COMPARATIVE PHENOMICS AND GENOMICS OF Carbapenem-resistant *Escherichia coli* FROM HUMAN AND BROILER CHICKEN

ERKIHUN AKLILU WOLDEGIORGIS

UNIVERSITI SAINS MALAYSIA

2023

COMPARATIVE PHENOMICS AND GENOMICS OF Carbapenem-resistant *Escherichia coli* FROM HUMAN AND BROILER CHICKEN

by

ERKIHUN AKLILU WOLDEGIORGIS

Thesis submitted in fulfilment of the requirements

for the degree of

Doctor of Philosophy

July 2023

ACKNOWLEDGEMENT

I would like to express my gratitude to God almighty for the gift of life and its blessings. I thank my main supervisor, Assoc. Prof. Dr. Azian Harun for her unreserved guidance and support. I would also like to thank my co-supervisor, Assoc. Prof. Dr. Kirnpal Kaur Banga Singh for her assistance. My heartfelt appreciation goes to Universiti Malaysia Kelantan (UMK) and the Faculty of Veterinary Medicine for allowing me to complete my studies. I want to thank C.W. Salma C.W. Zalati, Nani Izreen Mohd Sani, and Norsyamimi Farhana Mat Kamir, respectively, at Molecular Biology, Virology, and Bacteriology, and Laboratories of the Faculty of Veterinary Medicine, Universiti Malaysia Kelantan and Yasmin Khairani Mohd Smadi from Universiti Sains Malaysia for their assistance in facilitating the laboratory works for me. I also wish to convey my heartfelt gratitude to my family members, Negalign, Muluselam, Giorgis, and Dinkayehu, for their unconditional moral and spiritual support. Especial thanks to brother Siyum Mekuanint Ayalneh (Zekarias), whose selfless spiritual assistance has been instrumental in helping my family and me in recent years, without which this work could not have been completed. I would like to dedicate this work to my three beautiful, intelligent, and loving daughters, Yohanna Anjali, Maryann, and Evana Erkihun. They are my inspirations, and their presence and love taught me patience and perseverance in the face of apparently insurmountable challenges.

TABLE OF CONTENTS

ACKN	NOWLEDGMENTii
TABL	E OF CONTENTSiii
LIST	OF TABLESxi
LIST	OF FIGURESxiii
LIST	OF ABBREVIATIONSxxii
LIST	OF APPENDICESxxxi
ABST	RAKxxxii
ABST	RACTxxxiv
CHAF	PTER 1 INTRODUCTION1
1.1	Background of the study1
1.2	Justification of the study6
1.3	Research questions
1.4	Objectives of the study7
	1.4.1 General objectives7
	1.4.2 Specific objectives 7
CHAP	PTER 2 LITERATURE REVIEW8
2.1	General characteristics of <i>Escherichia coli</i>
2.2	Pathogenic <i>Escherichia coli</i> 9
2.3	Antibiotics discovery and the ensuing medical revolution10
2.4	Mechanisms of action of antibiotics12
	2.4.1 Interfering with cell wall synthesis
	2.4.2 Inhibiting of protein synthesis

	2.4.3	Inhibition of nucleic acid synthesis	15
	2.4.4	Inhibition of metabolic pathways/bacterial enzymes	16
	2.4.5	Interruption of bacterial membrane	17
2.5	Antim	icrobial Resistance	18
	2.5.1	Mechanisms of antimicrobial resistance	20
		2.5.1(a) Genetic basis of antimicrobial resistance	20
		2.5.1(b) Mutational resistance	21
		2.5.1(c) Horizontal gene transfer	21
		2.5.1(d) Mechanistic basis of antimicrobial resistance	23
		2.5.1(e) Drug uptake limitation	24
		2.5.1(f) Drug target modification	27
		2.5.1(g) Drug inactivation	28
		2.5.1(h) Drug efflux	29
2.6	Carba	penem antibiotics	31
	2.6.1	Historical overview: the discovery and use of carbapenems	31
	2.6.2	Structural features and functions	32
	2.6.3	Mode of actions of carbapenems	34
	2.6.4	Usage and side-effects of carbapenems	35
2.7	Carba	penem resistance and carbapenemases	37
	2.7.1	Mechanisms of carbapenem resistance	38
		2.7.1(a) Expression of efflux pumps	38
		2.7.1(b) Decreased outer membrane permeability via porin mutation	s . 39
		2.7.1(c) Enzymatic degradation through carbapenemase production	40
	2.7.2	Classification of carbapenemases	41

		2.7.2(a) Class A carbapenemases	41
		2.7.2(b) Class B carbapenemases	42
		2.7.2(c) Class D carbapenemases	45
2.8	Carba	penem-resistant Enterobacterales	48
	2.8.1	Carbapenem-resistant Escherichia coli	50
	2.8.2	Global epidemiology of carbapenem-resistant Enterobacterales	51
	2.8.3	Carbapenem-resistant Enterobacterales in Southeast Asia	55
	2.8.4	Carbapenem-resistant Enterobacterales in Malaysia	59
	2.8.5	Spread and transmission of carbapenem-resistant Enterobacterales	
		and the associated risk factors	60
	2.8.6	Treatment of infections caused by carbapenem-resistant	
		Enterobacterales	62
2.9	Carba	penem-resistant Enterobacterales in animals	64
2.10	Livest	tock as a potential source of carbapenem-resistant Enterobacterales	
	infecti	ion or colonization in humans	68
2.11	Antibi	iotic usage in animals and its role in the emergence and spread of	
	carbar	penem-resistant Enterobacterales	69
2.12	Labor	atory detection of carbapenem-resistant Enterobacterales	74
	2.12.1	Phenotypic methods	75
		2.12.1(a) Antimicrobial susceptibility testing	75
		2.12.1(b) Double disk synergy tests (DDST)	77
		2.12.1(c) Chromogenic-based media for CRE screening	79
		2.12.1(d) Carbapenem inactivation method (CIM)	81
			00

		2.12.1(f) Carba NP	83
		2.12.1(g) Matrix-assisted laser desorption ionization-time of flight	
		mass spectrometry (MALDI-TOF MS)	84
	2.12.2	Molecular methods	85
		2.12.2(a) Conventional PCR methods	87
		2.12.2(b) Real-time PCR methods	89
		2.12.2(c) Hybridization-based techniques (Microarrays)	92
		2.12.2(d) Whole genome sequencing	93
2.13	Comp	arative genomics of carbapenem-resistant Enterobacterales	93
CHA	PTER 3	B ISOLATION, IDENTIFICATION, AND ANTIMICROBIAL	
RESI	STAN	CE PROFILES OF CARBAPENEM-RESISTANT E. coli	
ISOL	ATED	FROM HUMAN AND BROILER CHICKEN	98
3.1	Introd	uction	98
3.2	Objec	tives of the study	102
3.3	Mater	ials and methods	103
	3.3.1	Study design	103
	3.3.2	Ethics statement	103
	3.3.3	Human clinical <i>E. coli</i> isolates	103
	3.3.4	Study area, sampling method, and sample size determination	104
	3.3.5	Isolation and identification of <i>E. coli</i>	105
	3.3.6	PCR confirmation of <i>E. coli</i>	106
	3.3.7	Antibiotic susceptibility test	107
	3.3.8	Determination of multiple antimicrobial resistance (MAR) index	107
	2.13 CHAI RESI 3.1 3.2 3.3	2.12.2 2.12.2 2.12.2 2 2.13 2.13 2.10 2.13 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10	 2.12.1(f) Carba NP

		agar	108
	3.3.10	Modified Hodge test (MHT)	108
	3.3.11	Determination of minimum inhibitory concentration (MIC) using	
		E-Test	109
	3.3.12	Modified carbapenem inactivation method (mCIM) for	
		carbapenemase detection	109
	3.3.13	Statistical analysis	110
3.4	Result	ts	111
	3.4.1	Prevalence of carbapenemase-positive E. coli in poultry from	
		Kelantan, Terengganu, and Pahang	112
	3.4.2	Antimicrobial resistance profiles of CREC isolates from human	
		clinical cases and poultry	111
	3.4.3	Multiple antimicrobial resistance (MAR) index	113
	3.4.4	Screening of CREC using chromogenic media	
		(Brilliance CRE Agar)	114
	3.4.5	Modified Hodge test (MHT)	115
	3.4.6	Determination of minimum inhibitory concentration by E-test	115
	3.4.7	Modified carbapenem inactivation method (mCIM)	116
3.2	Discu	ssions	119
3.3	Concl	usion	128
СН	APTER 4	4 MOLECULAR CHARACTERIZATION OF CARBAPENEM-	
RE	SISTANI	Г <i>Е. coli</i>	130
4.1	Introduc	tion	130
4.2	Objectiv	es of the study	134

4.3	Material	s and methods	
	4.3.1	Bacterial isolates	135
	4.3.2	Multiplex PCR detection of carbapenem resistance encoding ge	enes135
	4.3.3	Multiplex PCR for detection of virulence genes in CREC isolat	es 137
	4.3.4	Phylotyping of CREC isolates	138
	4.3.5	Statistical analysis	140
4.4	Results.		141
	4.4.1	Detection of carbapenem resistance encoding genes	141
	4.4.2	Detection of virulence genes	143
	4.4.3	Phylogenetic analysis	145
4.5	Discussi	ons	152
4.6	Conclus	ion	159
CH	APTER 5	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM-	
CHA RES	APTER 5	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- T <i>E. coli</i> ISOLATED FROM HUMANS AND BROILER	
CHA RES CHI	APTER : SISTANI ICKEN	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- F <i>E. coli</i> ISOLATED FROM HUMANS AND BROILER	161
CH2 RES CH1 5.1	APTER 5 SISTANT ICKEN Introd	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- [<i>E. coli</i> ISOLATED FROM HUMANS AND BROILER	161 161
CH2 RES CH1 5.1 5.2	APTER 5 SISTANT ICKEN Introd Objec	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM F E. coli ISOLATED FROM HUMANS AND BROILER Uuction	161 161 163
CH2 RES CH1 5.1 5.2 5.3	APTER 5 SISTANT ICKEN Introd Objec Mater	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- T E. coli ISOLATED FROM HUMANS AND BROILER	161 161 163 164
CH1 RES CH1 5.1 5.2 5.3	APTER 5 SISTANT ICKEN Introd Objec Mater 5.3.1	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- T E. coli ISOLATED FROM HUMANS AND BROILER luction tives of the study ials and Methods Bacterial isolates	161 161 163 164 164
CH2 RES CH1 5.1 5.2 5.3	APTER S SISTANT ICKEN Introd Objec Mater 5.3.1 5.3.2	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- T E. coli ISOLATED FROM HUMANS AND BROILER luction tives of the study tives of the study Bacterial isolates PCR for detection of housekeeping genes of E. coli	161 163 163 164 164 164
CH1 RES CH1 5.1 5.2 5.3	APTER S SISTANT ICKEN Introd Objec Mater 5.3.1 5.3.2 5.3.3	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- T E. coli ISOLATED FROM HUMANS AND BROILER Huction tives of the study tives of the study Bacterial isolates PCR for detection of housekeeping genes of <i>E. coli</i> Sequencing, sequence analysis, and typing of CREC isolates	161 163 164 164 164 164
CH1 RES CH1 5.1 5.2 5.3	APTER S SISTANT ICKEN Introd Objec Mater 5.3.1 5.3.2 5.3.3 5.3.4	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- T E. coli ISOLATED FROM HUMANS AND BROILER luction tives of the study ials and Methods Bacterial isolates PCR for detection of housekeeping genes of E. coli Sequencing, sequence analysis, and typing of CREC isolates Data analysis	161 163 163 164 164 165 165
CHL RES CHI 5.1 5.2 5.3	APTER S SISTANT ICKEN Introd Objec Mater 5.3.1 5.3.2 5.3.3 5.3.4 Result	5 MOLECULAR EPIDEMIOLOGY OF CARBAPENEM- T E. coli ISOLATED FROM HUMANS AND BROILER	161 163 163 164 164 164 165 166 167

5.6	Conclu	ision	
CHAP	TER 6	COMPARATIVE GENOMICS OF Carbapenem-resistant E.	coli
ISOLA	ATED I	FROM HUMANS AND BROILER CHICKENS	
6.1	Introdu	action	186
6.2	Object	ives of the study	190
6.3	Materi	als and Methods	191
	6.3.1	Strain selection	191
	6.3.2	Genomic DNA extraction	192
	6.3.3	Genome sequencing	192
	6.3.4	Library preparation	192
		6.3.4(a) DNA qualification and library construction	193
		6.3.4(b) Library quality control	194
		6.3.4(c) High-throughput DNA sequencing	194
	6.3.5	Bioinformatics analyses	195
		6.3.5(a) Quality control and de novo assembly	195
		6.3.5(b) Genome sequence analysis and annotation	196
		6.3.5(c) Miscellaneous comparative genomic analysis	197
6.4	Result	s	199
	6.4.1	Genome assembly and annotation statistics and quality	199
	6.4.2	Open reading frames (ORFs), orthologous groups, orthologous	
		sequences alignment, and phylogenetic tree reconstruction	200
	6.4.3	Antibiotics resistance genotypes	203
	6.4.4	Virulence gene profiles	204
	6.4.5	Plasmids and pMLST profiles	

	6.4.6	Serotype, Fimtype, CHtype, and cgMLST profiles	206
	6.4.7	SNP-based phylogenetic analyses	213
	6.4.8	Phage-associated gene clusters	224
	6.4.9	Miscellaneous comparative genomics of the CREC isolates	226
6.5	Discus	sions	246
6.6	Conclu	sion	255
CHAP	TER 7	GENERAL DISCUSSIONS	256
СНАР СНАР	TER 7 TER 8	GENERAL DISCUSSIONS	256 264
СНАР СНАР 8.1	TER 7 TER 8 Conclu	GENERAL DISCUSSIONS CONCLUSION AND FUTURE DIRECTION	256 264 264
CHAPCHAP8.18.2	TER 7 TER 8 Conclu Future	GENERAL DISCUSSIONS CONCLUSION AND FUTURE DIRECTION Ision	256 264 264 270
 CHAP CHAP 8.1 8.2 REFE 	TER 7 TER 8 Conclu Future RNCE	GENERAL DISCUSSIONS CONCLUSION AND FUTURE DIRECTION Ision direction	256 264 264 270 271

PUBLICATIONS

LIST OF TABLES

	Page
Table 2.1	Escherichia coli pathotypes and their main characteristics 11
Table 2.2	Classification of β-Lactamases (Opal and Pop-Vicas, 2020)47
Table 2.3	Bush-Jacoby-Medeiros Functional Classification Scheme for
	β-Lactamases48
Table 2.4	Breakpoints for carbapenems against Enterobacterales family
	according to EUCAST (2022) and CLSI (2021) guidelines
Table 3.1	Prevalence and distribution of CPEC in poultry cloacal samples
	collected from Kelantan, Terengganu, and Pahang112
Table 3.2	Phenotypic resistance characteristics of CREC isolates from
	human clinical cases and poultry cloacal swabs117
Table 4.1	Primers for amplification of E. coli-specific and carbapenem
	Resistance encoding genes (Poirel et al., 2011)
Table 4.2	Primer sequences used for multiplex PCR detection of virulence
	genes of CREC isolates from human and poultry
Table 4.3	Primer sequences used for the detection of phylogroups of E. coli
	isolates using quadruplex PCR and allele-specific PCR140
Table 4.4	Phylogenetic group, resistance, and virulence genes of CREC
	isolates from human and poultry149
Table 5.1	Primer sequence of singleplex PCR used for the detection of
	E. coli housekeeping genes for MLST in CREC isolates
Table 6.1	Phenotypic and genotypic characteristics of CREC isolates selected for
	WGS

Table 6.2	Genome statistics of whole genome draft sequences of CREC
	isolates from humans and poultry
Table 6.3	Annotation statistics of whole genome draft sequences of CREC
	isolates from humans and poultry
Table 6.4	Genome quality of whole genome draft sequences of CREC isolates
	from humans and poultry
Table 6.5	Genomic characteristics of CREC isolates from humans and poultry207
Table 6.6	Global epidemiology of close isolates related to CREC isolates
	from poultry and human (*) based on cgMLST209
Table 6.7	Diversity in multiple genome alignment
Table 6.9	Prophage regions of CREC genomes assigned as intact, questionable,
	or incomplete based on the similarity score generated by
	PHASTER (http://phaster.ca/)
Table 6.10	Mobile genetic elements and plasmids associated with resistance
	and virulence genes of CREC isolates from human and poultry

LIST OF FIGURES

	Page
Figure 2.1	Sites of action and potential mechanisms of bacterial resistance to
	antimicrobial agents. Adapted from (Mulvey and Simor, 2009)18
Figure 2.2	Antibiotic targets and mechanisms of resistance. Adapted from
	(Wright, 2010)24
Figure 2.3	The R configuration of the hydroxyethyl groups in the beta-lactam.
	The R configuration of the hydroxyethyl of the beta-lactam
	(Papp-Wallace <i>et al.</i> , 2011)
Figure 2.4	Chemical structure of Penicillin, cephalosporin, and carbapenem
	backbones. Carbapenem has a five-membered ring, as does penicillin,
	but it has a carbon at C-1 instead of sulfur. Adapted from
	(Papp-Wallace <i>et al.</i> , 2011)
Figure 2.5	Chemical structures of carbapenem antibiotics
Figure 2.6	Global distribution of carbapenemases in Enterobacterales by country
	and region. Adapted from (Logan and Weinstein, 2017)55
Figure 2.7	Prevalence of carbapenem-resistant E. coli and Klebsiella spp. in
	Southeast Asia. Adapted from (Malchione et al., 2019)57
Figure 2.8	Estimated median national carbapenem resistance proportions
	for (A) E. coli and (B) Klebsiella spp. based on including samples
	from 2010–2017. Adapted from (Malchione et al., 2019)58
Figure 2.9	Carbapenem and polymyxin(s) resistance genotypes reported from
	Southeast Asia Adapted from (Malchione et al., 2019)

Figure 2.10 Global distribution of carbapenem-resistant and carbapenemaseproducing Enterobacterales in (A) livestock and aquatic animals, and (B) companion animals and wildlife. Adapted from (Kock *et al.*, 2018)......67 Figure 2.11 Global antimicrobial consumption in livestock in milligrams per 10 km² pixels (Top) and average SD of estimates of milligrams Figure 2.12 Antimicrobial consumption in chickens (A) and pigs (B) in 2010. Purple indicates new areas where antimicrobial consumption will exceed 30 kg per 10 km^2 by 2030. Adapted from (Van Boeckel *et al.*, 2015)......71 Figure 3.1 Location of the study area. The samples were collected from 10 districts in Kelantan, Terengganu, and Pahang, off the East Coast of Peninsular Malaysia. The map was created using ArcGIS v. 7 (Esri Inc., Redlands, CA, USA)......105 Figure 3.2 Antibiotic resistance profiles of carbapenemases positive E. coli Figure 3.3 Multiple antimicrobial resistance (MAR) and MAR index of Figure 3.4 MIC values CREC isolates from humans and poultry show values ranging from 0.25μ g/ml to $\geq 256\mu$ g/ml (marked by 33*) for doripenem, ertapenem, imipenem, and meropenem116 Figure 4.1 Multiplex PCR amplification of carbapenemase genes of CREC

Figure 4.2	Distribution of carbapenemases genes in CREC isolates from
	human and broiler chicken142
Figure 4.3	Amplification products from multiplex PCR detection of virulence
	genes detection in CREC isolates showing positive results for
	astA, iss, irp2, and iucD genes144
Figure 4.4	Prevalence of virulence genes in CREC and their distribution
	according to the source (human and broiler chicken)144
Figure 4.5	Prevalence of virulence genes of CREC isolates from human and
	broiler chicken and their distribution based on the associated
	phylogenetic groups145
Figure 4.6	Quadruplex PCR profiles of the new Clermont phylotyping method.
	group A (P3, P4, P5, P6, P7, P8, +) group B1 (P1, P11, P13,
	P18, + +), group C (P2, P9, P16, + - + -), group E
	(P10, ++); unknown (P17, - +); group D (P10, ++);
	Lanes EF1 and EF2 (Escherichia fergusonii)
Figure 4.7	Distribution of phylogenetic groups in CREC isolates from human
	and broiler chicken147
Figure 4.8	Distribution of carbapenemases genes and the associated
	phylogenetic groups of CREC isolates from human and broiler
	chicken147
Figure 4.9.	Phylogenetic groups of CREC, their association with virulence
	genes and distribution according to the source
	(human and broiler chicken)

Figure 5.1	The phylogenetic relationship between sequence types and clonal
	complexes of CREC isolates from humans and broiler chicken168
Figure 5.2	Phylogenetic tree showing the relationship among the different
	CREC isolates and their evolution (constructed using Interactive
	Tree of Life (iTOL) v5)
Figure 5.3	Distribution of STs and clonal relationships of CREC isolates
	according to the sources
Figure 5.4	Distribution of sequence type (STs) belonging to 8 clonal
	complexes (CCs) and 11 singletons of CREC isolates from
	humans and poultry
Figure 5.5	Field breakdown analysis of E. coli dataset (<u>https://pubmlst.org</u>)
	including 4774 STs (A) and 51 CCs (B) based on Achtman MLST
	scheme analysis showing ST131 Cplx, ST23 Cplx, ST155 Cplx,
	and ST69 Cplx as the top ten most prevalent E. coli clonal
	complexes globally
Figure 5.6	Phylogenetic relationship of STs and the carbapenemases genes
	of CREC isolates from humans and poultry173
Figure 5.7	Phylogenetic relationship of STs and the associated
	phylogroups of CREC isolate174
Figure 5.8	Phylogenetic relationship of clonal complexes (CCs) and the
	associated phylogroups of CREC isolates175
Figure 5.9	Global distribution of the STs of the CREC isolates based on
	pubmlst database (https://pubmlst.org) showing that the ST are
	distributed mainly in Ireland, China, and Brazil176

Figure 5.10	Distribution of the CREC STs isolated from humans and
	poultry, the evolutionary relationship among the STs and the
	four major sources of the E. coli STs based on pubmlst
	database (<u>https://pubmlst.org</u>)177
Figure 5.11	MLST-sequence-based UPGMA-tree showing sequence types
	and clonal complexes of CREC isolates and their
	corresponding phenotypic and genotypic carbapenem resistance
	features. The numbers shown on the branches of the tree
	indicate the linkage distances178
Figure 6.1	Workflow of library preparation
Figure 6.2	Experimental procedures of library preparation194
Figure 6.3	Genomic data showing a) GC content per genome
	(51.4% - 51.8%), b) ORF content per genome, c) Orthologous group
	size, and d) phylogenetic tree of the CREC isolates with
	<i>E. fergusonii</i> ATCC 35466 as an out group202
Figure 6.4	Comparison of bla_{NDM} variants (NDM-1 and NDM-4) on the
	subclass B1 beta-lactamase regions of CREC isolates from human
	(HEC15 and HEC25) and broiler chickens (KM7.P1 and
	KPM36.P15)
Figure 6.5	Global distribution of cgMLST-ST154483 CREC-related E. coli
	clones
Figure 6.6	Hosts/sources of cgMLST-ST154483 CREC-related E. coli
	clones and their phylogenetic relationships
Figure 6.7	Diseases associated with cgMLST-ST154483 CREC-related E. coli

- Figure 6.14 Entropy profiles of the N-SNP distribution for each strain......219

Figure 6.15	Reverse cumulative distributions of the frequencies of all	
	observed N-SNPs. The size (N) and the corresponding color are	
	indicated in the legend	220
Figure 6.16	Probability distribution of the number of consecutive SNP columns	
	that are consistent with a common phylogeny for the core	
	genome alignment	220
Figure 6.17	Probability distribution of the number of consecutive alignment	
	columns consistent with a common phylogeny	220
Figure 6.18.	Ratio C/S of the minimal number of phylogeny changes C to	
	Substitutions S for random subsets of strains using the alignment	
	from which 5% of potentially homoplasic positions have been	
	removed. For strain numbers ranging from n=4, random subsets	
	of n strains were collected, and the ratios C/S of phylogeny	
	changes to SNPs in the alignment were calculated. The figure shows	
	means and standard deviations for C/S across subsets	220
Figure 6.19	Pairwise SNP analysis of closely related CREC strains from	
	human (HEC13 vs HEC17)	221
Figure 6.20	Pairwise SNP analysis of closely related CREC strains from	
	human (HEC16) and poultry (PK7.P19)	222
Figure 6.21	Pairwise SNP analysis of closely related CREC strains from	
	human (HEC15) and poultry (KPM36.P15)	223
Figure 6.22	Prophage regions of a CREC isolate, HEC15 harboring multiple	
	antimicrobial resistance conferring genes	225
Figure 6.23	A representative complete (intact) prophages of CREC isolate,	

xix

- Figure 6.27 Fast ANI analyses of closely related CREC strains. Each red line segment denotes a reciprocal mapping between the query and reference genome, indicating their evolutionary conserved regions......230
- Figure 6.28 Representative origin of transfers (OriT) in CREC isolates genome (HEC16) on MGEs encoding several predicted

antimicrobial resistance and virulence genes $\dots \dots \dots$
--

Figure 6.29a	Comparative genomic island of CREC isolates showing island	
	clusters carrying AMR genes	235

LIST OF SYMBOLS/ABBREVIATIONS

Symbols/Abbreviations	Definition
%	percentage
<	less than
>	more than
°C	degree Celsius
β-	Beta
g	gram
h	hour
ml	milliliter
pmol	picomole
pH	potential of hydrogen
S	seconds
μg	microgram
μl	microliter
µg/ml	microgram/ milliliter
Zn^{2+}	Zinc ion
μm	micromolar
ABC	ATP-binding cassette
AcrA	Acriflavine resistance A
AcrB	Acriflavine resistance B
adk	Adenylate kinase

aer	Aaerobactin
afa	Afimbrial adhesins
AIM-1	Adelaide Imipenemase-1
AmpC	Ampicillin and carbenicillin
AMR	Antimicrobial resistance
ANI	Average Nucleotide Identity
ARGs	Antimicrobial resistance genes
arpA	Ankyrin-like regulatory protein
ast	Arginine succinyltransferase
ATCC	American Type Culture Collection
BacWGSTdb	Bacterial whole-genome sequence typing database
BHIA	Brain Heart Infusion agar
BIC-1	Bice ^{tre} carbapenemase
bla genes	Beta-lactamases genes
BLAST	Basic Local Alignment Search Tool
BRIG	BLAST Ring Image Generator
BSIs -	bloodstream infections
BV-BRC	Bacterial and Viral Bioinformatics Resource Center
CA	Clavulanate
CC	Clonal complex
CDC	Center for Disease Control
CDS	Coding sequences
cgMLST	Core genome multilocus sequence typing

chuA,	Escherichia coli haem-utilization gene
CIM	Carbapenem inactivation method
CLSI	Clinical and Laboratory Standards Institute
cnf1	Cytotoxic necrotizing factor 1
CP-CRE	Carbapenemase-producing CRE
CPEC	Carbapenemase-producing E. coli
CPE	Carbapenemase-producing Enterobacterales
CRAB	Carbapenem resistant A. baumannii
CRE	Carbapenem resistant Enterobacterales
CRE-BSI	CRE blood stream infection
CREC	Carbapenem resistant Escerichia coli
CRKP	Carbapenem-resistant Klebsiella pneumoniae
CRPA	Carbapenem resistant Pseudomonas aeruginosa
CTX-M	Cefotaxime hydrolyzing β-lactamase-M
cva/cvi	Colicin V structural gene/ colicin V immunity gene
DAEC	Diffusely adherent E. coli
DDD	Defined daily doses
DDST	Double disk synergy test
DEC	Diarrhoeagenic E. coli
DHFR	Dihydrofolate reductase
DHP-I	Dehydropeptidase
DHPS	Dihydropteroate synthase
DIM-1	Dutch imipenemase

DOR	Doripenem
E. coli	Escherichia coli
eae	Intimin production gene
EAEC	Enteroaggregative E. coli
ECDC	European Centre for Disease Prevention and Control
EDTA	Ethylenediaminetetraacetic acid
EHEC	Enterohaemorrhagic E. coli
EIEC	Enter invasive E. coli
EMB-	Eosin Methylene Blue
EPEC	Enteropathogenic E. coli
ESBL-EC	Extended-spectrum -lactamase (ESBL)-producing E. coli
ESBLs	Extended spectrum-lactamases
E-test-	Epsilometer test
ETP	Ertapenem
EUCAST	European Committee on Antimicrobial Susceptibility
	Testing
ExPEC	Extraintestinal pathogenic E. coli
fimA	Type 1 fimbriae
fimC	Type 1 fimbriae (D-mannose-specific adhesin)
fumC	Fumarate hydratase
GES	Guiana extended spectrum
GIM	German imipenemase
GlcNAc	N-acetylglucosamine

gyrB	DNA gyrase
HAIs	Hospital-acquired infections
HGT	Horizontal gene transfer
hly	Hemolysins gene
HUS	Hemolytic uraemic syndrome
HUSM	Hospital Universiti Sains Malaysia
hylA	Haemolysin A
icd	Isocitrate/isopropyl malate
IMI-1	Imipenem-hydrolyzing beta-lactamase
IMP	Imipenem/Imipenemase
irp2	Iron regulatory protein
iss	Increased serum survival
iutA	aerobactin siderophore receptor
KPC	Klebsiella pneumoniae carbapenemase
LMICs	low- and middle-income countries
LPS	lipopolysaccharides
MAC	MacConkey
MALDI-TOF MS	Matrix-assisted laser desorption ionization-time of flight
	mass spectrometry
MATE	Multidrug and toxic compound extrusion
MBL	Metallo-beta-lactamases
mCIM	Modified CIM
mdh	Malate dehydrogenase

MDR	Multi-drug resistant
MEM	Meropenem
MFS	Major facilitator superfamily
mg/L	Milligram per liter
MGEs	mobile genetic elements
MHA	Mueller-Hinton agar
MHT	Modified Hodge test
MIC	Minimum inhibitory concentration
min	minute
MLST	Multilocus sequence typing
MNEC	Meningitis-associated E. coli
mprF	Multiple peptide resistance factor
MRSA	Methicillin-resistant Staphylococcus aureus
MurNAcN	Acetylmuramic acid
MVAG	Malaysian Veterinary Antimicrobials Guidelines
MyAP-AMR	Malaysian Action Plan on Antimicrobial Resistance
NA	Nutrient agar
NBM	New born meningitis
NDARO	National Database of Antibiotic-Resistant Organisms
NDM	New Delhi metallo-beta-lactamase
NFW	Nuclease free water
NGS	Next generation sequencing
NmcA	Not metalloenzyme carbapenemase A

NPET	Nascent peptide exit tunnel
NSAR	National Surveillance of Antimicrobial Resistance
OMPs	Outer membrane proteins
ORFs	Open reading frames
OXA	Oxacillinases
PABA	Para-aminobenzoic acid
PACE	Proteobacterial antimicrobial compound efflux
PAIs	Pathogenicity islands
papC	Pilus associated with pyelonephritis
PATRIC	Pathosystems Resource Integration Center
PBP2a	Penicillin-binding protein 2a
PBPs	Penicillin-binding proteins
PCR	Polymerase chain reaction
pho	Phosphate regulating gene
РТС	Peptidyl transferase center
QC	Quality control
RNA	Ribonucleic acid
RND	resistance-nodulation-division
rRNA	Ribosomal RNA
sat	Secreted autotransporter toxin
SEPEC	Sepsis-associated E. coli
sfa	S fimbriae
SFC-1	Serratia fonticola carbapenemase-1

SIM	Seoul imipenemase				
SME	Serratia marcescens enzyme				
SMR	small multidrug resistance				
SNPs	single-nucleotide polymorphisms				
spp.	Species				
ST	Sequence type				
STEC	Shiga toxin-producing E. coli				
stx_1	Shiga toxin 1				
stx ₂	Shiga toxin 2				
ТАТ	Turn-around time				
TBE	Tris Borate EDTA buffer				
tet	Tetracycline resistance gene				
<i>tetX</i> gene	flavin-dependent monooxygenase gene (tetracyclin				
	resistance)				
ТМР	Sulphonamide and Trimethoprim				
TolC	Outer membrane protein required for hemolysin secretion				
	in E. coli				
tRNA	Transfer RNA				
TSB-	Tryptone Soy Broth				
tsh	Temperature-sensitive haemagglutinin				
TZB	Tazobactam				
UPEC	Uropathogenic E. coli				
UPGMA	Unweighted pair group method with arithmetic mean				

UTIs	Urinary tract infections
VIM	Verona integron-encoded metallo-beta-lactamase
VRE	Vancomycin-resistant enterococci
WGS	Whole genome sequencing
WHO	World Health Organization
WOAH	World Organization for Animal Health
XDR	Extensive drug-resistant

LIST OF APPENDICES

- Appendix A Representative plates showing MIC test using E-test method. Etest strips impregnated with meropenem (MEM), ertapenem (ETP), doripenem (DOR), and imipenem (IMP) were used.
- Appendix B Genomic features of CREC shown by subsystems category distributions and counts
- Appendix C Antimicrobial resistance genes of CREC isolates as determined by the CARD (<u>https://card.mcmaster.ca/home</u>) with 'perfect,' 'strict,' and 'loose' hits.
- Appendix D SNP Calls of the CREC isolates show the number of positions that are shared and trusted between each isolate and the reference genome. *E. coli_*str.K-2.substr.MG1655 was used as a reference genome.
- Appendix EProphage regions of CREC genomes show regions with intact
(complete) questionable and incomplete prophages.
- Appendix F Multiple genome alignment of CREC isolates against the reference strain, *E. coli* str K.2 substr. MG1655. Each genome is laid out horizontally, and homologous segments are shown as colored blocks that are connected across genomes.
- Appendix G Pairwise alignment of CREC isolates against the reference strain,*E. coli* str K.2 substr. MG1655.

PERBANDINGAN FENOMIK DAN GENOMIK Escherichia coli RINTANG KARBAPENEM YANG DIISOLAT DARIPADA MANUSIA DAN AYAM ABSTRAK

Kemunculan Enterobacterales (CRE) rintang karbapenem adalah sangat membimbangkan dan kawalan penyebaran strain ini merupakan salah satu keutamaan yang ditetapkan oleh Pertubuhan Kesihatan Sedunia (WHO). Di Malaysia, laporan terkini menunjukkan peningkatan kes-kes CRE yang dilaporkan di hospital am dan hospital tertiari. Walau bagaimanapun; laporan kes CRE pada haiwan, terutamanya haiwan penghasil makanan seperti ayam dan itik di Malaysia adalah pada tahap minimum. Selain itu, sehingga kini tiada kajian yang melaporkan perbandingan CRE daripada manusia dan haiwan makanan di Malaysia. Oleh yang demikian, kajian ini dijalankan dengan objektif umum untuk membandingkan genomik Escherichia coli (CREC) tahan karbapenem yang dipencilkan daripada manusia dan ayam. Kajian ini dijalankan ke atas strain arkib pencilan klinikal CREC persumtif (n=32) dari Hospital Universiti Sains Malaysia (HUSM), Kubang Kerian dan 384 sampel swab kloaka ayam yang diperolehi dari Pantai Timur Malaysia (Kelantan, Terengganu, dan Pahang). Pengenalpastian bakteria dilakukan melalui kaedah rutin bakteriologi dan diikuti dengan pencirian fenotip dan molekul serta penentuan epidemiologi molekul menggunakan penaipan jujukan berbilang lokus (MLST). Penjujukan keseluruhan genom (WGS) Illumina HiSeqTM berdaya tinggi dilakukan terhadap sepuluh isolat CREC terpilih bagi menentukan genomik perbandingan bagi pencilan CREC tersebut. Anotasi genom isolat tersebut kemudiannya dilakukan menggunakan peralatan RASTtk, BAKTA, dan eggNOG-Mapper, dan pengukuran kuantitatif dan kualitatif untuk analisis hiliran ad-hoc dijana menggunakan pelayan M1CR0B1AL1Z3R (Microbializer). Analisis WGS dilakukan menggunakan ResFinder 4.1, VirulenceFinder 2.0, alat SerotypeFinder 2.0, FimTyper versi 1.0 CHTyper 1.0, cgMLST 1.2, pMLST (2.0), CSI Phylogeny, MobileElementFinder, ISFinder Hunter 1.7, ISFinder 1.7, ISFinder. Analisis genom komprehensif tambahan dilakukan menggunakan beberapa kaedah analisis genomik yang berbeza. Keputusan menunjukkan kadar pengesanan CREC secara keseluruhannya adalah sebanyak 7.29% (28/384) iaitu 10.94% (28) daripada 256 E. coli yang diasingkan daripada swab kloaka ayam, yang ditentukan melalui kaedah pengesanan fenotip. Daripada kesemua isolat CREC, didapati 40% (24/60) isolat adalah daripada manusia dan ternakan ayam yang mempunyai lebih daripada satu gen karbapenemase termasuk gabungan gen-gen bla_{NDM}+bla_{OXA-48}, $bla_{\text{NDM}}+bla_{\text{OXA}-48}+bla_{\text{IMP}}$ dan $bla_{\text{OXA}-48}+bla_{\text{IMP}}$. Penaipan molekul menggunakan kaedah MLST menunjukkan pengesanan ST69, ST131, ST155, ST405, dan ST410 yang telah diiktiraf sebagai keturunan pandemik berisiko tinggi. Analisis genomik perbandingan menunjukkan persamaan rapat di antara isolat CREC daripada manusia dan ayam yang terbukti daripada hampir semua profil genomik termasuk filogeni, pulau genomik, analisis SNP, plasmid, serotyping dan cgMLST serta profil genomik dan proteomik lain. Hasil analisis genomik perbandingan menunjukkan persamaan di antara strain CREC daripada manusia dan ayam yang sihat dan ini merupakan data epidemiologi penting berkaitan CREC dalam manusia dan ayam di Malaysia. Penemuan daripada kajian ini dapat membantu dalam pemahaman epidemiologi CREC tempatan dan kemungkinan berlakunya penyebaran dinamik CRE dalam konteks tempatan. Hasil penemuan kajian ini seterusnya dapat membantu dalam merangka strategi kawalan dan pencegahan berasaskan bukti yang secara langsung dapat menyumbang kepada program kawalan kerintangan antimikrobial kebangsaan untuk menjaga kesihatan awam.

COMPARATIVE PHENOMICS AND GENOMICS OF CARBAPENEM-RESISTANT *Escherichia coli* FROM HUMANS AND BROILER CHICKENS

ABSTRACT

The emergence of carbapenem-resistant Enterobacterales (CRE) has been alarming, and its control has been considered one of the priorities set by the World Health Organization (WHO). In Malaysia, recent reports show that the prevalence of CRE in general and tertiary hospitals has been alarmingly rising. However, little is known about the occurrence of CRE in animals, particularly food-producing animals such as broiler chickens in Malaysia. Moreover, there is no study on the comparative study of CRE from humans and food animals in Malaysia. Therefore, this study was conducted with the general objective of elucidating the comparative genomics of carbapenem-resistant Escherichia coli (CREC) from humans and broiler chickens. The study was conducted on clinical isolates archives of presumptive CREC isolates (n=32) from Hospital Universiti Sains Malaysia (HUSM), Kubang Kerian, and 384 cloacal swab samples of broiler chickens collected from East Coast Malaysia (Kelantan, Terengganu, and Pahang). Routine bacteriology followed by phenotypic and molecular characterization and determination of molecular epidemiology using multilocus sequence typing (MLST) were conducted. High-throughput Illumina HiSeqTM whole genome sequencing (WGS) of ten selected CREC isolates was done to determine the comparative genomics of the CREC isolates. The assembled genomes were annotated using RASTtk, BAKTA, and eggNOG-Mapper tools, and quantitative and qualitative measurements for *ad-hoc* downstream analyses were generated using M1CR0B1AL1Z3R server (Microbializer). Analyses of the

WGS were done using ResFinder 4.1, VirulenceFinder 2.0, SerotypeFinder 2.0 tool, FimTyper version 1.0 CHTyper 1.0, cgMLST 1.2, pMLST (2.0), CSI Phylogeny, MobileElementFinder, Alien Hunter 1.7, ISFinder and IslandCompare (v1.0). Additional comprehensive genome analyses were done using different genomic analysis pipelines. The results showed an overall CREC detection rate of 7.29% (28/384) which is 10.94% (28) of the 256 E. coli isolated from cloacal swabs of broiler chickens based on phenotypic detection methods. Out of all the CREC, 40% (24/60) of the CREC isolates from human and broiler chickens harbor more than one carbapenemase gene, including the combinations *bla*_{NDM}+*bla*_{OXA-48}, *bla*_{NDM}+*bla*_{OXA-48}+*bla*_{IMP}, and *bla*_{OXA-48}+*bla*_{IMP}. The molecular typing using MLST showed the detection of ST69, ST131, ST155, ST405, and ST410, which have been recognized as high-risk pandemic lineages. The comparative genomic analyses showed close similarities between CREC isolates from human and broiler chickens, which were evident from almost all the genomic profiles, including phylogeny, genomic islands, SNP analysis, plasmid, serotyping, and cgMLST and other genomic and proteome profiles. The comparative genomic analysis results showing similarities among CREC isolates from humans and apparently healthy chickens are important epidemiological data on CREC in human and broiler chickens in Malaysia. The findings from this study can help in better understanding the local CREC epidemiology and shed light on the possible CRE transmission dynamics in the local context. These findings, in turn, can help in devising of evidence-based control and prevention strategies that can contribute to the national antimicrobial resistance control programs to safe guard the public health.

CHAPTER ONE

INTRODUCTION

1.1 Background of the study

The discovery of antimicrobials ushered in an era of hope that promised a medical revolution that enabled the treatment of several deadly diseases and immensely contributed to improved quality of life and life expectancy. Since the introduction of antibiotics on a large scale in the 1940s, deaths caused by infectious diseases have fallen by 70% (Placket, 2021). Over a few decades, several potent antibiotics were discovered and further improved the effectiveness of antimicrobial therapy by availing more options for treating formerly untreatable infectious diseases. However, this same era also witnessed the fast emergence and spreading of antimicrobial resistance among several pathogens. Antibiotic-resistant bacteria continue to increase in diversity and potency, and new species and strains of bacteria have been emerging and spreading worldwide. This problem is exacerbated by the fact that pharmaceutical companies appear to have come to terms with apparent 'surrender' to the ever-evolving nature of resistant pathogens rendering every effort to develop new antibiotics futile (Plackett, 2020; Carlet et al., 2014; WHO, 2014). The death toll due to infections caused by resistant bacteria is expected to rise from the current 700,000 to more than 10 million by 2050 (O'Neill, 2014). The annual economic impact of AMR was estimated to incur over US \$105 billion in losses worldwide, and developing countries, particularly Africa, are projected to suffer much of the relative economic impact with a 20% reduction in the region's total economic output, which is equivalent to a reduction in GDP of US \$2895 billion by 2050 (Codjoe and Donkor, 2017). Infection with resistant pathogens leads to severe sickness, prolonged admission, increased healthcare and second-line drug costs, and treatment failures. For example, in Europe, the loss due to AMR-related costs has been estimated to be more than nine billion euros annually. In addition, the Centers for Disease Control and Prevention (CDC) estimated that AMR incurs an additional USD \$ 20 billion in direct healthcare costs and USD \$ 35 billion in indirect losses due to loss of productivity every year in the United States (Dadgostar *et al.*, 2019).

The ever-increasing emergence and spread of AMR are attributed to several factors, including overpopulation, increase in global migration, imprudent and increased use of antibiotics in humans and animals, selection pressure of antibiotics on microorganisms, environmental changes, wildlife spread, poor sanitation, and lack of appropriate disposal of sewerage are among the significant contributors to the (Aslam et al., 2018). Among the several causes of AMR, the excessive use of antibiotics has been identified as a major driving factor in the evolution and spread of resistant bacteria. This has been demonstrated by epidemiological studies showing the correlation between antibiotic usage and the development of resistance in bacteria (Cock and Cuny, 2020; Read and Woods, 2014. In bacteria, resistance genes can be intrinsically presented or acquired from other bacteria through mobile genetic elements (MGEs) such as plasmids, insertion sequences, and transposons (Read and Woods, 2014). Apart from HGT, bacteria may also develop resistance spontaneously through mutation. The use of antibiotics creates selective pressure and removes drug-sensitive competitors favoring the survival of resistant bacteria due to natural selection (Read and Woods, 2014). Despite warnings regarding overuse, antibiotics are overprescribed worldwide (Ventola, 2015).

Antimicrobial resistance is a global threat to public health, animal health and production, food safety and food security, and environmental health. Multi-drug resistant (MDR) bacteria or "superbugs" continue to exist, emerge, and spread along the humananimal-environment interface with intertwined dynamics of sharing of resistance determinants among these triads. The common causes of AMR include overuse and misuse of antibiotics in humans and animals accompanied by poorly controlled antibiotics trading, increased international travel, poor sanitation and hygiene, and release of nonmetabolized antibiotics and their residues into the environment through manure/feces. These factors facilitate the genetic selection pressure, which favors the emergence of infections caused by MDR bacteria in the community (van Boeckel et al., 2015). Antibiotics are also used in food-producing animals such as poultry, cattle, and pigs, and it is projected that an increase of up to 67% in such antibiotic uses will be recorded in highly populated countries (van Boeckel et al., 2015). Due to varying degrees of host specificities and the complexity of transmission, it is difficult to quantify the spread of resistant bacteria between humans and animals (Cock and Cuny, 2020; Muloi et al., 2018; Van Boeckel et al., 2015). However, initiatives taken to reduce antimicrobial usage in animals have shown some promise in reducing the occurrence of resistant bacteria in humans and animals (Stoica and Cox, 2021).

The global increase in demand for animal protein has become a worldwide phenomenon and dietary trend, notably in developing countries. Although meat production in high-income countries has plateaued since 2000, growth rates of 40%, 64%, and 68% were recorded in South America, Africa, and Asia, respectively. This growth and increased demand for animal protein in low- and middle-income countries (LMICs) have been enabled by the global expansion of improved animal production systems which heavily rely on antimicrobials to maintain and enhance food animal health and production. Records show that up to 73% of all antimicrobials sold globally are used for food animal production. This scenario has been accompanied by a growing body of evidences showing the link between extensive antimicrobial use in food animal production and the rise of infections caused by antimicrobial-resistant pathogens both in animals and humans (Pokharel *et al.*, 2020).

In recent years, ample evidence has shown that the public health challenges caused by AMR are increasing, and coordinated global interventions are required to contain these ever-increasing threats. The public health and economic burdens of AMR have been showing increasing trends, and worldwide data show that common and diverse bacterial pathogens have alarmingly become resistant to currently available antimicrobials (Codjoe and Donkor, 2018). To counter the rising threats of AMR, the World Health Organization (WHO) developed a ranking list of antimicrobial-resistant pathogens that can be used as a guide for determining areas of focus and effective resource allocation (WHO, 2017). Carbapenem resistance by Enterobacterales was identified as one of the pathogens that have been assigned a high critical priority.

Carbapenems are a group of antibiotics that have been used as a lifesaving and last-resort antibiotic to treat infections caused by MDR bacteria. Carbapenem-resistant Enterobacterales are among the major challenges to healthcare systems. Due to limited antimicrobials, infections caused by CRE are more challenging to treat and are commonly associated with high mortality and morbidity (Dong *et al.*, 2020). Therefore, the ongoing increase of CRE prevalence in Enterobacterales species commonly associated with severe infections in healthcare settings is a matter of major concern. The development and spread of carbapenem resistance are mostly attributed to CRE and are mostly driven by the

emergence and spread of carbapenemases which are specific group carbapenem hydrolyzing beta-lactamases. Most carbapenemases-producing Gram-negative bacteria are resistant to carbapenems or are less susceptible to the same antimicrobials and other broad-spectrum agents (Iovleva *et al.*, 2017).

In Malaysia, the carbapenem resistance rate in *E. coli* is still less than 1%, and a fluctuation in imipenem resistance was seen during the three-year periods (2018-2020) with prevalence of 0.8%. 0.5%. 0.7% being recorded rates and in 2018, 2019, and 2020 respectively. In comparison, the prevalence of meropenem-resistant E. coli increased from 0.6% in 2019 to 0.7% in 2020. Likewise, the prevalence of imipenem and meropenem-resistant Klebsiella pneumoniae (K. pneumoniae) also showed an increasing trend, with prevalence rates of 1.7% and 2.1% in 2019 to 2.4% and 2.8%, respectively, in 2020 (NSAR, 2020). According to ten-year (2006 to 2017) data compiled by the National Surveillance of Antimicrobial Resistance (NSAR) of Malaysia indicated that the overall prevalence of CREC declined from 0.5% in 2010 to 0.2% in 2014 (Hsu et al., 2017). However, a more recent report on the prevalence of CRE in a tertiary hospital in Malaysia shows that the prevalence of CRE in 2015 and 2016 was 0.3% (5/1590) and 1.2% (17/1402), respectively. The same study reported that the majority (81.8%) of the isolates were Klebsiella pneumoniae, followed by Serratia marcescens, E. coli, and *Citrobacter koseri* (Mohamed *et al.*, 2018). However, the data on the prevalence of CREC in animals in Malaysia is scarce. Since the inception of this study, a single preliminary study by Ghazali et al. (2020) reported a CRCE prevalence of 1% (2/200) from antemortem cloacal swab samples collected from broiler chicken from an abattoir in Terengganu. However, this study was limited in scope and depth of investigation.

1.2 Justification of the study

Reports on the occurrence and prevalence of CRE in Malaysia showed that there is an alarmingly increasing trend in the incidences of CRE-related infections in general and tertiary hospitals in Malaysia (Zaidah et al. (2017). This may imply that the status of CRE in Malaysia is still not fully investigated, and the prevalence, diversity, resistance patterns, and different potential sources of CRE have not been sufficiently investigated. In addition, almost all the reported CRE prevalence studies in the country have been conducted in hospital settings, and the occurrence and characteristics of CREC from animals, particularly CREC from food animals, have not been well investigated. There is also a paucity of data on the occurrence of CREC and whether broiler chickens may serve as CREC that may spread to humans and possibly cause infections in Malaysia. In addition, there is no data on the comparative genomics of CREC isolates from humans and broiler chickens in Malaysia. Understanding the antimicrobial resistance patterns, virulence profiles, molecular epidemiology, and genomic characteristics of CREC from human and broiler chickens will provide a detailed and better insight into the existing status of these pathogens and may help complement the national AMR control strategy.

1.3 Research questions

- 1. How prevalent is CREC in broiler chickens in East coast Malaysia (Kelantan, Terengganu, and Pahang)?
- 2. What are the antimicrobial resistance, virulence, and phylogenetic characteristic of CREC isolates from humans and broiler chickens?

- 3. What is the molecular epidemiology of CREC isolates from human and broiler chickens, and how the local CREC strains are related to the globally disseminated *E. coli* strains?
- 4. What is the comparative genomics of CREC isolated from humans, and how does this comparative study help in generating epidemiologically useful insights?

1.4 Objectives of the study

1.4.1 General objectives

1. This study aimed to investigate the comparative genomics of carbapenemresistant *E. coli* (CREC) from humans and broiler chickens in East Coast Malaysia (Kelantan, Terengganu, and Pahang)

1.4.2 Specific objectives

- To determine the prevalence of CREC in broiler chickens in East coast Malaysia (Kelantan, Terengganu, and Pahang)
- 3. To determine antimicrobial resistance patterns of carbapenem-resistant *E. coli* isolates from broiler chickens and humans.
- 4. To conduct molecular characterization of CREC isolates based on the detection of carbapenemases genes, virulence genes, and phylogenetic characteristics.
- 5. To determine the molecular epidemiology of carbapenem-resistant E. coli isolates
- 6. To elucidate the comparative genomics of carbapenem-resistant *E. coli* isolates from human and broiler chickens.

CHAPTER TWO

LITERATURE REVIEW

2.1 General characteristics of *Escherichia coli*

Escherichia coli is a member of the *Enterobacterales* and is characterized as a short, non-spore-forming, facultatively anaerobic Gram-negative bacillus. It readily grows on ordinary media without the need for special enrichment. Biochemically, it is characterized by indole production, absence of citrate fermentation, positive reaction on methyl red test, and negative Voges–Proskauer reaction with no urease production (Bhutia *et al.*, 2021). *Escherichia coli* is a predominant aerobic commensal and a member of gut microbiome of vertebrates. The majority of *E. coli* strains are commensals of the intestinal tract of warm-blooded animals and humans. In general, commensal *E. coli* are harmless and symbiotically live within the host while causing infections rarely in immune-competent hosts (Ramos *et al.*, 2020). The bacteria is present in almost 90% of humans and is commonly found at a concentration of 107 to 109 colony- forming units (CFU) per gram of feces. *Escherichia coli* is also an opportunistic pathogen with high pathogenic potential to cause intestinal and extraintestinal infections (Denamur *et al.*, 2021).

Pathogenic and non-pathogenic strains of E. *coli* are differentiated depending on their acquisition of virulence factors or loss of functional genes encoding adhesion, invasion, colonization, cell surface molecules, secretions, transport, survival, and iron metabolism (Sora *et al.*, 2021). In terms of their genomes, *E. coli* strains may have varying numbers of genes ranging from 4,000 to 5,000. Among these, about 3,000 genes are present in different *E. coli* strains, while the rest of the genes are mostly associated with the genes that are responsible for colonization or virulence. The use of advanced genomic

tools such as next-generation sequencing (NGS) has enabled a clearer understanding of the plasticity of *E. coli* genomes by revealing much of the core and accessory genomes of both commensal and pathogenic *E. coli* strains (Poirel *et al.*, 2018).

2.2 Pathogenic Escherichia coli

Escherichia coli strains cause several extraintestinal pathologies, including various intra-abdominal, pulmonary, soft tissue, skin, and urinary tract infections, new born meningitis (NBM), and bacteremia. The major intestinal infections caused by *E. coli* include different forms of diarrhea, including hemolytic and uraemic syndrome (HUS). Infections such as urinary tract infections (UTIs), renal failure in HUS in children, and neurologic complications in NBM are often associated with high mortality and morbidity.

In recent years, the incidences of extraintestinal infections caused by *E. coli* have been increasing, and HUS epidemics, such as the 2011 epidemic in Europe, have become more common. This problem has been further aggravated by the rising incidence and spread of antibiotic-resistant *E. coli*, making this pathogen the third-ranked 'priority pathogen' among the 12 antibiotic-resistant pathogens listed by the WHO (Denamur *et al.*, 2021). In animals, *E. coli* is one of the major causes of diarrhea, along with other pathogens such as rotavirus, coronavirus, *Cryptosporidium parvum*, or a combination of these pathogens (Poirel *et al.*, 2018). The bacterium can also cause UTIs in small animals (Teh, 2022).

In chickens, *E. coli* infections cause several disease syndromes, including septicemia, enteritis, omphalitis, respiratory tract infection, swollen head, and cellulitis (Swelum *et al.*, 2021). Pathogenic *E. coli* strains cause various diseases through multiple

mechanisms of pathogenesis, including the colonization of the mucosae, host immune evasion, replication, and tissue injury.

Pathogenic *E. coli* are classified into pathotypes based on pathogenicity mechanisms (patterns of attachment and invasion), virulence (toxin production, presence or absence of virulence plasmids, mechanisms of attachment), and the clinical syndromes they cause (Kaper *et al.* 2004). These pathotypes are enteropathogenic *E. coli* (EPEC), enterohaemorrhagic *E. coli* (EHEC), including Shiga toxin-producing *E. coli* (STEC), enterotoxigenic *E. coli* (ETEC), enteroaggregative *E. coli* (EAEC), enteroinvasive *E. coli* (EAEC), enteroinvasive *E. coli* (EIEC) and diffusely adherent *E. coli* (DAEC) (Pakbin *et al.*, 2021). The different *E. coli* pathotypes and their characteristics are summarised in table 2.1.

2.3 Antibiotics Discovery and the ensuing medical Revolution

Antibiotics are chemical substances that are secreted by microorganisms or synthetic products with bacteriostatic or bactericidal properties and are used to inhibit the growth of or kill pathogenic bacteria (Bhattarai *et al.*, 2020; Pancu *et al.*, 2021). Throughout the ages, infectious diseases have been challenging human existence and quality of life. One of the marked historical pieces of evidence of the cataclysmic effects of infectious diseases was the emergence and spread of the Bubonic plague, which claimed the lives of approximately one-third of Europe's population between 1347 and 1350. In general, infectious diseases remained the leading causes of death up to the early 1900 (Ribeiro da Cunha *et al.*, 2019).

Pathotype	Identification criteria	Affected host (s)	Common Diseases and Symptoms	Major virulence genes	Phylog roups	Common sequence types (STs)	References
EPEC	Adheres to the intestinal epithelium and effaces microvilli.	Humans, Domestic animals, chicken	Diarrhea in children, Watery diarrhea and vomiting	Bfp, Intimin, LEE	B2, C, D, F	ST131, ST88, ST69, ST62	Denamur <i>et al.</i> (2020) Kaper <i>et</i> <i>al.</i> (2004)
EHEC/ STEC	Shiga toxin production (Presence of <i>stx</i> genes)	Human, Cattle, Sheep	Hemorrhagic colitis, HUS, Bloody diarrhea	stx, eae, ehxA	B1, E	ST11 ST29 ST17	Garcia and Fox (2021)
ETEC	Production of adhesins enterotoxins	Human Pig Cattle Sheep	Traveler's diarrhea, Watery diarrhea and vomiting	LT, STa, STb, EasT, F4	A, B1, C, E	Multiple	Dubreuil <i>et al.</i> (2016)
EAEC	Aggregative adhesion on enterocytes	Human, domestic mammals	Diarrhea in children, Diarrhea with mucus and vomiting	Aggregative adherence fimbriae (<i>aaf/agg</i>) and	aatA	Multiple	Riley (2020)
EIEC	Colonocyte invasion	Human	Shigellosis- like, Watery diarrhea; dysentery	<i>ipa</i> C, <i>ipa</i> H, isc, var, Shiga toxin, hemolysin, Cellular invasion, Ipa	A, B1, E	ST6 ST270 ST280	Denamur et al. (2020), Garcia and Fox (2021)
DAEC	Diffuse adhesion on enterocytes	Human	Acute diarrhea in children, Watery diarrhea, recurring UTI,	Adhesion encoding genes (<i>afa</i> & <i>dra</i>), Daa, AIDA	All phylog roups	Multiple	
ExPEC	Extra- intestinal infection	Human, domestic mammals, poultry	Various extra- intestinal infections	Adhesion encoding genes, toxins,protect ins &iron capture systems	B2, C, D, F	ST131, ST69, ST88, ST62	Allocati <i>et</i> <i>al</i> (2013), Denamur <i>et al.</i> (2020),
ExPEC (APEC)	Isolated from birds	Poultry Human	Collibacillosis	pColV genes, Type 1 and P fimbriae; K1 capsule	B2, C	ST95, ST88	Denamur <i>et al.</i> (2020), Allocati <i>et</i> <i>al.</i> (2013)

Table 2.1. Escherichia coli pathotypes and their main characteristics.

The discovery and use of antibiotics radically impacted human health and quality of life to the extent that it was considered a 'medical miracle' of the 20th century. The years 1930–1962, which is often called the golden age of antimicrobial discoveries, saw the rapid invention and development of 20 different classes of novel antimicrobials, many

of which contributed to the betterment of human health and wellbeing for more than six decades (Dhingra *et al.*, 2020). The 'miraculous' effects of antibiotics were later tapped for non-therapeutic applications, including their use in enhancing agricultural productivity, particularly as growth promoters to increase food production (Manyi-Loh *et al.*, 2018).

The golden age of antibiotics was marked by overwhelming success in treating many life-threatening infectious diseases. This resulted in the overly optimistic view that diseases caused by microorganisms would finally be conquered in a very short period owing to the rapid antibiotics discoveries which were believed to enable the control of infectious diseases as a public health problem (Aminov, 2010). A notable remark of triumph on infectious diseases with the help of the apparently indomitable antibiotics was made by the US Surgeon General in 1970, who was said to opine that 'it was time to close the book' on infectious diseases and redirect national resources to the control and prevention of chronic problems such as cancer and heart disease (WHO, 2018). However, that was not meant to materialize as all the euphoric optimisms about antibiotics 'miracles' soon began to be shredded as resistant bacteria emerged. Even then, apparently, no one could have fully grasped the microbial resolve and capabilities enabling the pathogens to attain the status of apparent invincibility attributed to their ability to resist multiple antimicrobials, including resistance to the most potent antibiotics.

2.4 Mechanisms of Action of Antibiotics

At therapeutic concentrations, antibiotics are sufficiently potent to be effective against infection while simultaneously presenting minimal toxicity to the patient. Based on their action on bacteria, they are categorized as bactericidal or bacteriostatic. Natural

antibiotics originate from different species of bacteria and fungi as secondary metabolic products. As these substances are not essential for bacterial cell survival, they are usually produced in demand. Usually, bacteria produce these antibiotics against other competing bacteria and persist in challenging environmental conditions. In general, antibiotics that occur in their natural forms are less potent and have fewer side effects compared to synthetic antibiotics. Common natural antibiotics include penicillin, streptomycin, gramicidin, and chlortetracycline. Synthetic antibiotics are produced in the laboratory and approved for clinical use. Common examples of synthetic antibiotics include cephalosporin C, fluorocyclines, linezolid, and meropenem. Compared to natural antibiotics, synthetic antibiotics act faster and have higher toxicity to pathogens (Upmanyu and Malviya, 2020). The selective toxicity of these substances induces bactericidal and bacteriostatic to the bacterial cells with minimum side effects to the patients. The selective blocking of critical bacterial metabolic pathways disrupts bacterial cell structures (Abushaheen et al., 2020; Walsh, 2004). The different mechanisms of actions of groups of antimicrobial agents by which they kill or inhibit bacteria are discussed in the following sections.

2.4.1 Interfering with cell wall synthesis

The cell wall of a bacterial is the outermost elastic structure that maintains the bacterial cell structural integrity by protecting the bacteria from adverse osmotic effects that may cause bacterial cell disintegration. The peptidoglycan layer is made of N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) long glycan chains cross-linked by Penicillin Binding Proteins (PBP). This bacterial structure is the main target for β -lactam and glycopeptides antibiotics (Nikolaidis *et al.*, 2014). By acting on

the peptidoglycan layer of the bacterial cell wall, these antibiotics bacterial cell wall synthesis and disrupt the cell wall structure, thereby inducing bacterial cell lysis. Such antibiotics include glycopeptides (vancomycin and teicoplanin) and β -lactams (carbapenems, penicillins, cephalosporins, and monobactams).

The β -lactam antibiotics are a wide class of antibiotics produced by the fungus *Penicillium* and were discovered in the 1930s. These antibiotics are characterized by the presence of an azetidinone nucleus containing the carbonyl β -lactam, which is essential for the activity (Kapoor *et al.*, 2017). There are several classes of β -lactam antibiotics that target the penicillin-binding proteins (PBPs) and are used against different bacterial species. The β -lactam antibiotics are structurally similar to the D-Ala-D-Ala dipeptide of the developing peptidoglycan to which it covalently binds at the serine active binding site on the PBPs blocking the formation of linkage between the peptidoglycan layer, which ultimately blocks cell wall synthesis (Zapun *et al.*, 2008). The β -lactams are the most popular bactericidal antibiotics the most common and popular antibiotics used to treat several bacterial infections and usually have lower toxicity with the exception of allergic reactions in sensitive individuals (Balsalobre *et al.*, 2020).

2.4.2 Inhibition of protein synthesis

Protein synthesis is a complex and essential biological process in living cells that occurs through processes including transcription and translation, which are carried out through initiation, elongation, termination, and recycling. The differences in structures of the bacterial ribosome and the ribosome of eukaryotes enable the selective inhibition of bacterial protein synthesis. The antibiotics achieve the inhibition by blocking the protein synthesis process at the 30S or 50S subunits of the 70S bacterial ribosome. By inhibiting protein synthesis, the antibiotics stop or retard bacterial cell growth (Tenover, 2006). Common examples of 30S subunit-blocking antibiotics are Macrolides, aminoglycosides, and tetracycline. The positively charged carbohydrate groups of the antibiotics bind to the negatively-charged plasma membrane and diffuse into the bacterial cell. Once inside the bacteria cell, they attach to the 30S subunit of the ribosome at the A-site, reversing the process into extra-helical translation, which causes the formation of a faulty mRNA-tRNA pairing that leads to errors in translation and protein synthesis (Wilson, 2014; Garneau-Tsodikova and Labby, 2016). Whereas the 50S ribosome subunit of the bacterial cell forms a polypeptide chain in the peptidyl transferase center (PTC). Moreover, the 50S subunit contains a nascent peptide exit tunnel (NPET) which serves as a gate to the polypeptide chain leaving the ribosome. A common example of 50S subunit inhibiting antibiotics is chloramphenicol which acts by binding to the 50S subunit between the NPET and the PTC, which prevents the incorporation of newly made polypeptides cross the channel. This leads to disruption in the elongation step and results in the inhibition of bacterial protein synthesis (Ban et al., 2000).

2.4.3 Inhibition of nucleic acid synthesis

The synthesis of bacterial DNA requires topoisomerases; the lack of these enzymes leads to the formation of abnormal DNA (Abushaheen *et al.*, 2020; Pommier *et al.*, 2010). For example, fluoroquinolones function by inhibiting the enzyme DNA gyrase enzyme in Gram-negative bacteria, which is vital in initiating bacterial DNA replication. They also inhibit the enzyme topoisomerase IV, which is critical for the daughter-cell segregation in Gram-positive bacteria. The quinolones bind to topoisomerase IV or II and impede bacterial DNA synthesis by modifying the supercoiling of DNA, causing the interruption of double-stranded bacterial DNA and leading to the death of the bacteria. The antibiotic effect is achieved through the pathway that may or may not depend on protein synthesis pathways (Abushaheen *et al.*, 2020).

2.4.4 Inhibition of metabolic pathways/bacterial enzymes

The metabolic processes and synthesis of various cellular components of prokaryotic and eukaryotic cells require reduced folate co-factors as a vital component. In eukaryotic cells, the uptake of folate occurs through an active transport system, whereas in prokaryotic cells acquire folate through the de novo synthesis pathway. This makes the folate biosynthesis pathway a viable target for antibiotics (Bertacine Dias *et al.*, 2018). The folate synthesis pathway utilizes the enzyme dihydropteroate synthase (DHPS), which requires para-aminobenzoic acid (PABA). Sulphonamides act by inhibiting PABA in bacterial folate synthesis. The fact that sulphonamides share structural similarity with PABA makes it a competitive inhibitor to which folates can bind as alternatives which in turn deprives the bacteria cell of the vital nutrient, thereby leading to inhibition of the bacterial cell growth. Diaminopyrimidine antibiotics (i.e., Trimethoprim) inhibit dihydrofolate reductase (DHFR), which is the last enzyme in the folate biosynthesis pathway (Schober et al., 2019). By incorporating it into the precursors, sulfonamides block the formation of folic acid and form a reactive and antibacterial pseudometabolite. Sulfonamides are bacteriostatic antibiotics with antifungal and antimalarial properties. The combination of sulphonamide and diaminopyrimidine antibiotics has been used in the treatment of several infectious diseases, including urinary tract infections. However, the emergence of remittance against these antibiotics combination proved to be a challenge (Giles et al., 2019). Despite their common side effects, sulfonamides are considered to be among the most effective and safe antibiotics in WHO's list of essential medicine (WHO, 2015).

2.4.5 Interruption of bacterial membrane

The bacterial membrane plays a vital role in ensuring bacterial cell survival and thus can be a good target for antimicrobial agents. Unlike Gram-positive bacteria, Gramnegative bacteria have an added protective layer on the outer membrane composed of lipopolysaccharides (LPS). Several potent antimicrobial agents hinder the formation of mature LPS by inhibiting LPS synthesis at various stages. As a result, the bacteria become more prone to imbalances in osmotic pressure due to the increasing permeability that leads to bacterial cell destruction (Epand et al., 2016). Polymyxins which are considered the last-line antibiotics for the treatment of infections caused by MDR Gram-negative bacteria, are common examples of bacterial cell membrane synthesis inhibiting antibiotics. The bacteriostatic action of Polymyxins is achieved through the interaction between polymyxin, a positive charge, with the lipid A of LPS, which is negatively charged. This binding alters the bacterial structure and makes the cell membrane extra permeable. This, in turn, leads to disruptions in osmotic pressures in the bacterial cell leading to the outflow of cellular components, inhibition of respiration, and surge of water inflow, which finally leads to lysis and death of the bacterial cell (Yin *et al.*, 2020). Figure 2.1 shows the summary of the major mechanisms of antimicrobial actions and their corresponding potential mechanisms of resistance.

Figure 2.1. Sites of action and potential mechanisms of bacterial resistance to antimicrobial agents. Adapted from (Mulvey and Simor, 2009)

2.5 Antimicrobial Resistance

Antimicrobial Resistance occurs when pathogens such as bacteria, viruses, fungi, and parasites evolve through time and no longer respond to antimicrobial therapy, thereby making it increasingly difficult or impossible to treat infections and increasing the severity of illness, transmission, and death (WHO, 2021). Antimicrobial resistance has been an acknowledged fact since the dawn of the antibiotic era. In fact, it did not take long for resistant bacteria to emerge soon after the discovery of antibiotics and their introduction into clinical use. However, the threats of AMR became of serious concern only in recent decades following the emergence of diverse and dangerous resistant strains, which continues to occur at an alarming rate. This escalating evolution of resistance by bacteria coupled with an apparently exhausted and lessened antibiotic pipeline has somehow caused the fear that the ushering of a post-antibiotic era is apparently eminent (Fair and Tor, 2014, Jackson et al., 2018). Antibiotic resistance is a global public health threat that affects individuals, communities, societies, and countries all over the world. The impacts of AMR are not only limited to health care but also to veterinary and agricultural sectors. Resistant bacteria have been evolving and increasingly posing enhanced resistance levels characterized by higher frequency and strength of resistance against all antibiotics that have been approved for clinical use worldwide. This has led to the shortening of the clinical usability life span of newly approved antibiotics to less than ten years before high incidences of resistance demand the guarded usage of these antibiotics (Spagnolo et al., 2021). The emergence of AMR is a multifaceted and complex issue that has been compounded by several contributing factors. Although the common notion assumes that AMR emerged as a result of the introduction of antibiotic usage in health care and other sectors, evidence suggests otherwise and that resistant bacteria existed well before the discovery and clinical use of antibiotics. This can be illustrated by the fact that penicillinresistant Staphylococcus species were identified even before the discovery, industrial production, and widespread clinical usage of the first antibiotic in 1943 (Hwang and Gums, 2016). This observation is explained by the fact that the genetic diversity required for the development of penicillin resistance in Staphylococcus could not have developed in the shorter time frame following the introduction of penicillin in clinical use. Rather it implies that bacteria do have an intrinsic resistance encoded in their genome that has been evolving over centuries. Thus, the development of antimicrobial resistance in bacteria is a natural process that occurs with or without human intervention (Fair and Tor, 2014). However, the introduction of penicillin in clinical use was believed to create selective pressure on bacteria which induced bacterial adaptive mechanisms that enabled the acceleration of natural selection and the emergence of more resistant or more virulent bacteria. This problem was further aggravated by the widespread introduction of multiple potent antimicrobials and their imprudent use in humans, animals, and agriculture (Hwang and Gums, 2016; Fair and Tor, 2014).

2.5.1 Mechanisms of antimicrobial resistance

As part of their evolution processes that took place over millions of years, diverse species of bacteria developed complex and sophisticated mechanisms of survival in the presence of antimicrobial molecules. Such an interesting sophistication in bacterial cell resistance is their ability to resist a particular class of antibiotics through multiple biochemical pathways, which helps the bacteria to have a tool kit of mechanisms to evade the effect of antibiotics (Munita and Arias, 2016. In general, AMR mechanisms are broadly classified into intrinsic (natural) and acquired resistance. Intrinsic or natural resistance refers to the inherent nature of bacterial species to be resistant to some antibiotics due to their unique structural/functional characteristics. Whereas acquired resistance is the development of antibiotic resistance by naturally susceptible bacteria through the acquisition of specific genetic codes from other bacteria (Abushaheen *et al.*, 2020).

2.5.1(a) Genetic Basis of Antimicrobial Resistance

Endowed with higher genetic plasticity, bacteria are capable of responding to arrays of threats from their environments, including the presence of antimicrobial molecules that may threaten their existence. Because they share the same ecological niches with antimicrobial-producing microorganisms, different species of bacteria have evolved primeval mechanisms to thwart the potentially deadly effects of antibiotic molecules to ensure their survival. The two major genetic strategies used by bacteria that are of evolutionary importance to survive and thrive in the presence of antimicrobial substances are through mutations in gene(s) that are often associated with the mechanism by which the antimicrobial compounds act on the bacteria and through the acquisition of AMR encoding foreign DNA through HGT (Munita and Arias, 2016; Peterson and Kaur, 2018).

2.5.1(b) Mutational Resistance

Because of the diverse and intricate mechanisms of mutation, antibiotic resistance acquired through mutational changes are diverse and complex. In general, bacterial cell mutation resulting in the development of antimicrobial resistance interferes with the action of antibiotics through one of the following mechanisms, *i*) antimicrobial target modifications, *i*) reduced drug uptake, *ii*) activation of efflux mechanisms, *iv*) global alteration of vital metabolic pathways through modulation of regulatory networks (Lopatkin *et al.*, 2021; Munita and Arias, 2016). Specific examples of antimicrobial resistance development through mutational changes will be discussed in the following sections.

2.5.1(c) Horizontal Gene Transfer

Acquisition and incorporation of foreign DNA material from other bacteria or environments through HGT are vital driving factors that enormously contribute to the evolution of bacterial pathogens and their ability to develop AMR (Munita and Arias, 2016). Most of the antimicrobials in clinical use are derived from natural environmental products, including soil. As stated earlier, bacteria living in environments with natural antimicrobials harbor intrinsic genetic determinants of resistance, and there is ample evidence suggesting that environmental resistome is a robust source of antimicrobial resistance acquisition by pathogenic bacteria. The genetic exchange of resistance genes has been frequently implicated as the cause of AMR emergence and dissemination. Naturally, three main strategies are used by bacteria to acquire external genetic material, i) conjugation (bacterial "sex"), *ii*) transduction (phage mediated), and transformation iii) (incorporation of naked DNA).

Transformation is considered the simplest type of HGT; however, under natural circumstances, only very few bacteria with clinical relevance are able to incorporate naked DNA and develop resistance. Nosocomial emergence of resistance is often attributed to conjugation, which is a more efficient gene transfer method through cell-to-cell contact between the donor and recipient bacteria. It has been shown that conjugation is more likely to occur at high rates in the gastrointestinal tract of humans receiving antibiotic treatment (Niel *et al.*, 2021). Although the direct transfer of resistance genes from chromosome to chromosome is possible, conjugation mostly occurs through the movement of MGEs. Among the MGEs, plasmids and transposons play important roles in the emergence and dissemination of AMR among clinically important bacteria (Munita and Arias, 2016; Partridge *et al.*, 2018). Lastly, integrons are ancient structures that promote bacterial evolution through the acquisition, storing, disposing, and resorting of reading frames in mobile gene cassettes. They are considered one of the most efficient mechanisms for accumulating AMR genes. Integrons are one of the main drivers of AMR as they provide

an efficient yet simple mechanism for the incorporation of new genes into bacterial chromosomes, maintenance of the functional equipment, and a robust strategy of the genetic interchange (Sabbagh *et al.*, 2021).

2.5.1(d) Mechanistic Bases of Antimicrobial Resistance

Based on the biochemical route involved in resistance, antibiotic resistance mechanisms can be categorized as follows: (i) drug uptake limitation, (ii) drug target modification, (iii) drug inactivation; and (iv) drug efflux (figure 2.2). Because of their structural differences and others, all four mechanisms are used by Gram-negative whereas since Gram-positive bacteria lack the lipopolysaccharide in the outer membrane, they are less likely to use limiting the uptake of a drug and drug efflux mechanisms (Reygaert, 2018; Uddin *et al.*, 2021). Each of these resistance mechanisms has its own specific biochemical pathways that will be further elaborated in the following section.

Figure 2.2. Antibiotic targets and mechanisms of resistance. Adapted from (Wright (2010)

2.5.1(e) Drug uptake limitation

Naturally, bacterial species differ in their abilities to limit the uptake of antimicrobial agents. For example, the structural and functional features of the Lipopolysaccharides (LPS) layer in Gram-negative bacteria serves as a barrier to certain types of molecules, arming the bacteria with intrinsic resistance to several groups of antibiotics (Bertani and Ruiz, 2018). It is due to this structural difference that glycopeptide antibiotics such as vancomycin are incapable of penetrating the outer membrane barrier and are, therefore, not effective against Gram-negative bacteria. The net change in permeability across the cell membrane barrier is determined by the hydrophobicity of the antibiotics. Hydrophobic antibiotics diffuse through the membrane, while hydrophilic