<10%	~10%	ER-positive	~30%
A complete response to	<10%	~10%	~15%; ER	~30%
-			~13%, EK	
chemotherapy	I			

Table 2.1 Molecular classification of invasive breast cancer

			negative ~30%–60%	
Metastatic	Bone (70%),	Bone (80%)	Bone (70%),	Bone (40%),
pattern	more	is more	viscera (45%),	viscera
	common than	common	and brain	(35%),
	viscera	than viscera	(30%) are all	and brain
	(25%) or brain	(30%) or	common	(25%) are all
	(<10%)	brain (10%)		common
Relapse	Low rate over	An early	Bimodal with	An early
pattern	many years,	peak at <10	early and late	peak at <8
	long survival	years,	(10 years)	years, late
	possible	late	peaks	recurrence
	with bone	recurrence		rare, survival
	metastases	possible		with
				metastases
				rare

Table 2.1 Continued

a TNBC lacks expression of ER, progesterone receptor, and HER2.

b. The three major groups of cancer identified by protein expression or mRNA profiling largely overlap but are not identical. "Luminal B" can refer to ER-positive cancers with bids expliferation with or without UEP2 are required."

with high proliferation with or without HER2 expression.

c Some rare special histologic types have a more favourable prognosis than this group as a whole (e.g., adenoid cystic carcinoma, secretory carcinoma, low-grade adenosquamous carcinoma). ER, Estrogen receptor; mRNA, messenger RNA; TNBC, triple-negative breast cancer.

(Source: Robbins Pathologic Basis_10E_ 2020: Chapter 23 The Breast p. 1050)

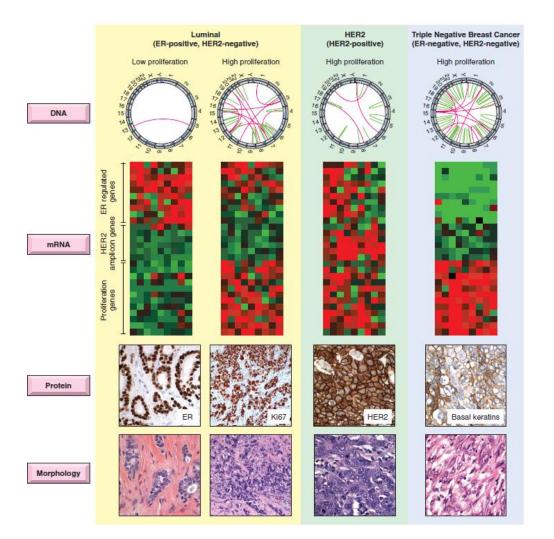


Figure 2.2: Molecular classification of invasive breast cancer. Circos plots show a snapshot of all of the genomic abnormalities within a particular tumour; these abnormalities are mapped onto the chromosomes, displayed at the periphery of a circle. Green loops show intrachromosomal rearrangements, while red loops show interchromosomal rearrangements. The mRNA profiling shows relative levels of mRNA expression. Red indicates a relative increase; green, a relative decrease; and black, no change in levels. Genes are arrayed from top to bottom, and tumours from left to right. Immunohistochemistry detects proteins using specific antibodies visualized with a brown chromogen. Cancer cell proliferation is estimated by counting mitoses or staining for cell cycle-specific proteins such as Ki-67. (Source: Robbins Pathologic Basis_10E_ 2020: Chapter 23 The Breast p. 1048).

2.2 Pathogenesis of breast cancer

Like other cancers, BCs arise through several pathways, including the stepby-step acquisition of driver mutations in breast epithelial cells (Figure 2.3). In addition, these cancers may develop in a hormonal background that enables mutagenesis and hence outgrowth of abnormal clones. Breast carcinomas associated with germline mutations in cancer genes make up the minority of carcinomas (Heng et al., 2017). The most important risk factors for sporadic cancers in women are estrogenic stimulation and age.

2.2.1 Molecular carcinogenesis of familial breast cancer

One-quarter to one-third of BCs are familial and occur due to the inheritance of a susceptibility gene or genes. Single gene mutations with moderate to high penetrance account for 8% to 17% of breast carcinomas (Table 2.2). Likewise, inheritance has a critical part in an additional 15% to 20% of women based on a positive family history, defined as an affected first-degree relative (mother, sister, or daughter), cancer in multiple relatives, and early-onset cancers. In these cases, what happens is that inheritance of a single susceptibility gene with low penetrance or combinations of genes interact to increase risk. The essential high penetrance susceptibility genes for familial BC are tumour suppressors like p53, BRCA1, BRCA2 and CHEK2, regulating genomic stability or are involved in pro-growth signalling pathways. Normally, cells that incur DNA damage undergo cell cycle arrest and either repair their damaged DNA or die by apoptosis. ATM senses DNA damage and "activates" the guardian of the genome p53, thereby inducing cell cycle arrest and, if DNA repair is unsuccessful, apoptosis. BRCA1, BRCA2, and CHEK2 all have important functions in the repair of double-stranded DNA breaks. Defect in any of these tumour suppressors increases the likelihood of permanent DNA damage, leading to potentially oncogenic mutations that will be passed to the daughter cells.

 Table 2.2: Most common single gene mutations associated with hereditary susceptibility to breast cancer

Gene	% of	Risk of Breast	Comments
(Syndrome)	Single	Cancer to Age	
	Gene	70#	
	Cancers*		

Table 2.2 Continued

High Penetran	ce Germlin	e Mutations (>4-fo	ld increased risk; 3%–7% of
breast cancers)		
BRCA1	~55%	~40%-90%,	The majority of cancers are
(familial		females;	TNBC
breast and		1% males	
ovarian			
cancer)			
BRCA2	~35%	~30%-60%,	The majority of cancers are ER
(familial		females;	positive. Biallelic mutations
breast and		6% males	cause a form of Fanconi
ovarian			anaemia.
cancer)			
TP53 (Li-	<1%	~50%-60%,	The majority of cancers are ER
Fraumeni)		females;	and HER2 positive
		<1%, males	-
PTEN	<1%	~20%-80%,	Also associated with
(Cowden)		females;	benign tumours
(00110011)		<1%, males	
STK11	<1%	~40%-60%,	Also associated with
(Peutz-		females	benign colon polyps
Jeghers)			congression polyps
CDH1	<1%	~50%, females	The majority of cancers are
(hereditary			lobular in type
diffuse gastric			
cancer)			
PALPB2	<1%	~30%-60%,	Biallelic mutations cause a form
(hereditary		females;	of Fanconi anaemia
breast		<1%, males	
cancer)		, , , , , , , , , , , , , , , , , , ,	
/	etrance Gei	mline Mutations (2	2- to 4-fold increased risk; 5%
to 10% of brea			
ATM (ataxia-	~5%	~15%-30%,	Biallelic mutations cause
telangiectasia)		females	ataxia-telangiectasia
CHEK2	~5%	~10%-30%,	The majority of cancers are
(hereditary		females	ER-positive
breast cancer)			L
*The percentage of a	all breast cancer	s associated with a germlin	e mutation conferring an increased risk of
breast cancer.	tionto or	with the anexistictert	and the processor of other area worked.
		with the specific mutation a -negative breast cancer.	and the presence of other gene mutations.
			Chapter 23 The Breast p 1040)

(Source: Robbins Pathologic Basis_10E_ 2020: Chapter 23 The Breast p. 1049)

2.2.2 Molecular carcinogenesis of sporadic breast cancer

Breast carcinogenesis occurs via estrogen-positive and estrogen-negative pathways (Figure 2.3). The estrogen-positive pathway is the dominant pathway of breast carcinogenesis, and via this pathway, *luminal cancers* arise (Aure et al., 2017). Estrogen increases the local production of growth factors, such as transforming growth factor α , platelet-derived growth factor, and fibroblast growth factor, and regulates the expression of dozens of genes in breast epithelial cells that may directly contribute to tumour growth and development. Estrogen exposure also stimulates the proliferation of breast epithelial cells during puberty, menstrual cycles, and pregnancy, thereby increasing the number of cells that are "at risk" for transformation (Ciriello et al., 2013). The DNA replication that attends cellular proliferation is conducive to the accumulation of mutations. The gap in cell division that occurs during the latter part of the menstrual cycle may permit time for defective DNA repair and mutations to become "fixed" in the genome. Repetition of this process during each cycle may underlie the association between the cumulative number of menstrual cycles a woman experiences and her risk of developing BC, as well as the strong association between luminal cancers and age. Some luminal cancers eventually escape from estrogen dependence through several mechanisms. These include the outgrowth of clones that lack ER expression, compensatory alterations in related growth factor signalling pathways, or acquisition of mutations in the ER gene (ESR1) that lead to estrogenindependent ER function.

The HER2-positive cancers arise through a pathway strongly associated with amplifying the HER2 gene on chromosome 17q and can develop via the estrogendependent and -independent pathway. In these cancers, HER2 acts as an oncogenic "driver." Clinically diagnosis can be made by detecting HER2 overexpression by immunohistochemistry or HER2 gene amplification by in situ hybridization (Marchiò et al., 2021).

The TNBCs arise through an estrogen-independent pathway that is not associated with HER2 gene amplification. A possible precursor lesion of morphologically normal cells that overexpress p53 has been identified (analogous to

24