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PENYINGKIRAN, PRA-PEMEKATAN DAN PENENTUAN 

FARMASEUTIKAL TERPILIH DARIPADA SAMPEL AIR 

PERSEKITARAN 

 

ABSTRAK 

Farmaseutikal merupakan pencemar memuncul yang digunakan secara meluas 

dalam beberapa aplikasi termasuk ubatan manusia dan veterinar serta kegiatan 

pertanian. Analisis farmaseutikal bergantung pada pengkuatitan jitu farmaseutikal 

sasaran dari matriks kompleks, tetapi masih menjadi tugas yang sukar disebabkab oleh 

kepekatan yang rendah. Oleh itu, kajian ini memperlihatkan penggunaan kaedah 

penyediaan sampel yang berbeza untuk penentuan farmaseutikal terpilih di dalam 

sampel air. Teknik pengekstrakan mikro berdasarkan pengekstrakan mikro cecair-

cecair berbantu vorteks dengan pengekstrakan belakang (VALLME-BE) telah 

dibangunkan untuk penentuan ubat anti-radang bukan steroid (NSAIDs) dinamakan, 

ketoprofen, naproxen, diclofenac dan ibuprofen. Prosedur ini dilakukan dengan 

menambahkan 225 μL butil asetat ke dalam 10 mL larutan piawai untuk prosedur 

VALLME, diikuti dengan pengekstrakan balik ke natrium hidroksida sebelum analisis 

kromatografi cecair berprestasi tinggi-UV-Vis (HPLC-UV-Vis). Di bawah keadaan 

optimum, kaedah yang dicadangkan memberikan kelinearan yang baik (R2 ≥ 0.9809), 

kebolehulangan (%RSD; 3.4 – 16.1%) dan nilai had pengesanan (LOD) dan had 

kuantifikasi (LOQ) yang baik (ketoprofen (0.134 dan 0.407 µg L-1), naproxen (0.015 

dan 0.047 µg L-1), diclofenac (0.03 dan 0.091 µg L-1) and ibuprofen (0.05 dan 0.152 

µg L-1) telah diperolehi. Selain itu, penjerap grafena oksida (GO), grafena oksida 

bermagnet (GO@Fe3O4) dan grafena oksida bermagnet-larutan eutektik terdalam 

cecair ferro (GO@Fe3O4-DES FF) telah disintesis dan dicirikan. Peratusan 
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penyingkiran fluorokuinolon (ofloxacin, naproxen, gemifloxacin dan sparfloxacin) 

telah dioptimumkan berdasarkan kaedah penjerapan kelompok menggunakan penjerap 

yang telah disintesis. Di bawah keadaan optimum, prestasi penjerapan GO@Fe3O4 dan 

GO@Fe3O4-DES FF telah dikaji. Data eksperimen yang diperolehi menunjukan semua 

analit sepadan dengan model kinetik tertib kedua pseudo dan model Freundlich. Kajian 

termodinamik menunjukkan yang proses penjerapan boleh terlaksana secara 

termodinamik, spontan dan eksotermik. Akhir sekali, kerana prestasi penjerapan 

GO@Fe3O4-DES FF adalah lebih baik berbanding GO@Fe3O4, ia telah dibangunkan 

lebih lanjut untuk diaplikasikan dalam GO@Fe3O4-DES FF- pengekstrakan mikro fasa 

cecair (LPME). Beberapa parameter termasuk jenis pelarut penyahjerap, isipadu cecair 

ferro, masa pengekstrakan, isipadu pelarut penyahjerap, masa penyahjerap, pH larutan 

dan isipadu sampel telah dioptimumkan dan dianalisa menggunakan HPLC-UV-Vis. 

Di bawah keadaan optimum, kelinearan yang baik telah dicapai dalam julat 1 – 1500 

µg L-1 dengan nilai pekali penentuan, R2 adalah 0.9921-0.9956. Nilai LOD dan LOQ 

telah direkodkan dalam julat masing-masing adalah 0.100 - 0.063 dan 0.190 - 0.303 

µg L-1. Kaedah GO@Fe3O4-DES FF-LPME yang dibangunkan telah digunakan untuk 

penentuan florokuinolon dalam sampel air dari Lembangan Sungai Langat, Selangor 

dan pengembalian sebanyak 70.3 – 120.3% diperolehi. Secara kesimpulannya, kaedah 

penyediaan sampel yang dibangunkan untuk penentuan farmaseutikal terpilih telah 

menunjukkan sensitiviti dan ketepatan yang baik dan mampu menjadi kaedah 

alternatif untuk pengekstrakan di dalam sampel air. 
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REMOVAL, PRE-CONCENTRATION AND DETERMINATION OF 

SELECTED PHARMACEUTICALS FROM ENVIRONMENTAL WATER 

SAMPLES  

 

ABSTRACT 

Pharmaceuticals are emerging contaminants that have been widely used in 

various applications, including human and veterinary medicine, as well as agricultural 

activities. The pharmaceutical analysis relies on accurate quantification of target 

pharmaceuticals from a complex matrix, yet this remains a difficult task due to their 

low concentrations. Therefore, this research demonstrated the use of different sample 

preparation methods for the determination of selected pharmaceuticals in water 

samples. A microextraction technique based on vortex-assisted liquid-liquid 

microextraction with back extraction (VALLME-BE) was developed for the 

determination of nonsteroidal anti-inflammatory drugs (NSAIDs) namely, ketoprofen, 

naproxen, diclofenac, and ibuprofen. The procedure was carried out by adding 225 μL 

of butyl acetate into 10 mL spiked working standard for VALLME procedure, 

followed by the back-extraction into sodium hydroxide prior to high performance 

liquid chromatography-UV-Vis (HPLC-UV-Vis) analysis. Under optimum conditions, 

the proposed technique provided good linearity (R2 ≥ 0.9809), repeatability (%RSD; 

3.4 – 16.1), and excellent the limits of detection (LOD) and limit of quantification 

(LOQ) values (ketoprofen (0.134 and 0.407 µg L-1), naproxen (0.015 and 0.047 µg L-

1), diclofenac (0.03 and 0.091 µg L-1) and ibuprofen (0.05 and 0.152 µg L-1) were 

obtained. On the other hand, graphene oxide (GO), graphene oxide magnetite 

(GO@Fe3O4), and graphene oxide magnetite-deep eutectic solvent ferrofluid 

(GO@Fe3O4-DES FF) adsorbents were successfully synthesized and characterized. 
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The removal percentage of fluoroquinolones (ofloxacin, naproxen, gemifloxacin, and 

sparfloxacin) were optimized based on the batch adsorption method using the 

synthesized adsorbents. Under the optimum conditions, the adsorption performances 

of GO@Fe3O4 and GO@Fe3O4-DES FF were investigated. The experimental data for 

all the analytes were fitted well with pseudo second-order kinetic model and 

Freundlich model. The thermodynamic studies showed that the adsorption process was 

thermodynamically feasible, spontaneous, and exothermic. Finally, as the adsorption 

performances of GO@Fe3O4-DES FF were better than GO@Fe3O4, it was further 

developed for the application of GO@Fe3O4-DES FF-liquid phase microextraction 

(LPME). Several parameters such as type of desorption solvent, ferrofluid volume, 

extraction time, desorption solvent volume, desorption time, solution pH, and sample 

volume were optimised and analysed using HPLC-UV-Vis. Under the optimized 

conditions, good linearity was achieved in the range of 1 – 1500 µg L-1 with a 

coefficient of determination, R2 value of 0.9921-0.9956. The LOD and LOQ value 

recorded in the range of 0.100 - 0.063 and 0.190 - 0.303 µg L-1, respectively. The 

developed GO@Fe3O4-DES FF LPME method was applied for the determination of 

fluoroquinolones in water samples from Langat River Basin, Selangor, and the 

recovery of 70.3 – 120.3% was obtained. In conclusion, the developed sample 

preparation techniques for the determination of selected pharmaceuticals showed 

excellent sensitivity and precision and may be an excellent candidate for the extraction 

of water samples.  
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CHAPTER 1  
INTRODUCTION 

1.1 Background of the study 

Water is the most abundant and necessary source of life on the planet and it has 

been declared to be one of the human rights by the United Nations (UN), General 

Assembly, in 2010 (Onda et al., 2012; Unuabonah et al., 2019). For both personal and 

household use, everybody has the right to sufficient, constant, safe, appropriate, 

physically available, and affordable water. Likewise, the 6th Sustainable Development 

Goal (SDG 6) mandates the access to clean water and sanitation, as well as sound 

freshwater management. If this aim is not achieved, it will cause serious implications 

for the survival of life on earth (Unuabonah et al,   2019). 

Pharmaceuticals are considered as emerging contaminants and they have been 

widely employed for a variety of uses, including human and veterinary medicine, and 

agricultural activities. Pharmaceutically active compounds (PhACs) such as anti-

inflammatory drugs, antibiotics, analgesics, X-ray contrast media lipid regulators, 

estrogens, and beta-blockers have been used worldwide to enhance human and animal 

health and enhance life expectancy. The consumption of PhACs increased as a result of 

the world population's increment from 7.6 billion in 2017 to 10 billion in 2050 as 

expected  (Gehrke et al., 2015). Direct discharge of untreated and treated wastewater is 

the principal source of these pollutants in aquatic environments (Krogh et al., 2017). 

While livestock farms runoff, agricultural regions, and aquaculture facilities provide a 

secondary source (Olasupo et al., 2021). In 1970, the first report on the presence of 

medicines in river water was released (Daughton, 2016). Since then, extensive study 

has been conducted on the monitoring of pharmaceuticals in aquatic environments. 
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Pharmaceutical analysis relies on accurate quantification of target 

pharmaceuticals from a complex matrix, yet this remains a difficult task. Furthermore, 

analytes are frequently present in the sample matrix at extremely low concentrations, 

ranging from mg L-1 to ng L-1. As the result, increased attention has been placed on 

establishing sample preparation processes such as preconcentration and pre-treatment 

over the last few decades. Since it is one of the essential steps that consumes around 

80% of the overall quantitative analysis time, using appropriate sample preparation 

techniques can help tremendously in the development of pharmaceutical analysis. 

(Daniel et al., 2017;  Li et al., 2021). 

Many researchers are intrigued by the miniaturization of analytical approaches. 

By reducing the dimension of conventional analytical methods and the solvents used 

and the quantity of reagents per analysis, the amount of waste generated is reduced. 

Therefore, innovative methods to simplify the extraction techniques have been 

introduced. Microextraction techniques either with solid or liquid extractants have been 

proposed. Some examples of liquid phase techniques are vortex assisted liquid-liquid 

microextraction (VALLME), dispersive liquid-liquid microextraction (DLLME) and 

vortex assist liquid-liquid extraction with back extraction (VALLME-BE) (Shalash et 

al., 2017). It is clear that the alternative sample pre-treatment that is simple and rapid 

but sensitive enough to detect low concentration of pharmaceuticals in water samples 

are required. Towards this end, the plethora of microextraction techniques, VALLME-

BE seemed to be the best candidate for sample preparation for pharmaceutical as the 

extracts were in aqueous phase which able to be analysed using reversed phase HPLC 

directly without reconstitution step. In addition, the low volume of back extraction 

provided a high pre-concentration factor which enhanced the response in HPLC 

analysis. 
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As an alternative to extracting solvents (in the form of molecular liquids), deep 

eutectic solvent (DES), ionic liquids (IL), surfactant-based solvents, supercritical fluids, 

supramolecular solvents, and ferrofluid (FF) are now being considered in 

microextraction methods. FF or magnetic fluids (MF) are smart colloidal suspensions 

of single domain magnetic nanoparticles, such as iron oxide (Fe3O4), in a polar or non-

polar liquid carrier, such as DES, IL, ester, or hydrocarbons (Farahani & Shemirani, 

2013). The application of FF is widely seen in bioengineering, microelectronics, and 

material sciences (Mishra et al., 2014). Different modes of liquid phase microextraction 

based on FF have recently been discovered and are becoming increasingly popular due 

to advantages such as ease of use, rapid extraction, and reduced organic solvent use 

(Safari et al., 2016; Yang et al., 2018; Zohrabi et al., 2016) Furthermore, FF not only 

eliminates the need for centrifugation to retrieve organic solvents, but it also improves 

phase separation yield. This results in good extraction efficiency and reproducibility at 

pre-concentration factors that are acceptable. In general, the magnetic nanoparticles in 

FF are coated with a shell made of an appropriate material to prevent agglomeration. In 

this study, choline-chloride based DES was chosen as the carrier liquid. DESs have 

various advantages over ionic liquids since they are easier and less expensive to 

produce, as well as being more biodegradable and less hazardous to the environment. 

DESs are formed when hydrogen bond donors (HBD) and hydrogen bond acceptors 

(HBA) self-associate to produce eutectic mixtures having lower melting temperatures 

than the starting compounds (El-Deen & Shimizu, 2019; Sadeghi & Davami, 2019). 

The magnetic nanomaterial in DES aids in the accumulation of the target analytes due 

to its van der Waals forces, dipolar attractive interactions, and magnetostatic 

interactions (Zohrabi et al., 2016). 
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To form a stable FF, the MNPs must be coated to avoid agglomerations and 

leaching before being immersed in a carrier liquid. Graphene oxide (GO) has been 

widely used in sorbent based microextraction techniques. (GO)-based adsorbents have 

shown great promise to be used as candidates for adsorbents because of their distinct 

characteristics such as large surface area and small size (Amin et al., 2014; Daniel et 

al., 2017). However, due to the hydrophilic property of GO, it is difficult to be removed 

from the sample using traditional separation methods. Hence, it becomes a secondary 

pollutant and may increase the cost to retreat it. This problem can be solved by 

anchoring the magnetic properties (Hu et al., 2013). Graphene oxide magnetite 

(GO@Fe3O4) may increase the feasibility of GO with the help of external magnetic 

fields. This development implies the combination of benefits of adsorption and makes 

it easy to separate since it involves the use of external magnetic species.  

The existing methods for the removal of pharmaceuticals are membrane 

separation, photochemical degradation, advanced oxidation processes, and adsorption 

treatments. Adsorption is well regarded as an efficient, effective, and cost-effective 

approach for removing various contaminants from aqueous solutions in water treatment 

applications (Dutta & Mala, 2020). Until now, a variety of adsorbents have been 

developed to reach high adsorption efficiency to remove pharmaceuticals from water 

and wastewater (Duan et al., 2020;  Liu et al., 2018; Okaikue-Woodi et al., 2018;  Wang 

et al., 2020;  Yang et al., 2020).  

This research demonstrated the development of liquid phase microextraction 

(LPME) techniques for the determination of pharmaceuticals in water samples, based 

on the above-mentioned considerations. The VALLME-BE method was developed and 

applied for the determination of nonsteroidal anti-inflammatory drugs (NSAIDs) as test 
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compounds. Several optimization parameters such as solvent type and volume, sample 

solution pH, and vortexing speed and time were studied. On the other hand, new GO 

based adsorbents were synthesized and characterized. The adsorption performances of 

the synthesized graphene-oxide magnetite (GO@Fe3O4) and graphene-oxide 

magnetite- deep eutectic solvent ferrofluid (GO@Fe3O4-DES FF) were evaluated to 

explore their potential in batch adsorption of fluoroquinolones (FQs). Finally, 

GO@Fe3O4-DES FF-liquid phase microextraction (GO@Fe3O4-DES FF-LPME) 

method was developed and validated prior to the application for the determination of 

FQs in environmental water samples collected along Langat River Basin, Selangor, 

Malaysia.   

1.2 Problem statement 

NSAIDs have made up more than 15% of all medications found in the 

environment and they were the most often reported of all classes. On the other hand, 

FQs are widely utilized not only by people but also in veterinary treatment, particularly 

in large-scale animal farming. About 50–90% of medicines that are frequently detected 

in wastewater and receiving surface water bodies were discharged in a mixture of parent 

and metabolite forms in faecal matter due to inadequate metabolism in people and 

animals. Owing to their high polarity and solubility in water, the extraction of 

pharmaceuticals from complex matrices faces significant challenges. Therefore, sample 

pre-treatment and preconcentration measures play a major role in enhancing the 

sensitivity and selectivity of the analytical procedure to reach the low limit of detections 

required for complex matrix analysis, such as aquatic environmental samples. 

Thus, the removal of those pollutants and detection of their presence at low 

concentrations have attracted the attention of many researchers. Several methods such 
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as photocatalytic degradation, membrane separation, and adsorption have been 

established to eliminate them. However, these methods are expensive, non-selective, 

and require pre-treatment. Therefore, to overcome the constraints of conventional 

methods, numerous miniaturized sample preparation methodologies are widely 

explored including microextraction techniques. Many other benefits can be highlighted 

as possible advantages of miniaturization such as improved extraction performance and 

a widely reduced consumption of samples and chemicals per analysis (with the 

subsequent reduction in waste generation) is far from being the only driving force 

behind miniaturization. Instead, several desirable features can be identified for 

miniaturized methodologies, including Shrinking conventional analytical systems, 

integration of steps, simplification, enhanced portability, reduced human manipulation, 

and adequate performance (Pena-Pereira et al., 2021). 

More innovative methods can be developed, to accelerate the removal, and 

extraction processes and to improve the separation of analytes. Nevertheless, a lot of 

progress is expected to be made with the use of new adsorbents which would make the 

whole sample preparation process simpler, faster, more economical, more efficient, and 

more environmental friendly. Hence, the adsorbent provides the surface area necessary 

to ensure a high extraction recovery and clean up. 

In this study, the development of simple microextraction techniques named 

VALLME-BE for the determination of NSAIDs in environmental water samples was 

developed. Recent advances in the fabrication of new FF materials, on the other hand, 

have contributed significantly to the development of miniaturized methods. Given the 

advantages of GO@Fe3O4 adsorbent and DES, a new class of GO@Fe3O4-DES FF was 
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developed for GO@Fe3O4-DES FF-LPME of FQs in Langat River Basin, Selangor, 

Malaysia.  

1.3 Objectives 

This thesis was dedicated to the development of sample preparation techniques 

for the determination of selected pharmaceuticals in the environmental water samples. 

The specific objectives of this study were: 

1. To develop, validate and apply VALLME-BE method for the determination of 

NSAIDs from environmental water samples.  

2. To synthesize, characterize and study the adsorption performances of 

GO@Fe3O4 and GO@Fe3O4-DES FF for the removal of FQs using UV-Vis 

spectrophotometer. 

3. To develop, validate and apply GO@Fe3O4-DES FF-LPME for the 

determination of FQs in water samples prior to HPLC-UV-Vis analysis. 

1.4 Outline of the thesis 

This thesis was divided into five chapters. Chapter 1 is an introduction that 

explains the general context of the problem statements and research objectives. In 

Chapter 2, related literature was thoroughly reviewed. In Chapter 3, the methodology 

chapter highlights the chemicals and reagents, and procedures used in these studies. 

This chapter contains three main parts namely Part I, Part II, and Part III. Part I 

investigated the extraction of ibuprofen (IBU), diclofenac (DIC), ketoprofen (KET), 

and naproxen (NAP) using VALLME-BE. Part II illustrates the synthesis, 

characterization, and adsorption performances of GO@Fe3O4 and GO@Fe3O4-DES FF 
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adsorbents for the removal of FQs. Lastly, Part III encompasses the determination of 

ofloxacin (OFL), enrofloxacin (ENR), sparfloxacin (SPR), and gemifloxacin (GEM) 

using GO@Fe3O4-DES FF based liquid phase microextraction. In the following 

chapter, Chapter 4 presents in detail the overall outcomes for results and discussions 

of the conducted project. Like Chapter Three, this chapter was also divided into three 

major parts, Part I, Part II, and Part III. Characterisation, optimisation, adsorption 

study, extraction study, method validation, real sample analysis, and reusability studies 

are all included in these sections, along with their relevant discussions. Finally, Chapter 

5 concludes the overall results as well as future research work recommendations. 
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Pharmaceuticals 

The advancement production of pharmaceuticals over the last century has 

resulted in greater disease prevention, increased life expectancy, mortality reduction, 

and health quality (Ebele et al., 2017). Pharmaceuticals have been identified as 

emerging contaminants (ECs), due to continuous discharge and prevalence of the trace 

quantities of the pharmaceutical components in the environment (Yu et al., 2011). 

Pharmaceuticals penetrate water bodies through multiple pathways, including human 

excretion, medications disposal, livestock husbandry, agricultural and pharmaceutical 

industries. In addition, inefficient elimination of pharmaceuticals during the treatment 

process in waste-water treatment plants (WWTPs) and water treatment plants (WTPs) 

also contributed to this issue  (Boxall et al., 2012; Morales et al., 2016; Petrie et al., 

2014).  

The occurrence of certain pharmaceutical compounds in surface water bodies, 

even at low concentrations, can constitute a significant environmental risk. The removal 

of these compounds is a primary consideration in a variety of fields of research. 

Furthermore, as a result of population growth and high pharmaceutical usage, the 

concentration of pharmaceuticals in the aquatic environment is gradually growing. 

Several investigations have discovered several pharmaceuticals in surface water, 

wastewater treatment plant effluents, and groundwater (Chen et al., 2015; Golet et al., 

2002; Sturini et al., 2012; Vázquez et al., 2012). 

Unfortunately, even though pharmaceuticals are considered as ECs, no 

legislative maximum residue limits (MRLs) for aquatic ecosystems have been 
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established especially in Malaysia. Despite the fact that pharmaceutical-related 

industries must adhere to stringent legislation in the healthcare sector, with continuous 

monitoring from agencies such as the Food and Drug Administration (FDA) and the 

European Medicines Agency (EMA), environmental concerns have lagged behind. 

Only recently some global actions have reflected the increased concern of both the 

scientific community and legislative authorities about environmental pharmaceuticals. 

Agencies such as the US Food and Drugs Administration (US FDA) and legislature 

such as the European Union Water Framework Directive have established guidelines 

for the evaluation and use of certain pharmaceuticals. Furthermore, in 2009, the US 

Environmental Protection Agency (US EPA) classified several unregulated ECs 

comprising potential health hazards in the contaminant candidate List 3 for drinking 

water. Under the EU Water Framework Directive (WFD-2000/60/EC), pharmaceuticals 

such as diclofenac have been identified as a priority contaminant in surface water bodies 

(2013/39/EU, 2013; Stewart et al., 2014).  

Pharmaceuticals are a large group of substances that are categorized into several 

categories. such as analgesics and antibiotics, anti-inflammatory drugs, anti-epileptics, 

beta-blockers, hormones, cytostatics, disinfectants, antidepressants, and antiseptics. 

Studies revealed that antibiotics and nonsteroid anti-inflammatories (NSAIDs) are the 

most typically found in water since these groups possessed the highest risk and are 

widely used pharmaceuticals to alleviate infections and inflammation (Taoufik et al., 

2020).  

2.1.1 Nonsteroidal anti-inflammatory drugs  

Nonsteroidal anti-inflammatory drugs (NSAIDs) are used to alleviate 

inflammatory, chronic, and acute pain conditions. NSAIDs have antipyretic and 

analgesic properties as well. This includes diclofenac, ibuprofen, ketoprofen, and 
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naproxen which are in the top ten persistent pollutants found in wastewater properties 

(Abd Wahib et al., 2018; Wong, 2019). The consumption of NSAIDs increasing rapidly 

since the first developed and marketing in 1899. This is parallel with the subsequent 

release of these pharmaceuticals in the water bodies (Thalla & Vannarath, 2020). 

NSAIDs have been identified as hazardous residues among pharmaceuticals, according 

to the International Council Directive 96/23/EC study (Tanwar et al., 2015). In 

particular, diclofenac was added to the list of priority substances of the European 

Commission. Prolonged use of these drugs, however, may result in substantial water 

contamination due to human excretion or inadequate disposal due to low degradation 

factors and polarity. 

As a result of their well-known toxicity and negative effects, there is a lot of 

interest in monitoring and determining NSAIDs in environmental samples using 

sensitive, selective and repeatable analytical techniques. Several methods for 

determining NSAIDs have been reported such as solid-phase microextraction (SPME) 

(Sulej-Suchomska et al., 2016), single-drop microextraction (SDME) (Azzouz et al., 

2010), dispersive liquid-liquid microextraction (DLLME) (Zgoła-Grześkowiak, 2010), 

and hollow fiber liquid-phase microextraction (LPME) (Es’haghi, 2009) as stated in 

Table 2.1. 
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Table 2.1 Sample preparation techniques for NSAIDs analysis. 

Analyte Matrix Instrument Method Extraction 
solvent/volume 

Extraction 
time  

(mins) 

LOD 
(µg 
L−1) 

Recovery 
(%) 

EF Ref 

NAP 
KET 
IBU 
DIC 

Biological 
fluids 

GC-MS 
HPLC-
DAD 

DLLME-BE 200 µL n-dodecane/ 
TOPO (95:5) 

11 0.10-1 
0.1-
6.0 

86.8-1-5.2 - (Ghambarian et 
al., 2020) 

KET 
DIC  

Urine HPLC DLLME-SFO 20 µL 1-undecanol 
dispersed in 100 µL 
ACN 

9 5.20 –
4.70 

95.7-115.6 _ (Shukri et al., 
2015) 

DIC 
IBU 

Urine GC-FID USE-
AALLME and 
LDS-DLLME 

30 µL 1-octanol 10 0.10 - 
1.00 

94-103 115-
135 

(Barfi et al., 
2015)  

KET 
DIC 
IBU 

Tap and 
river water 

HPLC-
UV/FP 

Vortex-IL-
DLLME 

90 µL [BMIM] 
[PF6] 
210 µL methanol 

6 17.00 
– 

95.00 

89-103 49-57 (Toledo-neira 
& Álvarez-
lueje, 2015) 

IBU 
DIC 
 

Human 
plasma and 
urine 

HPLC LDS-
AALLME 

n-octanol 
65 µL 

15 1.10 - 
1.70 

94-102 50-61 (Barfi et al., 
2015) 

KET 
NAP, 
DIC 
IBU 

Wastewater HPLC DLLME-SFO 30 µL 1-undecanol 
150 µL ACN 

10 0.04 - 
0.13 

˂ 80 283-
302 

(Beldean-Galea 
et al., 2015) 

NAP 
DIC 
IBU 

Biological 
samples 

 
 

HPLC AALLME-BE Chloroform 
80 µL 

10 0.20–
0.52 

78-94 390-
470 

(Farajzadeh et 
al., 2015b) 
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Table 2.1 (continued) 

Analyte Matrix Instrument Method Extraction 
solvent/volume 

Extraction 
time  

(mins) 

LOD 
(µg L−1) 

Recovery 
(%) 

EF Ref 

NAP 
DIC 
IBU 

Tap and 
drinking 
water 

UHPSFC-
PDA 

US-IL-
DLLME 

85 mg 
 [C8MIM][PF6] 
0.5 mL ACN 
 

11 0.62 - 
7.37 

88-111 255-
340 

(Vázquez et 
al., 2013) 

KET  
NAP 

Human urine HPLC IL-dLPME 280 µL [BMIM PF6] 
720 µL methanol 

5 55.00 – 
70.00 

99.6-107 42-36 (Cruz-vera et 
al., 2009) 

 
KET; ketoprofen, NAP; naproxen, DIC; diclofenac, IBU; ibuprofen; US-DLLME; ultrasound-assisted dispersive liquid–liquid microextraction, 
DLL-SDME; dispersive liquid–liquid and single-drop microextraction, USE-AALLME; ultrasound-enhanced air-assisted liquid–liquid 
microextraction, LDS-DLLME; low-density solvent-based dispersive liquid–liquid microextraction, Vortex–IL–DLLME; ionic liquids dispersive 
liquid–liquid microextraction, LDS–AALLME; low density solvent-based air-assisted liquid–liquid microextraction, DLLME-SFO; dispersive 
liquid–liquid microextraction and solidification of floating organic droplets, AALLME–BE; air-assisted liquid–liquid microextraction - back 
extraction, US–IL-DLLME; ultrasound-assisted ionic liquid dispersive liquid–liquid, IL–dLPME; ionic liquid-based dispersive liquid–liquid 
microextraction, VALLME-BE; vortex assist liquid liquid microextraction-back extraction, ([BMIM][PF6]); 1-butyl-3-methylimidazolium 
hexafluorophosphate, [C8MIM][PF6]; 1-octyl-3-methylimidazolium hexafluorophosphate, TOPO; potassium hydroxide, trioctylphos- phine oxide, 
EF; enrichment factor  
 



 

14 
 

2.1.2 Antibiotics  

Antibiotics are now produced by chemical synthesis or chemical modification 

of natural substances (Kovalakova et al., 2020; Wang et al., 2019). They are biologically 

active compounds with antibacterial, antiparasitic, and antifungal properties that have 

been created as medications for human and animal illnesses, as well as food 

supplements for preventing disease in animal husbandry ( Hu et al., 2018). The global 

consumption of antibiotics is rising in tandem with the world's growing human 

population. Furthermore, the rising demand for animal protein is intensifying food 

production, forcing the use of more growth promoters and antibiotics to keep the supply 

stable (Kovalakova et al., 2020;  Wang et al., 2016)   

The occurrence of antibiotics in environmental water may cause the occurrence 

of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). ARB can 

release or transmit ARG in aquatic environments, which are rather persistent and can 

be acquired by other bacteria, resulting in an increase in ARB. Antibiotics also 

encouraged the proliferation of ARG in aquatic environments (Shao et al., 2018; Xu et 

al., 2019). ARGs can be transmitted to non-bacterial creatures, such as humans, to 

reduce their susceptibility to antibiotics. The proliferation and pollution of antibiotics 

and ARGs in environmental water systems have garnered widespread and growing 

attention as a serious hazard to human health. ARGs have been identified as emergent 

environmental pollutants because of their antibiotic resistance and threat to 

environmental safety and human health (Zhang et al., 2021). Besides, antibiotics also 

have toxic effects on aquatic species due to bioaccumulation and biomagnification (Wu 

et al., 2015). 
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Antibiotics including tetracycline, fluoroquinolone, sulfonamides, 

chloramphenicol, and macrolide are complex compounds that are difficult to analyse in 

environmental samples due to co-extracted components that are dependent on the 

analyte-sample combination and thus obstruct quantification, which is known as ion 

suppression effects. Fluoroquinolones (FQs) are a class of relatively new synthetic 

antibiotics. FQs are registered under the National Pharmaceutical Regulatory Agency 

(NPRA) of the Ministry of Health Malaysia and identified by WHO as critically 

important medicines for the human health and veterinary sector (WHO Advisory Group 

on Integrated Surveillance of Antimicrobial Resistance (AGISAR), 2011). FQs are 

among the most widely found antibiotics in the environment. Despite their inherent 

risks, FQs have garnered less attention than other pollutants, thus the risk they pose in 

effluents is uncertain (Ding et al., 2020). FQs are generally partially immobilized within 

the human and animal body, with 20 to 80 % being released into the environment in 

pharmacologic active forms (Dutta and Mala, 2020). FQs were found in wastewater 

effluents and sewage sludge (Golet et al., 2002), soils (Salvia et al., 2015), surface 

waters (Sturini et al., 2012), and groundwater (Vázquez et al., 2012). 

Researchers are increasingly concerned about these harmful antibiotics from the 

aquatic environment. Membrane separation, ozonation, advanced oxidation processes 

(AOPs), photochemical degradation, and adsorption treatments are some of the methods 

used to remove antibiotics. Adsorption is becoming increasingly vital for the removal 

of FQs due to its ease of operation, lack of by-products high efficiency, low cost, and 

availability of many adsorbents. Adsorption techniques have been used in numerous 

studies to remove FQs from environmental water using a plethora of adsorbent 

materials, including clay minerals (Peng et al., 2018; Speltini et al., 2017; Xiang et al., 

2020). Table 2.2 describes different adsorbents used for the adsorption of FQs.  
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Table 2.2  Removal of FQs using different adsorbents. 

Adsorbent Analytes Qe,exp 

(mg g−1) 
Ref 

Nanoscale zero-valent iron (NZVI) OFL 48.9 (Zhao et al., 
2020) 

Chitosan- polyacrylic acid  ENR 387.7 (Wang et al., 
2019) 

Humic acid coated magnetic biochar  ENR 1.7 (Zhao et al., 
2019) 

Fe3O4/GO/citrus peel-derived magnetic 
bio-char nano- composite (mGOCP) 

SPR 502.4 (Zhou et al., 
2019) 

Polypyrrole modified Calotropis gigantea 
fiber (PPy-O-CGF) 

ENR 
 

78.3 (Duan et al., 
2019) 

Metal-organic framework with polar –
SO3H (MIL-101(Cr)–SO3H) 

ENR 408.2 (Guo et al., 
2019) 

Lignocellulosic substrate ENR 91.5 (Sayen et al., 
2018) 

Bamboo biochar ENR 
OFL 

45.9 (Wang et al., 
2015) 

TiO2-modified zeolites ENR 3.0 (Maraschi et 
al., 2014) 

Polydopamine-coated graphene 
oxide/Fe3O4 (PDA@ GO/Fe3O4) imprinted 
nanoparticles 

SPR 70.9 (Tan et al., 
2017) 

Graphene oxide (GO) OFL 0.048 
mmol/g 

(Yadav et al., 
2018) 

Magnetic carboxylated cellulose 
nanocrystals with molecularly imprinted 
polymer (M-CCNs@MIP) 

OFL 45.6 (Hu et al., 
2018) 

Layered double hydroxides (LDHs) 
onto cotton fiber 

ENR 20.5 (Wang et al., 
2018) 

Magnetic biochar-based manganese oxide 
composite (MMB) 

ENR 7.2 (Li et al., 2018) 

OFL; ofloxacin, ENR; enrofloxacin, GEM; gemifloxacin, SPR; sparfloxacin. 
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Despite the benefits of nanoadsorbents for FQs adsorption, manipulating them 

from solution takes time since they have a high back-pressure in dynamic mode and 

require centrifugation and filtering in static batch mode. Hence, the analysis of FQs 

using liquid phase microextraction (LPME) was explored for different samples 

including food samples, biological samples (Moema et al., 2012), and water samples. 

Table 2.3 summarizes the FQs sample preparation based on LPME.  

2.2 Sample preparation 

The importance of sample preparation in the chemical analysis workflow has 

been recognized. As a result, substantial efforts have been undertaken in recent years to 

improve the overall sample preparation method. Without a doubt, sample preparation is 

among the most critical steps in the analytical process. Overall, it is the most time-

consuming aspect of developing an analytical process and is regarded as a significant 

source of errors in analysis (Owczarek & Guardia, 2017). Sample preparation is 

expected to account for about 80% of the workload, time, and expense. The primary 

goals of sample preparation are to remove possible interferences, preconcentrate the 

analyte and transform the analyte (if necessary) into a more suitable form for detection 

or separation (Płotka-wasylka & Szczepan, 2015). The choice of a preparation method 

is determined by: (1) the analyte(s) concentration level(s), (2) the instrumental 

measurement technique, (3) the sample matrix, and (4) the appropriate sample size. 

Furthermore, sample preparation allows for the preconcentration and/or isolation of 

analytes, enhancing the selectivity and sensitivity of determination procedures 

(Tartaglia et al., 2019). 
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Table 2.3  FQs sample preparation based on LPME. 

Analyte Method Sample 
preparation 

Matrix Extraction 
solvent 

LOD Recovery 
(%) 

Ref 

FLE, OFL, NOR,  
CIP and ENR 

HPLC ILSDME Swin feed [C8MIM][PF6] 0.07–0.61 
μg kg−1 

90.6– 
103.2  

(Wang et al., 2016)  

NOR, CIP, DAN, ENR, 
SAR and DIF 

HPLC DLLME Chicken 
liver 

MeCN 5 - 19 µg kg−1 62–106 (Moema et al., 2012) 

OFL, NOR, CIP and ENR  HPLC in situ 
hDES-SA-

LLME 

Surface 
water 

hydrophobic deep 
eutectic solvents 

3.0 ng mL −1 - ( Li et al., 2020) 

OFL, CIP and ENR   HPLC HF-LPME Milk [OMim][BF4] 0.05 - 0.01 mg 
mL-1 

58-78 ( Han et al., 2012) 

OFL and CIP HPLC HF-LPME Plasma and 
tap water 

1-octanol 0.5 µg L-1 88 – 108 (Esrafili et al., 2012) 

DAN, NOR, ENR and 
CIP 

HPLC-
UV 

MIP-HFM Water and 
urine 

Toluene 0.1–10 µg L−1 - (Barahona et al., 
2019) 

 
Fleroxacin (FLE), ofloxacin (OFL), norfloxacin (NOR), ciprofloxacin (CIP), enrofloxacin (ENR), norfloxacin (NOR), sarafloxacin hydrochloride (SAR), 
danofloxacin (DAN), difloxacin hydrochloride (DIF). ionic-liquid-based, salt-induced, dual microextraction (ILSDME), 1-butyl-3-methylimi-dazolium 
tetrafluoroborate [OMim][BF4], Molecularly imprinted polymer- hollow fiber microextraction (MIP-HFM), in situ formation of hDES coupled with shaker-
assisted LLME ( in situ hDES-SA-LLME), liquid phase microextraction using a hollow fibre (HF-LPME), 1-octyl-3-methylimidazolium hexafluorophosphate 
([C8mim]PF6)
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The appropriate sample preparation procedure should meet the following 

criteria: (i) fast and simple implantation in any laboratory, (ii) eliminating or minimizing 

matrix interferences to minimize their impact on the instrument and create a clean 

extract, (iii) enhancing analyte sensitivity or selectivity (iv) low-cost materials and 

reagents, (v) environmentally friendly solvents and reagents, (vi) giving optimistic 

forms for analytes' instrumental analysis and ensuring a repeatable analysis procedure, 

(vii) sufficient to several analytes in fewer steps, and (ix) low energy consumption 

(Smith, 2003). 

For the extraction of pharmaceuticals, liquid-liquid extraction (LLE) and solid-

phase extraction (SPE) are two widely utilized and well-established sample preparation 

techniques. Traditional techniques, on the other hand, have a number of fundamental 

limitations, including costly and time-consuming procedures, the need for a 

considerable volume of organic solvents, and material and automation challenges. 

(Manousi et al., 2017; Samanidou, 2018). Recent sample preparation developments 

have concentrated on the replacement of procedures with nanosorbents, miniaturized, 

and environmentally friendly techniques. 

As a result, new sorts of microextraction procedures, such as liquid liquid 

microextraction (LLME), have been developed, dispersive liquid liquid microextraction 

(DLLME) and vortex assisted liquid liquid microextraction (VALLME) as 

replacements for the classical LLE (Burato et al., 2020). Microextraction methods based 

on eliminating or reducing organic solvents and reagents for sorbent conditioning and 

elution, on the other hand, can be used to miniaturize SPE methods. Various 

miniaturized SPE methodologies have been developed in this regard, including solid-

phase microextraction (SPME), micro-solid phase extraction (µ-SPE), stir-bar sorptive 
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extraction (SBSE), microextraction in a packed syringe (MEPS) and dispersive-micro 

solid phase extraction (D-µ-SPE) (Ali et al., 2020; Płotka-wasylka et al., 2015). 

Depending on the extraction phase used, a sample preparation process can be 

characterized as solvent-based or solid-based extraction. Figure 2.1 illustrates major 

extraction techniques that are commonly used by researchers.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1  Major microextraction techniques 

Microextraction techniques 

Solid-based microextraction 
 

Solvent-based 
microextraction 

SDME 

HF-LPME 

DLLME 

SPME 

IT-SPME 

VALLME SBSE 

VALLME-BE 
DSPE 

D-µ-SPE 

MSPE 



 

21 
 

2.2.1 Solvent-based microextraction 

Due to their high toxicity, costly disposal necessitates, and impact on future 

pollution problems, liquid-liquid extraction, and its various approaches have been under 

intense scrutiny for the past decade, enabling the development of liquid phase 

microextraction (LPME) (Burato et al., 2020; An et al., 2020). A number of approaches 

evolved in a short period of time, all with the objective of decreasing the quantity of 

solvent needed in the sample preparation procedure. In solvent microextraction, the 

analyte was extracted into a small volume of immiscible solvent (acceptor phase) from 

the sample solution (donor phase) (Soares da Silva Burato et al., 2020) (Burato et al., 

2020). In 1995, the use of solvent-based microextraction was first documented. The first 

droplet-based analytic approach was developed by Liu and Dasgupta (1995). Since then, 

a number of approaches have been developed, all of which have a high sample-to-

acceptor phase ratio as a common feature (Ma et al., 2011).   

Table 2.4 summarizes major modifications of solvent-based microextraction 

techniques. Solvent base extraction has several benefits, including the need for a low 

volume of organic solvent, rapid, simple, low cost, and the ability to combine extraction, 

clean up, and preconcentration in one step. Numerous investigations on enhancing 

solvent microextractions have shown that the bulk of the suggested methods are 

insufficient and have yet to be regarded as a viable alternative to LLE.  

To preserve the suspended drop, the SDME method was replaced by the HF-

LPME (acceptor phase, AP). The two-phase and three-phase HF-LPME have been 

developed, with the latter being particularly important due to its direct application for 

HPLC and capillary electrophoresis (CE) studies. Although the electromembrane 

method (Bello-López et al., 2012) has decreased the lengthy extraction time (30–40 
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min), the limited repeatability has prompted scientists to look for other non-fiber 

microextraction strategies (Ojeda & Rojas, 2018). The DLLME, which was initially 

released in 2006, has attracted a lot of attention (Rezaee et al., 2006).  

The DLLME method uses a dispersive solvent to enhance dispersion and thus 

increase the contact area between the organic phase (AP) and the aqueous material 

(donor phase, DP), which is important for rapid extraction (Rezaee et al., 2010). The 

use of dispersive solvents, on the other hand, may reduce the analytes’ mass transfer 

and fractionation into the extraction solvent, lowering the extraction efficiency (Yiantzi 

et al., 2010). Another drawback of this approach is the use of high volume and 

hazardous organic solvents (Leng et al., 2012; Rezaee et al., 2006). An alternative 

dispersive technique known as VALLME has been designed to tackle the shortcomings 

of the DLLME technique (Yiantzi et al., 2010). 

Significant progress has been made in the production of liquid magnetic 

materials in recent years, with ferrofluids (FFs) being a prominent example. (Clark et 

al., 2016; Sajid, 2019). Magnetic nanoparticles (MNPs) are dispersed in a carrier liquid 

to form FFs.  A FF can be composed of three parts: magnetic particles, a coating, and a 

carrier liquid. To form a stable ferrofluid, the carrier liquid should have adequate 

interactions with the MNPs. To improve the distribution performance of the extractant, 

it must be insoluble in the aqueous medium and have a low vapour pressure to avoid 

any degradation during the microextraction method (Kokosa, 2019). As a result, 

researchers have experimented with various solvents for ferrofluid synthesis the most 

common carrier such as, organic solvents, ionic liquid, DES, and supramolecular 

solvents.  
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Table 2.4  Major modification on solvent microextraction techniques   

 
Technique Modification  Brief description and remarks Ref 
 
 
 
 
 
 
 
 
SDME 

Continue flow microextraction 
(CFME) 

Continuous flow of sample solution through extracting drop that trapped in a 
glass chamber.  
Remarks: high EF, limit to non-polar analytes, and need additional 
equipment. 

(Werner et al., 
2018) 

Solidified floating organic drop 
microextraction (SFODME)  

Freely rotating organic solvent drop that separated from sample upon 
solidification by cooling an ice bath. 
Remarks: smaller drop led to higher EF, and limited choices of solvent 
according to melting point and solubility 

(Thongsaw et 
al., 2017) 

Three phase mode An aqueous drop immersed in the organic drop. The analytes extracted from 
sample to the organic drop then back extracted to the aqueous drop. 
Remarks: Ideal for both acidic and basic analytes.  

(Garc, 2016) 

Drop to drop SDME (DD-
SDME)  

The sample is a drop (in microliters)  
Remarks: shorter extraction time, and suitable for low sample volume  

(Shrivas & 
Kumar, 2011) 

Dynamic mode SDME Repeated cycle (30-90) of the drop in and out the sample solution  
Remarks: efficiency improved 

(Wang et al., 
2014) 

Solid matrix support 
microextraction (SSME) 
 

The suspended drop supported by the solid matrix   
Remarks: Improve drop stability 

(Gao et al., 
2012) 
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Table 2.4 (continued) 

Technique Modification  Brief description and remarks Ref 
 
HF-LPME 

Electro membrane extraction 
(EME) 

Electrokinetic migration of the analyte caused by electric filed across the 
hollow fiber membrane. 
Remarks: less than 5 mins extraction time. 

(Han & Row, 
2012) 

 
 
 
 
 
DLLE 

Hollow fiber solid-liquid phase 
microextraction (HF-SLPME) 

A solid phase sorbent immobilized in the pores of the hollow fiber and used 
after impregnating in an organic solvent.  
Remarks: Faster extraction since it takes place in the pores 

(Hamedi, 
2017) 

Solvent bar microextraction 
(SBME) 

HF piece is freely rotated in the sample. The two ends of the hollow fiber are 
sealed after filling with the extraction solvent. 
Remarks: Higher extraction efficiency due to more exposure  

(Herce-Sesa, 
2018) 

Ultrasound-assisted 
emulsification-microextraction 
(USAEME) 

Use of ultrasound irradiation instead of dispersing solvent. 
Remarks: Less solvent used 

(Sereshti et al., 
2019) 

Vortex assisted liquid liquid 
microextraction (VALLME) 

Use of vortexing instead of dispersing solvent to increase contact surface. 
Remarks: Less solvent used 

(Makahleh et 
al., 2015) 

Air-assisted liquid-liquid 
microextraction (AALLME) 

Fine droplets of the microextraction solvent formed due to pumping of a 
mixture of DP/AP in and out of a syringe. Disperse solvent free technique.  
Remarks: Less solvent used 

(Barfi,  et al., 
2015) 
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