OPTIMIZATION OF HETEROGENEOUS FENTON AND PHOTO FENTON REACTIONS FOR THE TREATMENT OF PALM OIL MILL EFFLUENT USING RESPONSE SURFACE METHODOLOGY

SADIQ SANI

UNIVERSITI SAINS MALAYSIA

2022

OPTIMIZATION OF HETEROGENEOUS FENTON AND PHOTO FENTON REACTIONS FOR THE TREATMENT OF PALM OIL MILL EFFLUENT USING RESPONSE SURFACE METHODOLOGY

by

SADIQ SANI

Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy

August 2022

ACKNOWLEDGEMENT

All praises are due to Allah (SWT), the Lord of the worlds, Who favoured and bestowed me with the determination and strength to bring my PhD dissertation work to successful completion at the School of Chemical Sciences of the Universiti Sains Malaysia (USM). May the Peace and blessings of Allah (SWT) be upon His beloved Prophet and Messenger (SAW), his family, companions, and those who follow their righteous paths until the Day of Recompense.

First and foremost, I would express deep appreciation to my principal supervisor and the Dean of the School, Professor Rohana Adnan. She tirelessly supervised the thesis work with the keen focus necessary for recording academic success. Her thoughtful suggestions, support, and advice provide a well-defined direction towards making it a considerable achievement.

Secondly, I would like to recognise and acknowledge the school's staff body's various support services and gestures, especially the technical, administrative, and academic staff. Specifically, I would like to appreciate the staff's efforts at the School's Glass Blowing workshop in fabricating a photoreactor box used at the experimental stage of the work. I would also like to appreciate the astonishing, work-friendly and pleasing atmosphere enjoyed among colleagues in the school and the wider University community.

Thirdly, I would want to recognise and acknowledge the Academic Staff Training and Development (AST&D) Scheme of the Tertiary Education Trust Fund (TETFUND) of Nigeria for the scholarship award to pursue the PhD programme, as well as the management of the Federal University Dutsin-Ma (my employer) for the sponsorship nomination and support.

ii

Finally, my deepest and most heartfelt gratitude goes to my beloved parents, my mother, Malama Salamatu and my father, Malam Muhammad Sani (Late), for their persistent and unrelenting efforts towards my upbringing, primarily supervised by the former. May Allah (SWT) continue to shower his mercies on them for their upbringing on me with fashion for lifelong knowledge-seeking, discipline, and honesty. I would also want to show my profound gratitude to my adorable spouse Mrs Halima Isah for her persistent patience, support, understanding, encouragement, and prayers to me throughout the 3-year journey. It is my great pleasure to mention my lovely wards Sadiq (Jnr), Halimatu (Jnr) and Muhammad (*Malaysia born*), who consistently serve as my fountain source of hope, happiness, and emotional energy for work towards building a brighter future that is beneficial for them.

Sadiq Sani December 2021

TABLE OF CONTENTS

ACK	NOWLEI	OGEMENT	ii
TABI	LE OF CO	ONTENTS	iv
LIST	OF TABI	LES	X
LIST	OF FIGU	URES	XV
LIST	OF SYM	BOLS	xxiv
LIST	OF ABBI	REVIATIONS	xxvi
LIST	OF APPH	ENDICES	. xxviii
ABST	'RAK		xxxi
ABST	RACT		. xxxiii
CHAI	PTER 1	INTRODUCTION	1
1.1	Backgrou	und of Study	1
1.2	Statemer	nt of Problem	2
1.3	Objective	es of Research	4
1.4	Novelty	of Research	5
1.5	Research	Scope	5
1.6	Dissertat	ion Structure	6
CHAI	PTER 2	LITERATURE REVIEW	7
2.1	Overview	v of the oil palm agroindustry	7
	2.1.1	Palm oil extraction as an environmental pollution source	10
	2.1.2	Regulatory frameworks for effluent discharge limits	14
	2.1.3	Contemporary POME treatment technologies	15
2.2	Conventi	ional Treatment Methods	18
2.3	Advance	d Oxidation Processes	22
2.4	Homoge	neous Fenton Processes	25
	2.4.1	Overview of Fenton Chemistry	25

	2.4.2	Conventional Fenton oxidation process	27
	2.4.3	Homogeneous photo-Fenton process	34
	2.4.4	Homogeneous electro-Fenton process	40
2.5	Heteroge	eneous Fenton Catalytic Configurations	42
2.6	Statistica Processe	al Models Development for Heterogeneous Fenton/Photo-Fentors	on 50
	2.6.1	Two-level factorial design (2 ^k FD)	51
	2.6.2	Central composite design (CCD)	52
	2.6.3	Box-Behnken design (BBD)	53
	2.6.4	Response surface optimisation	54
2.7	Kinetics	and Thermodynamics of Heterogeneous Fenton Processes	57
CHAI	PTER 3	MATERIALS AND METHODS	60
3.1	Introduct	tion	60
3.2	Materials	s	61
	3.2.1	Chemical reagents and visible light source	51
	3.2.2	Analytical instruments/equipment	52
	3.2.3	Raw palm oil mill effluent (POME) sampling and characterization	52
	3.2.4	Preparation of FeCl ₃ modified melamine sponge absorbent	53
3.3	Analytica	al Methods for Characterization of Raw POME	63
	3.3.1	Chemical oxygen demand (COD)	54
	3.3.2	Total organic carbon (TOC)	54
	3.3.3	Initial pH of effluent samples	65
	3.3.4	Suspended, dissolved and total solids	65
	3.3.5	Characterization of raw POME pretreated with FeCl ₃ -modified melamine sponge absorbent	56
3.4	Synthesis	s Procedure for Magnetic Catalysts	67
	3.4.1	Solvothermal synthesis Fe ₃ O ₄ nanoparticles (NPs)6	67

	3.4.2	One-step optimisation of Fe ₃ O ₄ NPs synthesis	. 67
	3.4.3	Hydrothermal synthesis Fe ₃ O ₄ @C microspheres	. 68
3.5	Instrume	ental Methods of Catalysts Characterisation	. 69
	3.5.1	Energy-filtered transmission electron microscopy (EFTEM), scanning electron microscopy (SEM)/ energy-dispersive X-ray (EDX)	. 69
	3.5.2	Fourier transform infrared (FTIR) spectroscopy	. 69
	3.5.3	X-ray diffraction (XRD) analysis	. 69
	3.5.4	Thermogravimetric analysis (TGA)/derivative thermogravimetry (DTG)	. 70
	3.5.5	Brunauer-Emmett-Teller (BET) nitrogen adsorption- desorption analysis	. 70
	3.5.6	Ultraviolet-visible spectroscopy	.71
	3.5.7	Photoluminescence spectroscopy	.71
3.6	Experimental Set-up for Fenton and Photo-Fenton Treatment7		. 71
3.7	Procedures for Heterogeneous Fenton and Photo-Fenton Oxidation		. 72
3.8	One-step BBD/RSM Optimisation and Data Analyses		. 74
3.9	Catalysts Recyclability Studies		. 80
3.10	Kinetics	Studies of Fenton and Photo-Fenton Treatments of POME	. 80
	3.10.1	Zero-order model	. 81
	3.10.2	First-order model	. 82
	3.10.3	Second-order model	. 82
	3.10.4	Elovich-type kinetic model	. 84
	3.10.5	Weber-Morris intraparticle diffusion model	. 85
	3.10.6	Bingham's kinetic model	. 85
3.11	Heteroge	eneous Fenton and Photo-Fenton Thermodynamics Studies	. 86
CHA NAN	CHAPTER 4 CHARACTERISTICS OF POME AND MAGNETITE NANOMATERIALS		
41	Introduc	tion	88

4.2	Physicoc	hemical Characteristics of Raw and Absorbed POME
4.3	Characte	ristics of FeCl ₃ Modified Melamine Sponge
	4.3.1	Characteristics of FeCl ₃ Modified Melamine Sponge
	4.3.2	Contact angle goniometry
4.4	Synthesi	s and Characterization of Fe ₃ O ₄ and Fe ₃ O ₄ @C Nanomaterials 94
	4.4.1	Scanning electron microscopy
	4.4.2	Transmission electron microscopy100
	4.4.3	Fourier transform infrared spectroscopy 105
	4.4.4	X-ray diffraction analysis106
	4.4.5	Thermogravimetric analysis/differential thermogravimetry (TGA/DTG)
	4.4.6	Brunauer-Emmett-Teller (BET) nitrogen adsorption- desorption analysis
	4.4.7	Reaction time and temperature optimisation for Fe ₃ O ₄ NPs synthesis
		4.4.7(a) Analysis of variance (ANOVA)
		4.4.7(b) Standardised factor effects plots
		4.4.7(c) Model response surfaces and contour plots
		4.4.7(d) Optimisation and validation of responses
	4.4.8	Influence of reaction time and temperature on Fe ₃ O ₄ @C NCs properties
		4.4.8(a) Analysis of variance (ANOVA)
		4.4.8(b) Pairwise comparisons for surface properties
	4.4.9	Ultraviolet-visible (UV-vis) light absorption spectroscopy 137
	4.4.10	Photoluminescence spectroscopy142
CHAI OPTI POMI RESP	PTER 5 MISATIO E TREAT ONSE SU	RESULTS AND DISCUSSION STATISTICAL ON OF HETEROGENEOUS FENTON AND PHOTO-FENTON IMENTS ON Fe3O4 NPs AND Fe3O4@C NCs USING JRFACE METHODOLOGY

5.1	Introduction	. 146
-----	--------------	-------

5.2	BBD/RS NPs Cata	M Fenton and Photo-Fenton Degradation/Mineralization on Fe3O4 alyst
	5.2.1	Formulation of regression models and coefficients estimation 151
	5.2.2	Models' adequacy and reduction
	5.2.3	Diagnostic charts of the models
	5.2.4	Response surface, contour, and main effects plots
	5.2.5	Composite desirability optimisation and response validation 192
	5.2.6	Validation of responses under optimum parameters 197
	5.2.7	POME slurry pretreatments for treatments on Fe ₃ O ₄ NPs catalysts
5.3	BBD/RS Fe ₃ O ₄ @0	M Fenton and Photo-Fenton Degradation and Mineralization on C NCs
	5.3.1	Formulation of regression models and coefficients estimation 204
	5.3.2	Models' adequacy and reduction
	5.3.3	Diagnostic charts of the model
	5.3.4	Response surface, contour, and main effects plots
	5.3.5	Composite desirability optimisation and response validation244
	5.3.6	Validation of responses under optimum parameters
	5.3.7	POME slurry pretreatments for treatments on Fe ₃ O ₄ @C NCs catalysts
CHAPTER 6 RESULTS AND DISCUSSION PERFORMANCE, KINETICS AND THERMODYNAMICS STUDIES OF HETEROGENEOUS FENTON AND PHOTO-FENTON POME TREATMENT USING Fe ₃ O ₄ NPs AND		
6 1	Fenton a	and Photo Eenton Treatment of POME $E_{e_2}O_4$ NPs 251
0.1	6 1 1	$Fe_2\Omega_4$ NPs recyclability 251
	6.1.2	254 Kinetics evaluation on FerQ4 NPs catalytic activity 254
	6.1.2	Thermodynamics evaluation on Eq.O. NDs setalyses
	0.1.3	Thermodynamics evaluation on Fe ₃ O ₄ NPs catalysts
6.2	Fenton a	nd Photo-Fenton Treatment of POME on Fe ₃ O ₄ @C NCs 265
	6.2.1	Fe ₃ O ₄ @C NCs recyclability265

	6.2.2	Kinetics evaluation on Fe ₃ O ₄ @C NCs catalysts	270
	6.2.3	Thermodynamics evaluation on Fe ₃ O ₄ @C NCs catalysts	275
6.3	Comparis	son of POME Treatment Systems	279
	6.3.1	Operational performance analysis	279
СНАР	TER 7	CONCLUSIONS AND RECOMMENDATIONS	285
7.1	Conclusio	ons	285
7.2	Recomme	endations for Future Research	288
REFERENCES			
APPENDICES			

LIST OF PUBLICATIONS

LIST OF TABLES

Page

Table 2.1	Performance of the Malaysian oil palm industry in palm oil production between 2009 to 2017
Table 2.2	Projections on global production of palm oil as vegetable oils (OECD/FAO, 2018)
Table 2.3	Characteristics of raw POME (Mohammad et al., 2021a)13
Table 2.4	POME standard discharge limits (Ahmad <i>et al.</i> , 2006; Ahmad Shahrifun <i>et al.</i> , 2015; Department of Environment, 2009; Madaki and Seng, 2013; USEPA, 2000; WHO, 1971)15
Table 2.5	Configurational variations of Fenton processes (Wang <i>et al.</i> , 2012)
Table 2.6	Summary of technologies for POME treatment
Table 2.7	Advantages and disadvantages of conventional methods for POME treatment (Abdurahman <i>et al.</i> , 2011; Crini & Lichtfouse, 2019)23
Table 2.8	Ambient homogeneous Fenton processes for treatment of POME as agro-industrial wastewater
Table 2.9	Integrated homogeneous Fenton processes for treatment of POME as agro-industrial wastewater
Table 2.10	Heterogeneous and modified heterogeneous Fenton processes for treatment of POME as agro-industrial wastewater
Table 2.11	Applications of RSM in heterogeneous Fenton/photo-Fenton treatments of POME and related effluents
Table 2.12	Kinetics and thermodynamics performances of some AOPs in POME/related effluents treatments
Table 3.1	List and details of chemical reagents used in the present work61
Table 3.2	List and details of analytical instruments/equipment used in the present work

Table 3.4	Coded and uncoded values of factors in the experimental design matrix
Table 3.5	Coded and uncoded levels of independent variables for Box- Behnken design of experiment used in heterogeneous Fenton and photo-Fenton treatment of POME
Table 3.6	Box-Behnken experimental design matrix for Fenton and photo- Fenton treatment of POME
Table 4.1	Characteristics of the collected raw POME before and after treatment with FeCl ₃ -modified melamine sponge
Table 4.2	Density and porosity characteristics of a pristine and FeCl ₃ - modified melamine sponge
Table 4.3	Physical characteristics of the as-synthesised magnetite nanomaterials
Table 4.4	Experimental and predicted yields of as-synthesised magnetite NPs based on one-step custom response-surface optimisation design of experiments
Table 4.5	Model summary for yields of magnetite NPs by solvothermal synthesis
Table 4.6	The regression coefficients of the custom models developed for raw and percent yields of Fe ₃ O ₄ NPs
Table 4.7	Analysis of variance for the initial quadratic model of the Fe ₃ O ₄ NPs raw yield response surface design
Table 4.8	Analysis of variance for the initial quadratic model of the Fe ₃ O ₄ NPs percent yield response-surface design
Table 4.9	Analysis of variance for the reduced quadratic model of the Fe ₃ O ₄ NPs raw yield response surface design124
Table 4.10	Analysis of variance for the reduced quadratic model of the Fe ₃ O ₄ NPs percent yield response-surface design
Table 4.11	Analysis of variance for the surface properties of the nanocomposites

- Table 5.2Initial models summary of statistical criterion for heterogeneousFenton treatment of POME pollutants on Fe₃O₄ NPs catalyst.......157
- Table 5.3Analysis of variance of the Box-Cox-transformed refined
quadratic response model for POME CODr by Fenton and photo-
Fenton processes on Fe₃O₄ NPs159

Table 5.9	Experimental validation of optimum predictor and response variables for heterogeneous Fenton and photo Fenton treatment of POME pollutants on Fe ₃ O ₄ NPs catalysts
Table 5.10	Response variables achieved on FeCl ₃ -modified sponge prior to heterogeneous Fenton and photo Fenton treatment of POME on Fe ₃ O ₄ NPs catalysts under validated conditions200
Table 5.11	Observed COD and TOC reductions and reduction efficiencies by Fenton and photo-Fenton oxidation of POME pollutants on Fe ₃ O ₄ @C NCs based on the BBD/RSM design201
Table 5.12	Initial models summary of statistical criterion for heterogeneous Fenton and photo-Fenton treatment of POME pollutants on Fe ₃ O ₄ @C NCs catalyst
Table 5.13	Analysis of variance of the reduced Box-Cox-transformed quadratic response model for POME <i>COD_r</i> by Fenton and photo-Fenton processes on Fe ₃ O ₄ @C NCs
Table 5.14	Analysis of variance of the reduced quadratic response model for POME <i>TOC</i> _r by Fenton and photo-Fenton process on Fe ₃ O ₄ @C NCs
Table 5.15:	Analysis of variance of reduced Box-Cox-transformed quadratic response model for POME E_{TOC} by Fenton and photo-Fenton process on Fe ₃ O ₄ @C NCs
Table 5.16	Analysis of variance of the reduced quadratic response model for POME E_{TOC} by Fenton and photo-Fenton process on Fe ₃ O ₄ @C NCs
Table 5.17	Box-Cox transformed reduced models summary of statistical criterion for heterogeneous Fenton and photo-Fenton treatment of POME pollutants on Fe ₃ O ₄ @C NCs catalyst
Table 5.18	Numerical solutions for the optimisation of COD and TOC reductions by Fenton and photo-Fenton treatment of POME on Fe ₃ O ₄ @C NCs

Table 5.19	Experimental validation of optimum predictor and response variables for heterogeneous Fenton and photo-Fenton treatment of POME pollutants on Fe ₃ O ₄ @C NCs catalysts
Table 5.20	Response variables achieved on FeCl ₃ -modified sponge prior to heterogeneous Fenton and photo Fenton treatment of POME on Fe ₃ O ₄ @C NCs catalysts under validated conditions250
Table 6.1	Thermodynamic parameters of COD reduction for heterogeneous Fenton and photo-Fenton treatment of POME pollutants over Fe ₃ O ₄ NPs catalysts
Table 6.2	Thermodynamic parameters of TOC reduction for heterogeneous Fenton and photo-Fenton treatment of POME pollutants over Fe ₃ O ₄ NPs catalysts
Table 6.3	Comparison of recyclability performance of Fe ₃ O ₄ NPs catalyst in COD and TOC reduction by the heterogeneous Fenton ^a and photo- Fenton ^b treatment with values reported by others on similar works
Table 6.4	Thermodynamic parameters of COD reduction for heterogeneous Fenton and photo-Fenton treatment of POME pollutants over Fe ₃ O ₄ @C NCs catalysts
Table 6.5	Thermodynamic parameters of TOC reduction for heterogeneous Fenton and photo-Fenton treatment of POME pollutants over Fe ₃ O ₄ @C NCs catalysts
Table 6.6	Comparison of operational efficacy for Fenton and photo-Fenton treatment of POME on Fe ₃ O ₄ NPs and Fe ₃ O ₄ @C NCs catalysts282

LIST OF FIGURES

Page

Figure 2.1	World oil and fat production in 1990 (Ahmad <i>et al.</i> , 2003) and 2020 (Forum For the Future., 2021)
Figure 2.2	Waste produced from the palm oil mill per tonne of FFBs (Bala <i>et al.</i> , 2014b)11
Figure 2.3	Diagram of the palm oil mill processes (Igwe & Onyegbado, 2007; Rupani <i>et al.</i> , 2010)
Figure 2.4	Flow chart summary of AOPs potential for POME treatment26
Figure 3.1	Flowchart of experimental methods60
Figure 3.2	Setup of heterogeneous Fenton and photo-Fenton oxidation of POME
Figure 3.3	Protocols implementation flowchart for the one-step BBD/RSM optimisation experiments
Figure 4.1	Photos of (a) pristine melamine sponge and (b) FeCl ₃ -modified melamine sponge
Figure 4.2	Water contact angles of (a) 0.0° for pristine melamine sponge and (b) 126.81±0.71° (left) 143.17±0.62° (right) for FeCl ₃ -modified melamine sponge
Figure 4.3	SEM images ($120k \times resolution$) and EDX elemental composition of Fe ₃ O ₄ -T ₁₉₀ t _{2.5} [(a),(b)], Fe ₃ O ₄ -T ₂₀₅ t _{2.0} [(c),(d)], Fe ₃ O ₄ -T ₂₀₅ t _{2.5} [(e),(f)], Fe ₃ O ₄ -T ₂₂₀ t _{2.0} [(g),(h)], and Fe ₃ O ₄ -T ₂₂₀ t _{2.5} [(i),(j)], respectively
Figure 4.4	SEM images with different (120k × resolution) and EDX spectra/elemental composition of $Fe_3O_4@C-T_{190}t_3$ [(a),(b)], $Fe_3O_4@C-T_{190}t_4$ [(c),(d)], $Fe_3O_4@C-T_{190}t_5$ [(e),(f)], and Fe_3O_4 NPs [(g),(h)], respectively

- Figure 4.5 TEM images with different resolutions $(12.5k \times, 100k \times)$ and particle size distributions of Fe₃O₄-T₁₉₀t_{2.5} [(a),(b),(c)], Fe₃O₄-T₂₀₅t_{2.0} [(d) (e),(f)], Fe₃O₄-T₂₀₅t_{2.5} [(g),(h),(i)], Fe₃O₄-T₂₂₀t_{2.0} [,(j),(k),(l)], and Fe₃O₄-T₂₂₀t_{2.5} [(m) (n),(o)], respectively102

- Figure 4.10 X-ray diffraction patterns of (a) $Fe_3O_4 NPs$ (b) $Fe_3O_4@C-T_{190}t_3$ (c) $Fe_3O_4@C-T_{190}t_4$ (d) $Fe_3O_4@C-T_{190}t_5$110
- Figure 4.11 TGA/DTG curves for (a) $Fe_3O_4-T_{190t2.5}$ (b) $Fe_3O_4-T_{205t2.0}$ (c) $Fe_3O_4-T_{205t2.5}$ (d) $Fe_3O_4-T_{220t2.0}$ and (e) $Fe_3O_4-T_{220t2.5}$112

Figure 4.16	Pareto (a,b), half normal (c,d) and normal (e,f) charts of models at $\alpha = 0.05$ for raw and percent yields of as-synthesised Fe ₃ O ₄ NPs, respectively
Figure 4.17	3D surface plots (a,c) and 2D contour plots (b,d) of raw yields and percent yield response models, respectively, for as-synthesised magnetite NPs
Figure 4.18	Optimisation plot of predicted yields responses and desirability functions for as-synthesised magnetite nanospheres
Figure 4.19	Effects of reaction time on the (a) surface area, (b) pore volume, (c) pore diameter and (d) crystallite or grain size of $Fe_3O_4@C-T_{190}t_3$, $Fe_3O_4@C-T_{190}t_4$ and $Fe_3O_4@C-T_{190}t_5$ nanocomposites obtained by hydrothermal synthesis
Figure 4.20	Tukey and Fisher tests of differences in means at 95 % confidence intervals for (a,b) surface area (c,d) pore volume and (e,f) pore diameter of Fe ₃ O ₄ @C nanocomposite samples obtained at various hydrothermal reaction times, respectively
Figure 4.21	UV–vis absorption spectra for Fe ₃ O ₄ -T ₁₉₀ t _{2.5} (<i>black</i>), Fe ₃ O ₄ -T ₂₀₅ t _{2.0} (<i>red</i>), Fe ₃ O ₄ -T ₂₀₅ t _{2.5} (<i>blue</i>), Fe ₃ O ₄ -T ₂₂₀ t _{2.0} (<i>pink</i>) and Fe ₃ O ₄ -T ₂₂₀ t _{2.5} (<i>green</i>)
Figure 4.22	UV–vis absorption spectra for $Fe_3O_4@C-T_{190}t_3$ (<i>black</i>), $Fe_3O_4@C-T_{190}t_5$ (<i>red</i>), and $Fe_3O_4@C-T_{190}t_5$ (<i>blue</i>)
Figure 4.23	Tauc plots of the Kubelka-Munk function for determining the direct bandgap energy of (<i>a</i>) Fe ₃ O ₄ -T ₁₉₀ t _{2.5} (<i>b</i>) Fe ₃ O ₄ -T ₂₀₅ t _{2.0} (<i>c</i>) Fe ₃ O ₄ -T ₂₀₅ t _{2.5} (<i>d</i>) Fe ₃ O ₄ -T ₂₂₀ t _{2.0} and (<i>e</i>) Fe ₃ O ₄ -T ₂₂₀ t _{2.5} 140
Figure 4.24	Tauc plots of the Kubelka-Munk function for determining the direct bandgap energy of (a) Fe ₃ O ₄ @C-T ₁₉₀ t ₃ (b) Fe ₃ O ₄ @C-T ₁₉₀ t ₄ (c) Fe ₃ O ₄ @C-T ₁₉₀ t ₅ (d) Fe ₃ O ₄ NPs
Figure 4.25	Photoluminescence emission spectra (with or without convolution) of (a) Fe_3O_4 - $T_{190}t_{2.5}$ (b) Fe_3O_4 - $T_{205}t_{2.0}$ (c) Fe_3O_4 - $T_{205}t_{2.5}$ (d) Fe_3O_4 - $T_{220}t_{2.0}$ and (e) Fe_3O_4 - $T_{220}t_{2.5}$

- Figure 4.26 Photoluminescence emission spectra (with or without convolution) of (a) Fe₃O₄@C-T₁₉₀t₃ (b) Fe₃O₄@C-T₁₉₀t₄ (c) Fe₃O₄@C-T₁₉₀t.....145
- Figure 5.1 Pearson correlation plots of the experimental and predicted POME ((a),(e)) COD reduction, ((b),(f)) COD reduction efficiency, ((c),(g)) TOC reduction, and ((d),(h)) TOC reduction efficiency by Fenton and photo-Fenton processes on Fe₃O₄ NPs......170

- Figure 5.10 3D response surface and 2D contour plots of POME COD reduction efficiency versus A and B ((a),(b)); A and D ((c),(d)); A and E ((e),(f)); C and D ((g),(h)); C and D ((i),(j)); and G and E ((k),(l)) for photo-Fenton process on Fe₃O₄ NPs, respectively.......188

- Figure 5.15 Pearson correlation plots of the experimental and predicted POME COD and TOC reductions ((a),(b)) and reduction efficiencies

((c),(d)) by Fenton and photo	o-Fenton J	processes on F	$Fe_3O_4@C NCs$,
respectively			
	1 1 / /	C (1 (1 1)	

- Figure 5.16 Pareto chart (a, e), the normal plot of the standardised effects (b, f), plot of the fitted values versus standardised residual (c, g), and normal probability plot of the standardised residuals (d, h) at α = 0.05, eliminating terms beyond α = 0.1 for POME COD reduction by Fenton and photo-Fenton processes on Fe₃O₄@C NCs......226

- Figure 5.19 3D response surface and 2D contour plots of POME COD reduction versus B and E (a,b); D and E (c,d); D and F (e,f); and E and F (g,h) for Fenton process on Fe₃O₄@C NCs, respectively.....234

Figure 5.24	3D response surface and 2D contour plots of POME COD reduction efficiency versus A and D (a,b); B and E (c,d); D and E (a f): D and E (g h): E and E (i i) for photo Fonton process on
	Fe ₃ O ₄ @C NCs, respectively
Figure 5.25	3D response surface and 2D contour plots of POME TOC reduction versus D and E (a,b) for photo-Fenton process on Fe ₃ O ₄ @C NCs
Figure 5.26	3D response surface and 2D contour plots of POME TOC reduction efficiency versus A and D (a,b); A and E (c,d); B and E (e,f); C and E (g,h); D and E (i,j); D and F (k,l); and E and F (m,n) for photo-Fenton process on Fe ₃ O ₄ @C NCs, respectively243
Figure 5.27	Composite desirability optimisation plot of predictor variables and predicted COD and TOC reduction responses for Fenton treatment of POME on Fe ₃ O ₄ @C NCs
Figure 5.28	Composite desirability optimisation plot of predictor variables and predicted TOC reduction responses for the photo-Fenton treatment of POME on Fe ₃ O ₄ @C NCs
Figure 6.1	Histograms of Fe ₃ O ₄ NPs catalyst recyclability performances in COD and TOC reduction by the heterogeneous (a) Fenton (A (mg L^{-1}) = 300, B (mg L^{-1}) = 408, D = 0.0029, E = 3.00, G (min) = 30.00) and (b) photo Fenton (A (mg L^{-1}) = 239.4, B (mg L^{-1}) = 408, C = 120.0, D = 0.0027, E = 3.00, G (min) = 0.00) treatments of POME under validated optimum parameters
Figure 6.2	Reaction kinetics plots of COD reduction from POME by heterogeneous Fenton treatment on Fe_3O_4 NPs catalyst for (a) zero-order, (b) first-order, (c) second-order, (d) Elovich-type, (e) Weber-Morris, and (f) Bingham models255
Figure 6.3	Reaction kinetics plots of COD reduction from POME by heterogeneous photo-Fenton treatment on Fe ₃ O ₄ NPs catalyst for (a) zero-order, (b) first-order, (c) second-order, (d) Elovich-typ€(e) Weber-Morris, and (f) Bingham models

- Figure 6.7 Thermodynamic plots of Arrhenius and Eyring-Polanyi equations for TOC reduction from POME by the heterogeneous (a) Fenton and (b) photo-Fenton reaction on Fe₃O₄ NPs catalyst264

- Figure 6.10 Reaction kinetics plots of COD reduction from POME by heterogeneous photo-Fenton treatment on Fe₃O₄@C NCs catalyst for (a) zero-order, (b) first-order, (c) second-order, (d) Elovich-type, (e) Weber-Morris, and (f) Bingham models......272

- Figure 6.12 Reaction kinetics plots of TOC reduction from POME by heterogeneous photo-Fenton treatment on Fe₃O₄@C NCs catalyst for (a) zero-order, (b) first-order, (c) second-order, (d) Elovichtype, (e) Weber-Morris, and (f) Bingham models......274
- Figure 6.14 Arrhenius and Eyring-Polanyi equations plots for TOC reduction from POME by heterogeneous (a) Fenton reaction and (b) photo Fenton reaction on Fe₃O₄@C NCs catalyst278

LIST OF SYMBOLS

ΔG^{\ddagger}	Gibbs free energy of activation
ΔH^{\ddagger}	Enthalpy change of activation
ΔS^{\ddagger}	Entropy change of activation
R _{sample}	Measured reflectance of a sample
R _{standard}	Measured reflectance of a standard
А	Heterogeneous catalyst dosage
ao	crystal lattice constant
В	H ₂ O ₂ concentration
С	Contact time or irradiation time
D	Dilution ratio
Е	Initial pH of the slurry
Eg	Bandgap energy
eV	Electron volt
F	Agitation speed
Fe _i	Iron interstitial
G	Absorbent's absorption time
hν	Photon
k ₀	Zero-order reaction rate constant (M s ⁻¹)
\mathbf{k}_1	First-order reaction rate constant (s ⁻¹),
k ₂	Second-order reaction rate constant (M s^{-1})
O_i	Interstitial oxygen
R∞	Reflectance of specimen's infinite thickness
V_{Fe}	Iron vacancy
Vo	Oxygen vacancy
β	Full-width of the peak at half maximum (FWHM)

γ	Electronic transition constant
λ	Wavelength (nm)
$F(R_{\infty})$	Kubelka–Munk function
K	Coefficient of absorption
S	Scattering coefficient
Т	Temperature (K)
t	Reaction time
Fe ³⁺	Ferric ion
Fe^{2+}	Ferrous ion

LIST OF ABBREVIATIONS

ANOVA	Analysis of Variance
AOPs	Advanced Oxidation Processes
AT-POME	Anaerobically treated palm oil mill effluent
BBD	Box-Behnken design
BET	Brunauer-Emmett-Teller
BJH	Barrett-Joyner-Halenda
BOD	Biochemical Oxygen Demand
CCD	Central Composite Design
COD	Chemical Oxygen Demand (mg L ⁻¹)
COD _r	COD reduction (mg L^{-1})
$\mathbf{D}_{\mathrm{BET}}$	BET adsorption average pore-width
D' _{BET}	BET desorption average pore-width
D_{BJH}	BJH adsorption average pore width
D' _{BJH}	BJH desorption average pore width
DD	Doehlert design
DIW	Deionised water
DOE	Design of Experiment
D _{TEM}	Grain size
D _{TEM}	TEM mean particle size
DTG	Derivative Thermogravimetric Analysis
D _{XRD}	Crystallite size
D _{XRD}	XRD mean crystallite size
Ecod	COD reduction efficiency (%)
EDX	Energy Dispersive X-ray spectroscopy
E _{TOC}	TOC reduction efficiency (%)
Fe ₃ O ₄ NPs	Magnetites nanoparticles
Fe ₃ O ₄ @C NCs	Carbon-encapsulated magnetite nanocomposites
FTIR	Fourier Transform Infrared Spectroscopy
F-value	Fisher's Value
H_2O_2	Hydrogen Peroxide
ICCD	International Centre for Diffraction Data

N/A	Not available
∙O₂H	Hydroperoxyl radicals
•OH	Hydroxyl radical
OVAT	One-variable-at-a-time
pН	pH value
PL	Photoluminescent
POM	Palm Oil Mill
POME	Palm Oil Mill Effluent
PSD	Particle Size Distribution
RSM	Response Surface Methodology
RSS	Sum of squares for the residual errors
SBET	BET surface area
S_{BJH}	BJH adsorption cumulative surface area of pores
S' _{BJH}	BJH desorption cumulative surface area of pores
SEM	Scanning Electron Microscopy
$\mathbf{S}_{\mathrm{Ext}}$	t-plot surface area
SE_{β}	Standard error of the coefficient
\mathbf{S}_{Lang}	Langmuir surface area
TDS	Total dissolved solids
TEM	Transmission Electron Microscopy
TGA	Thermogravimetric Analysis
TOC	Total Organic Carbon (mg L ⁻¹)
TOCr	TOC reduction (mg L^{-1})
TS	Total Solids (mg L ⁻¹)
TSS	Total Suspended Solids (mg L ⁻¹)
UV	Ultraviolet
V_{BET}	BET adsorption total pore volume
V' _{BET}	BET desorption total pore-volume
V_{BJH}	BJH adsorption total pore volume
V'_{BJH}	BJH desorption total pore volume
w/w	weight/weight (mg/mg)
XRD	X-ray diffraction

LIST OF APPENDICES

Appendix A	Information on the hazards of chemical reagents and preventive measures
Appendix B	BBD/RSM matrix of residual COD and TOC after Fenton and photo-Fenton treatments of POME on Fe ₂ O ₄ NPs
Appendix C	Pareto chart ((a) (e)) normal plot of standardised effects ((b) (f))
rippendix e	plot of fitted values versus standardised residual $((c), (g))$, and
	normal probability plot of standardised residuals $((d), (b))$, and
	POME TOC_r by Fenton and photo-Fenton processes on Fe ₃ O ₄
	NPs
Appendix D	Pareto chart ((a).(e)), normal plot of standardised effects ((b).(f)),
11	plot of fitted values versus standardised residual $((c),(g))$, and
	normal probability plot of standardised residuals ((d),(h)) for
	POME E_{COD} by Fenton and photo-Fenton processes on Fe ₃ O ₄
	NPs
Appendix E	Pareto chart ((a),(e)), normal plot of standardised effects ((b),(f)),
	plot of fitted values versus standardised residual ((c),(g)), and
	normal probability plot of standardised residuals ((d),(h)) for
	POME <i>E</i> _{TOC} by Fenton and photo-Fenton processes on Fe ₃ O ₄
	NPs
Appendix F	Main effect plots for POME COD reduction efficiency of
	heterogeneous Fenton process on Fe ₃ O ₄ NPs against (a) catalyst
	dosage, A (b) H ₂ O ₂ dose, B (c) dilution, D (d) pH, E (e)
	absorption time, G
Appendix G	Main effect plots for TOC reduction from POME by
	heterogeneous Fenton process on Fe ₃ O ₄ NPs as a function of (a)
	catalyst dosage, A (b) H_2O_2 dose, B (c) dilution, D (d) pH, E (e)
	absorption time, G
Appendix H	Main effect plots for POME TOC reduction efficiency of
	heterogeneous Fenton process on Fe_3O_4 NPs as a function of (a)
	catalyst dosage, A (b) H_2O_2 dose, B (c) dilution, D (d) pH, E (e)
а 1° т	absorption time, G
Appendix I	Effects of (a) catalyst dosage, A (b) H_2O_2 dose, B (c) irradiation
	time, C (d) dilution, D (e) slurry pH, E (f) agitation speed, F (g)
	absorption time, G on POME COD reduction efficiency by
A manager I	photo-Fenton process on Fe ₃ O ₄ NPs respectively Effects of (a) activity decade A (b) H O, deca P (c) acitation
Appendix J	Effects of (a) catalyst dosage, A (b) H_2O_2 dose, B (c) agriation time C (d) dilution D (e) rH E (f) esitation speed E (g)
	time, C (d) dilution, D (e) pH, E (l) agriation speed, F (g) a_{a}
	absorption time, G on POWE IOC_r by photo-relation process on Eq.(). NPs respectively
Appondix K	$Fe_{3}O_{4}$ INFS respectively Effects of (a) establish designs A (b) $H_{2}O_{2}$ concentration P (c)
Appendix K	Effects of (a) catalyst dosage, $A(0) H_2O_2$ concentration, $B(0)$
	speed $E(g)$ absorption time G on POME E_{reg} by photo Eenton
	process on Fe_{Ω_4} NPs respectively
Appendix I	Raw Data on Experimental validation of optimum responses for
rppendix L	Heterogeneous Fenton and photo-Fenton POME treatment on
	Fe_3O_4 NPs and Fe_3O_4 @C Ncs

Appendix M	BBD/RSM matrix of residual COD and TOC after Fenton and photo-Fenton treatments of POME on Fe ₂ O ₄ @C NCs
Appendix N	Pareto chart ((a),(e)), normal plot of standardised effects ((b),(f)), plot of fitted values versus standardised residual ((c),(g)), and normal probability plot of standardised residuals ((d),(h)) for POME E_{COD} by Fenton and photo-Fenton processes on Fe ₃ O ₄ @C NCs
Appendix O	Pareto chart ((a),(e)), normal plot of standardised effects ((b),(f)), plot of fitted values versus standardised residual ((c),(g)), and normal probability plot of standardised residuals ((d),(h)) for POME <i>TOC</i> _r by Fenton and photo-Fenton processes on Fe ₃ O ₄ @C NCs
Appendix P	Pareto chart ((a),(e)), normal plot of standardised effects ((b),(f)), plot of fitted values versus standardised residual ((c),(g)), and normal probability plot of standardised residuals ((d),(h)) for POME E_{TOC} by Fenton and photo-Fenton processes on Fe ₃ O ₄ @C NCs
Appendix Q	Main effect plots of (a) catalyst dosage, A (b) H_2O_2 dose, B (c) agitation time, C (d) dilution, D (e) pH, E (f) agitation speed, F (g) absorption time, G on POME COD reduction efficiency by Fenton process on Fe ₃ O ₄ @C NCs respectively
Appendix R	Main effect plots of (a) catalyst dosage, A (b) H_2O_2 dose, B (c) agitation time, C (d) dilution, D (e) pH, E (f) agitation speed, F (g) absorption time, G on POME TOC reduction by Fenton process on Fe ₃ O ₄ @C NCs respectively
Appendix S	Main effect plots of (a) catalyst dosage, A (b) H_2O_2 dose, B (c) agitation time, C (d) dilution, D (e) pH, E (f) agitation speed, F (g) absorption time, G on POME TOC reduction efficiency by Fenton process on Fe ₃ O ₄ @C NCs respectively
Appendix T	Main effect plots of (a) catalyst dosage, A (b) H_2O_2 dose, B (c) irradiation time, C (d) dilution, D (e) pH, E (f) agitation speed, F (g) absorption time, G on POME COD reduction efficiency by photo-Fenton process on Fe ₂ O ₄ @C NCs respectively
Appendix U	Main effect plots of (a) catalyst dosage, A (b) H_2O_2 dose, B (c) agitation time, C (d) dilution, D (e) pH, E (f) agitation speed, F (g) absorption time, G on POME TOC reduction by photo- Fenton process on Fe ₂ O ₄ @C NCs respectively
Appendix V	Main effect plots of (a) catalyst dosage, A (b) H_2O_2 dose, B (c) agitation time, C (d) dilution, D (e) pH, E (f) agitation speed, F (g) absorption time, G on POME TOC reduction efficiency by
Appendix W	Raw Experimental data on recyclability performance of Fe ₃ O ₄ NPs and Fe ₃ O ₄ @C NCs catalysts in Heterogeneous Fenton and photo-Fenton POME treatment under validated conditions
Appendix X	Heterogeneous Fenton and photo-Fenton kinetics parameters and regression coefficients for COD reduction from POME pollutants over Fe ₃ O ₄ NPs catalysts
Appendix Y	Heterogeneous Fenton and photo-Fenton kinetics parameters and regression coefficients for TOC reduction from POME pollutants over Fe ₃ O ₄ NPs catalysts

Appendix Z	Heterogeneous Fenton and photo-Fenton kinetics parameters and regression coefficients for COD reduction from POME
	pollutants over Fe ₃ O ₄ @C NCs catalysts
Appendix AA	Heterogeneous Fenton and photo-Fenton kinetics parameters and
	regression coefficients for TOC reduction from POME pollutants
	over Fe ₃ O ₄ @C NCs catalysts
Appendix AB	Cost of chemical reagents and electrical energy consumption for
	Fe ₃ O ₄ NPs and Fe ₃ O ₄ @C NCs catalysts production at 0.3 g
	synthesis yields
Appendix AC	Estimated costs of chemical reagents and electrical energy
	consumption for Fenton and photo-Fenton POME treatment over
	Fe ₃ O ₄ NPs and Fe ₃ O ₄ @C NCs catalysts

PENGOPTIMUM TINDAK BALAS FENTON DAN FOTO FENTON HETEROGEN BAGI RAWATAN EFLUEN KILANG KELAPA SAWIT MENGGUNAKAN KAEDAH RESPONS PERMUKAAN

ABSTRAK

Pembuangan efluen kilang kelapa sawit (POME) yang tidak dirawat mempunyai kesan buruk terhadap biota akuatik dan alam sekitar kerana kandungan permintaan oksigen kimia (COD) dan kandungan jumlah karbon organik (TOC) yang tinggi. Kajian ini telah menyiasat keberkesanan nanopartikel magnetit (Fe₃O₄ NPs) dan nanokomposit magnetit terkapsul karbon (Fe₃O₄@C NCs) sebagai pemangkin heterogen Fenton dan foto-Fenton untuk rawatan POME dikaji. Kaedah solvoterma dan hidroterma digunakan untuk mensintesis kedua-dua mangkin. Pemangkin dicirikan menggunakan pelbagai teknik dan digunakan untuk merawat POME melalui saringan satu langkah menggunakan reka bentuk Box-Behnken melalui kaedah respons permukaan yang melibatkan tujuh pemboleh ubah iaitu dos pemangkin, kepekatan H₂O₂, masa sentuhan penyinaran, tahap pencairan, pH POME, kelajuan pengadukan dan masa penyerapan. Reka bentuk tersebut melibatkan sebanyak 62 eksperimen dan empat pembolehubah bergerak balas ialah pengurangan TOC (TOC_r), kecekapan pengurangan TOC (E_{TOC}), pengurangan COD (COD_r) dan kecekapan pengurangan COD (E_{COD}). Model yang dibangunkan diperhalusi, diuji dengan analisis varians (ANOVA) dan disahkan menggunakan data eksperimen. Keupayaan guna semula pemangkin, kinetik dan termodinamik bagi rawatan POME dikaji. Keputusan ANOVA bagi rawatan Fenton menggunakan Fe₃O₄ NP menunjukkan model COD_r yang signifikan secara statistik (F = 137.67, p = 0.00) dengan ketepatan yang mencukupi (54.2) dan pekali variasi (4.7%) yang memuaskan. Nilai tindak balas yang

diramalkan bagi parameter optimum bagi dos pemangkin = 300 mg L^{-1} , kepekatan $H_2O_2 = 408 \text{ mg L}^{-1}$, tahap pencairan = 0.0029, pH sluri = 3.0 dan masa penyerapan = 300 min berpadanan dengan nilai yang didapati secara eksperimen dengan nilai R² menghampiri 1 (0.9965).. Keputusan ANOVA dan pengoptimuman yang serupa dicatatkan bagi tindak balas Fenton dan foto Fenton menggunakan Fe₃O₄@C NCs. Degradasi POME menggunakan pemangkin Fe₃O₄ NPs mematuhi model kinetik tertib kedua untuk proses Fenton ($R^2 = 98.6\%$, R^2 -adj = 98.3\%) sementara tindak balas foto Fenton mematuhi model kinetik jenis Elovich ($R^2 = 99.8\%$, R^2 -adj = 99.7\%). Bagaimanapun, degradasi POME oleh Fe₃O₄@C NCs mematuhi model kinetik tertib dan model resapan intrapartikel Weber-Morris untuk proses Fenton ($R^2 = 95.4\%$, R^2 adj = 94.2%) dan model Bingham untuk proses foto Fenton ($R^2 = 99.7\%$, R^2 -adj = 99.6 %). Semua tindak balas adalah tidak spontan ($\Delta G^{\ddagger} = 30-105 \text{ kJ mol}^{-1}$) dan endotermik $(\Delta H^{\ddagger} = 1.6-20.7 \text{ kJ mol}^{-1} \text{ K}^{-1})$. Prestasi kitar semula menunjukkan bahawa kecekapan pengurangan COD Fe₃O₄ NPs menurun sehingga 52.6% melalui proses Fenton dan sehingga 83.1% melalui proses foto-Fenton setelah empat kitaran. Sementara itu, kecekapan pengurangan COD Fe₃O₄@C NCs pada akhir kitaran keempat adalah 22.4% dan 62.7% masing-masing melalui proses Fenton dan foto-Fenton. Walaupun penemuan yang dilaporkan ini adalah pada skala makmal, teknik ini sangat berpotensi untuk dikembangkan lebih jauh untuk aplikasi berskala besar.

OPTIMIZATION OF HETEROGENEOUS FENTON AND PHOTO FENTON REACTIONS FOR THE TREATMENT OF PALM OIL MILL EFFLUENT USING RESPONSE SURFACE METHODOLOGY

ABSTRACT

Disposal of untreated palm oil mill effluent (POME) has adverse effects on aquatic biota and the environment due to its high chemical oxygen demand (COD) and total organic carbon (TOC) content. This work investigated the effectiveness of nanoparticles (Fe₃O₄ NPs) and carbon-encapsulated magnetite magnetite nanocomposites (Fe₃O₄@C NCs) as heterogeneous Fenton and photo-Fenton catalysts for POME treatment. Solvothermal and hydrothermal methods were employed to synthesise the two catalysts. The catalysts were characterised using various techniques and the optimisation of the experimental parameters were investigated via a one-step screening using a Box-Behnken design via response surface methodology involving seven variables which are catalyst dosage, H₂O₂ concentration, contact/irradiation time, dilution ratio, pH of POME, agitation speed, and absorption time. Four response variables: TOC reduction (TOC_r), TOC reduction efficiency (E_{TOC}), COD reduction (COD_r) and COD reduction efficiency (E_{COD}) were evaluated and a total of 62 runs were considered. The models developed were refined, tested by analysis of variance (ANOVA) and validated using experimental data. The catalyst recyclability, kinetics and thermodynamics of POME removal were investigated. ANOVA for Fenton treatment on Fe_3O_4 NPs shows the refined COD_r model to be statistically significant (F = 137.67, p = 0.00) with favourable adequate precision (54.2) and coefficient of variation (4.7%). Predicted responses under optimum parameters of catalyst dosage = $300 \text{ mg } \text{L}^{-1}$, H_2O_2 concentration = $408 \text{ mg } \text{L}^{-1}$, dilution ratio = 0.0029, slurry pH = 3.0

and absorption time = 30.0 min agree with the experimentally validated values having the R^2 value close to unity (0.9965). Similar ANOVA and optimisation outcomes were recorded for Fenton treatment on Fe₃O₄@C NCs and photo-Fenton treatment on both catalysts. Degradation of POME using Fe₃O₄ NPs catalyst follows second-order model for Fenton process ($R^2 = 98.6\%$, R^2 -adj = 98.3\%) while the photo-Fenton reaction are best described by the Elovich-type model ($R^2 = 99.8\%$, R^2 -adj = 99.7%). On the hand, the degradation of POME using Fe₃O₄@C NCs follows the Weber-Morris intraparticle diffusion model for the Fenton process ($R^2 = 95.4\%$, R^2 -adj = 94.2%) and Bingham model for photo-Fenton process ($R^2 = 99.7\%$, R^2 -adj = 99.6%). Similar trends were observed for mineralisation kinetics of both catalysts. All reactions were non-spontaneous ($\Delta G^{\ddagger} = 30{\text -}105 \text{ kJ mol}^{-1}$) and endothermic ($\Delta H^{\ddagger} = 1.6{\text -}20.7 \text{ kJ}$ $mol^{-1} K^{-1}$). The recyclability performance shows that the COD reduction efficiency of Fe₃O₄ NPs was reduced to 52.6% in the Fenton process and to 83.1% in the photo-Fenton process after four cycles. Meanwhile, the COD reduction efficiency of Fe₃O₄@C NCs was reduced to as much as 22.4% and 62.7% in the Fenton and photo-Fenton process, respectively. Although the findings are currently at a laboratory scale, the current technique is highly potential to be developed further for large-scale applications.

CHAPTER 1 INTRODUCTION

1.1 Background of Study

Supply of safe and high-quality water is one of the global challenges of the twenty-first century but essential for the sustenance of industries and supporting the living of multitudinous humans and other animate on earth. A very meagre amount of water is available for industrial and domestic applications, although the hydrosphere occupies the most significant fraction of the earth surface, 71% (Kim & Lee, 2022). The bulk of the water resources' mass constitutes the oceans (97.5%) and freshwater (2.5%) with most of it (1.7%) locked in directly inaccessible form for consumption as glaciers, permanent snow cover at poles and in mountaneous regions (DellaSala, 2018). The remaining proportion accessible for use is made up of liquid freshwater (0.8%) distributed in the atmosphere (as water vapour), as ground water, lakes, and rivers (DellaSala, 2018). The supplies of accessible water resources for direct industrial and domestic utilisation are inherently scarce.

Moreover, freshwater quality varies depending on its chemical, microbial, and physical compositions, which natural phenomena and anthropogenic processes influence. Throughout the third world countries, the inadequacy of sanitary facilities and unhygienic practices are ubiquitous, leading to the degradation of water quality and human life occasioned by retrogressive political, economic, and climatic influences (World Bank, 2017). Globally, around 4.0 billion people have been reported to be currently suffering from water shortages with approximately half of them facing water scarcity (Filho *et al.*, 2022). A loss of ~US\$1.101 trillion per annum is recorded due to the absence of essential water and sanitation based on the 2020 global GDP of US\$84.71 trillion (UNICEF & WHO, 2020). In recent decades, the upsurge in

population density and steady rise in anthropogenic industrialisation witnessed throughout the globe resulted in high daily freshwater demands for industrial and domestic activities. Uncoordinated discharge of untreated effluents resulting from such activities escalated the scourge of widespread pollution, causing a significant imbalance beyond the tolerable composition in the environment through the release of persistent organic and inorganic substances into the atmosphere, land, and freshwater aquifers (Chaturvedi *et al.*, 2020).

Environmental pollution from industries has contributed immensely to reducing water quality and causing detrimental effects to all forms of life, including humans, animals, and plants (Mo *et al.*, 2018). Recently, much attention is being devoted to research on releasing partially-treated or untreated effluents from agroindustries such as olive oil mills, wineries, food processing, beverages industries, etc. into the environment. Palm oil mills (POMs) are among the most critical agroindustrial sectors with considerable contributions to the Malaysian economy. However, they generate large amounts of wastes that are highly potential for environmental pollution.

1.2 Statement of Problem

Release of untreated, partially- or biologically treated POME from palm oil mills (POMs) or palm oil refineries (PORs) into adjacent water bodies has detrimental influences on the sustainability of the ecosystem, aquatic biota, and humanity due to high recalcitrant pollutant content, with potential toxicity. It may lead to eutrophication and impact photosynthesis adversely and cause toxicity in aquatic flora and fauna (Chan *et al.*, 2010; Vijayaraghavan *et al.*, 2007; Zainuri *et al.*, 2018b). POMs and PORs subject raw POME to a series of temporal treatments in the ponding system

(clarifier tank, acidic cooling, anaerobic, aeration, facultative, and polishing ponds) for a retention time of more than 3-4 months before being discharged into the surrounding rivers. Both raw POME and biologically treated POME (BT-POME) samples contain high levels of COD (~10,000 mg L^{-1}), TSS and colour intensity far beyond the typical discharge standards even after several cycles of biological treatments (Aris et al., 2008; Parthasarathy et al., 2016; Taha & Ibrahim, 2014b). The ponding and conventional techniques of POME treatment are grossly inadequate in degrading/mineralising the recalcitrant pollutants content in the effluent. Thus, effective effluent treatment methods such as advanced oxidation processes (AOPs) need to be secured to overcome these challenges before POME discharge into natural water bodies. Homogeneous ambient Fenton and photo-Fenton AOPs have been adjudged to be simple, independent, and efficient for removing pollutants in POME and other wastewaters either at pretreatment, primary or secondary stage of treatment (Dewil et al., 2017; Gamaralalage et al., 2019). However, Generation of a large volume of ferric hydroxide sludge due to the inability for Fe²⁺ catalyst regeneration, excessive consumption of Fenton's reagent (Fe²⁺/H₂O₂), narrow range of reaction pH and additional costs of treating the generated sludge before disposal into adjacent water bodies, among other drawbacks, are the inherent disadvantages that limit their application in POME treatment.

These concerns can be addressed using suitable low-cost solid catalysts, such as synthetic Fe_3O_4 NPs and $Fe_3O_4@C$ NCs, as substitute to homogeneous ones in heterogeneous Fenton and visible light-assisted photo-Fenton. The catalysts are designed to be sufficiently stable to leaching under severe oxidant and acidic conditions; magnetically separable from the reaction medium after treatment; and recyclable during a set of repeated treatments. Kinetics and thermodynamics performances of the processes in POME pollutant degradation/mineralisation have also been evaluated. It should also possess high activity for pollutants removal, allows only marginal leaching of active cations, be stable over a wide range of reaction pH and temperatures, and high hydrogen peroxide conversion with minimal decomposition.

1.3 Objectives of Research

The objectives of this research are:

- 1. To synthesize and characterise magnetite nanoparticles (Fe₃O₄ NPs) and carbon-incapsulated magnetite nanocomposites (Fe₃O₄@C NCs);
- 2. To study the effects of operational parameters (e.g. catalyst dosage, H₂O₂ concentration, contact/irradiation time, dilution ratio, initial slurry pH, agitation speed, and absorbent's absorption time) on the COD and TOC reductions (COD_r , TOC_r) and reduction efficiencies (E_{COD} , E_{TOC}) of the catalyst; to determine the optimised response factors and condition for degradation and mineralisation of pollutants in POME during the heterogeneous Fenton and photo-Fenton treatment based on a one-step Box-Behnken Design (BBD) type of Response Surface Methodology (RSM); and
- 3. To study the thermodynamics, kinetics, and the recyclability of the Fe₃O₄ NPs and Fe₃O₄@C NCs catalysts in the degradation and mineralisation of pollutants in POME by the heterogeneous Fenton and photo-Fenton catalysis.

1.4 Novelty of Research

The novelty of this work lies in its effort to address the treatment of POME using heterogeneous, magnetically recoverable, Fenton and visible-light-driven photo-Fenton catalysts fabricated based on magnetite nanoparticles (Fe₃O₄ NPs) alone and in associated form as carbonised glucose-encapsulated magnetite nanocomposite (Fe₃O₄@C NCs).

1.5 Research Scope

The scope of this thesis is limited to the fabrication of heterogeneous Fenton catalysts for application in POME treatment from a palm oil mill in Pulau Pinang, Malaysia, under the absence and influence of simulated visible light irradiation. The efficiency of the treatment is limited only to the measurement of the COD and TOC values of the POME. The parameters (catalyst dosage, H₂O₂ concentration, etc.) on which the processes depend upon were screened in a series of experiments based on a one-step Box-Behnken Design (BBD) response surface methodology (RSM) for optimisation and validation of the responses (degradation, mineralisation, and their efficiencies). The reusability of the catalysts in the effluent treatment was evaluated by conducting a series of a fixed number of experimental runs utilising recycled aliquots of the catalysts, monitoring their degradation and mineralisation efficiencies for each cycle, and assessing the overall performances throughout the recycling process. Kinetics and thermodynamics modelling of the effluent mineralisation and degradation processes by the catalysts also were explored.

1.6 Dissertation Structure

This PhD dissertation is comprised of seven (7) chapters. The first chapter, Chapter One, discusses the background developments and perspectives of palm oil production in the palm oil industry, focusing on extraction processes, national economic growth, pollutant waste generation, regulatory standards for POME discharge, and conventional POME treatment technologies. Advanced oxidation processes, emphasising heterogeneous Fenton and photo-Fenton processes, were briefly introduced as alternative techniques to their conventional counterparts for POME treatment. This chapter also states the research problem, objectives, research questions, and hypotheses.

Chapter Two is the Literature Review, which highlights outcomes from the literature relevant to Fenton and photo-Fenton processes with specific attention to POME treatment. It also presents works on similar forms of agro-industrial wastewater, treatment conditions, treatment efficiencies, advantages, and disadvantages for using homogeneous and heterogeneous.

Chapter Three lists and describes all the materials, experimental and statistical methods employed in this work. Meanwhile, Chapter Four presents the results on the characterisation of the magnetic NPs and NCs. The results of the Fenton and photo-Fenton treatments of POME on the two types of the catalysts based on the BBD response surface methodology performed in the dissertation work are presented in Chapter Five. The evaluation and the discussions of the catalyst's overall performance in the degradation and mineralisation of pollutants in POME via the Fenton and photo-Fenton heterogeneous processes are presented in this Chapter Six. Chapter Seven states all the conclusions, highlight the important findings of the work and puts forward some recommendations for future work.

CHAPTER 2 LITERATURE REVIEW

2.1 Overview of the oil palm agroindustry

Oil palm represents one of the most versatile crops in tropical regions, especially Malaysia and Indonesia. The palm genus Elaeis (Greek for 'oil') consists of two different species: Elaeis guineensis, originally from West Africa, and Elaeis oleifera (oil-producing), originally from Central and South America (Abu Bakar et al., 2018). Both palm species are well known as highly efficient oil-producing plants, similar to rapeseed, sunflower, cottonseed and soybean plants (Hussin et al., 2022). The industry is the leading agroindustries contributing enormously to the country's income, with oil palm plantations accounting for 77% of agricultural land and approximately 15% of the total land area estimated at 15.9 million hectares (Rahman et al., 2021; Su et al., 2022). The average crude palm oil (CPO) production in the agroindustry grew significantly from less than 100,000 tonnes in 1960 to about 19.14 million tonnes in 2020 (Haryati et al., 2022; Nambiappan et al., 2018). Based on Figure 2.1, palm oil production superseded soybean oil from just 13.6% in 1990 to 33% of total oil and fats production in 2015. This disparity is because oil palm has a higher annual oil yield per hectare than other oilseeds crops, including soybean (Chin et al., 2013). Other countries contributing to palm oil production include Thailand, Columbia, Nigeria, and Indonesia. Indonesia and Malaysia are the two top palm oil producers and produce 85% of the world's palm oil (Ziaei & Ali, 2021). Malaysia is currently the second-largest producer and exporter of palm oil globally with crude palm oil (CPO) production 19.14 million tonnes and the total export of palm products amounting to 26.59 million tonnes in 2020 (Haryati et al., 2022; Parveez et al., 2021). Figure 2.1 compares the global production of oils and fats in 1990 and 2020.

Figure 2.1 World oil and fat production in 1990 (Ahmad *et al.*, 2003) and 2020 (Forum For the Future., 2021)

While crude palm oil production decreased by 3.6% to 19.14 million tonnes in 2020, foreign exchange earnings from palm oil and oil palm products export have increased by 8.5% to RM 73.25 billion in the same year compared to the previous year records (Parveez *et al.*, 2021). Oil palm plantation acreage has slumped to 5.87 million hectares in 2020 compared to 5.90 million hectares recorded in the previous year (Parveez *et al.*, 2021). Malaysia was the world's largest crude palm oil producer before Indonesia outperformed in 2006 and slipped to the second position (Bruno, 2021). Table 2.1 summarise the performances of the Malaysian palm oil industry.

Marketing	Palm oil production performance indices					Defenence	
Year	PA ^a	CPOP ^b	POE ^c	OPPTE ^d	POER ^e	OPPER ^f	Kelerence
2009	4.69	17.56	15.88	22.43	36.95	49.66	MPOB (2010)
2010	4.85	16.99	16.66	23.06	44.86	59.77	MPOB (2011)
2011	5.00	18.91	17.99	24.27	60.47	80.41	MPOB (2012)
2012	5.08	18.79	17.56	24.56	52.96	71.40	MPOB (2013)
2013	5.23	19.22	18.15	25.70	45.27	61.36	MPOB (2014)
2014	5.39	19.67	17.31	25.07	44.50	63.62	MPOB (2015)
2015	5.64	19.96	17.45	25.37	41.26	60.17	MPOB (2016)
2016	5.74	17.32	16.05	23.29	43.34	64.59	MPOB (2017)
2017	5.81	19.92	10.56	23.97	46.12	77.85	MPOB (2018)
2018	5.85	19.52	16.49	24.88	38.66	67.52	MPOB (2020)
2019	5.90	19.86	18.47	27.88	38.03	64.84	MPOB (2020)

Table 2.1Performance of the Malaysian oil palm industry in palm oil
production between 2009 to 2017

a. PA: planted acreage;
 b. CPOP: crude palm oil production (Million tonnes);
 c. POE: palm oil exports (Million tonnes);
 d. OPPTE: oil palm products total exports (Million tonnes);
 e. POER: palm oil exports revenue (Million tonnes);
 f. OPPER: oil palm products export revenue (Billion RM)

Oils that fall into the category of vegetable oil comprises soybeans oils/other oilseeds oils (\approx 55% global production), palm oil (\approx 35% of global production), coconut oil, cottonseed oil and palm kernel oil (OECD/FAO, 2018). Table 2.2 summarise the future projections of the Malaysian palm oil industry.

Morboting yoon	Global vegetable	The proportion of vegetable oil produ	Average price	
	(million tonnes)	Production (Million tonnes)	Production (%)	(USD/tonne)
2015-2017	190	65.1	34.3	784
2018	202	71.1	35.2	829
2019	206	72.6	35.3	829
2020	210	74.2	35.4	830
2021	214	75.8	35.5	834
2022	217	77.1	35.5	843
2023	221	78.4	35.5	853
2024	224	79.6	35.5	863
2025	228	80.8	35.5	875
2026	231	82.0	35.5	883
2027	235	83.2	35.5	892

Table 2.2Projections on global production of palm oil as vegetable oils
(OECD/FAO, 2018)

2.1.1 Palm oil extraction as an environmental pollution source

Several stages are involved in crude palm oil (CPO) extraction from fresh fruit bunches (FFBs). The first is sterilisation, where FFBs just brought in the mill are subjected to high-pressure steam (120 - 140 °C at 40 psi)(Liew *et al.*, 2015). The next stage is stripping, in which the sterilised fruits are separated from the bunch stalks via a rotary drum thresher (Wu *et al.*, 2010). The detached fruits then undergo the stripper's bar screen. A bucket conveyor collects the screened fruits and channels them into a digester with a central rotating shaft equipped with mechanical arms fitted to a steamheated cylindrical vessel that softens and mashes the fruits. The shaft rotation coupled with temperatures of 80 - 90 °C loosens the nut's outer covering (mesocarp). The nuts' CPO is squeezed out using a mechanical press machine (Igwe & Onyegbado, 2007; Wu *et al.*, 2010). The press machine gives out a mix of highly viscous fluids (fibrous material, debris, insoluble solids, palm oil, and water) that must be clarified. Therefore, the oil emulsion is first broken into two phases – lighter oil droplets flow through the watery mixture to the top while the emulsion settles to the bottom of the clarifier – by adding hot water as a barrier. The clarifier's bottom phase is the sludge, and the POME is drained off and purified before being discharged (Rupani *et al.*, 2010). Other significant waste materials are also generated because of the oil extraction process, as shown in Figure 2.2.

Figure 2.2 Waste produced from the palm oil mill per tonne of FFBs (Bala *et al.*, 2014b)

For every tonne of FFBs in the mill, the waste can be divided into 23% EFBs,12% mesocarp fibre, 5% shell and 60% POME (Baharuddin *et al.*, 2010; Bala *et al.*, 2014a, 2014b). Based on Figure 2.2, POME represents most of the waste from the palm oil industry. During the wet extraction of palm oil, copious quantities of water of about 1.5 m³ are consumed per tonne of FFBs processed (Azmi *et al.*, 2012). Of an estimated 5.0-7.5 tonnes of water consumed during the wet extraction process of FFBs per tonne of crude palm oil produced, more than 2.5-3.75 tonnes are converted into POME, a significant drawback to the industry (Bello *et al.*, 2013; Gamaralalage *et al.*, 2019; Parthasarathy *et al.*, 2016; Wu *et al.*, 2009). Lorestani (2006) found that FFBS sterilisation, CPO extraction and clarification, and kernel and shell separation of cracked mixtures in the hydrocyclone were the processes that generated the most POME at 36%, 60%, and 4%, respectively. A rapid increase in POMs from 355 mills

(Chin *et al.*, 2013) to 457 mills (Parveez *et al.*, 2021) further exacerbated this problem. Figure 2.3 shows a flow diagram that simplifies the palm oil production process.

Figure 2.3 Diagram of the palm oil mill processes (Igwe & Onyegbado, 2007; Rupani *et al.*, 2010)

Raw or fresh POME is a thick brownish liquid mixture of 95–96% water, 4– 5% total solids, 0.6–0.7% oil/grease with high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) values (Poh *et al.*, 2010). About half to four-fifths of the total solids are suspended solids, mainly constituting palm fruit mesocarp debris generated by steriliser condensate, separator sludge and hydrocyclone process (Bello *et al.*, 2013; Parthasarathy *et al.*, 2016; Wu *et al.*, 2009).

Moreover, as POME has high acidity and solids, it cannot be directly discharged into the waterway. Liew *et al.* (2015) highlighted that the massive

quantities of POME generated from most of the water output of crude palm oil processing, if not properly managed, will pollute the waterways near the POMs. Table 2.3 lists the typical characteristics of raw POME. Raw POME has high temperatures (80-90 °C), and the effluent is rich in organic contaminants such as lignin (4700 ppm), phenolics (5800 ppm), pectin (3400 ppm) and carotene (8 ppm) (Zainuri *et al.*, 2018a). The industry has generated a large volume of waste annually, which kept threatening the ecological environment's sustainability (Zainuri *et al.*, 2018a).

Table 2.3Characteristics of raw POME (Mohammad *et al.*, 2021a)

Parameter	Range (mg L ⁻¹)
Chemical oxygen demand (COD)	15,000–100,000
Biochemical oxygen demand (BOD)	10,250–43,750
Total suspended solids (TSS)	5000-54,000
Ammoniacal nitrogen (NH ₃ -N)	4-80
Oil and grease	130–18,000
Total nitrogen (TN)	180–1400
рН	3.4–5.2

Malaysia's oil palm industry has become a considerable investment due to the steady expansion and beneficial returns witnessed over the years. Despite the immense contributions to the Malaysian economy and improved living standards among citizens of this country, the oil palm industry has also been recognised as a significant contributory source of the highest pollution loadings being discharged into local canals and rivers (Bala *et al.*, 2015; Wu *et al.*, 2009; Zainuri *et al.*, 2018a). However, as the massive production expands, an even larger volume of palm oil mill effluent (POME) is produced. POME contains soluble materials that are harmful to the environment, either in the form of soluble gases such as methane (CH₄), sulphur dioxide (SO₂) and ammonia (NH₃), soluble liquids or solids, with concentrations above the threshold limit values (Igwe & Onyegbado, 2007). When discharged into receiving water bodies, the untreated effluent could cause significant environmental problems due to its very

high BOD, COD (Santana *et al.*, 2019), oil and grease, total solids (TS) and total suspended solids (TSS) (Parthasarathy *et al.*, 2016; Wu *et al.*, 2009). While water pollution originating from this practice has continued to be a subject of public complaints, reports on histopathological changes in fish organs exposed to POME attested to the effluent's probable toxicity to humans (Bello *et al.*, 2013; Gamaralalage *et al.*, 2019).

2.1.2 **Regulatory frameworks for effluent discharge limits**

Several regulatory and legislative frameworks have been enforced to ensure environmental protection and safety against untreated POME ills and other agroindustrial wastewaters discharged into the environment. For example, the Environmental Quality Act (EQA) of 1974 promulgated the Environmental Quality Order and Environmental Quality Regulations of 1977, granting legal jurisdiction to the Malaysian Department of Environment (DOE) for enforcement and compliance (Azmi *et al.*, 2012; Zainuri *et al.*, 2018a). The DOE set the minimum standard characteristics and discharge limit of POME, compared with those provided by the World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA), as illustrated in Table 2.4. Therefore, strict compliance with these legislations is necessary to ensure environmental sustainability through wastewater reclamation and recycling for domestic and industrial uses (Azmi *et al.*, 2012). Table 2.4POME standard discharge limits (Ahmad *et al.*, 2006; AhmadShahrifun *et al.*, 2015; Department of Environment, 2009; Madaki and Seng, 2013;
USEPA, 2000; WHO, 1971)

Deveryotava	POME standard discharge limits				
Farameters	DOE^{a}	EQA	USEPA	WHO ^e	
BOD ₅	50 ^b	100	_	_	
$COD (mg L^{-1})$	1000	1000 ^c	NR^d		
Total solids (mg L^{-1})	1500	1500 ^c	_	500-1500	
Suspended solids (mg L^{-1})	400	400	_	_	
Oil and grease (mg L^{-1})	50	50	0.3	_	
Ammoniacal nitrogen (m g L^{-1})	100	150 ^c	NR	_	
Total nitrogen (mg L ⁻¹)	200	200 ^c	-	_	
pH	5.0	5.0 - 9.0	6.5 - 8.5	6.5 - 9.2	
Temperature (°C)	45	45	_	_	

a. The Malaysian DOE discharge limits have been in effect from 1986 onwards

b. DOE has stipulated no new value since 1982

c. Stringent standards in environmentally sensitive areas of Sabah and Sarawak, Malaysia starting 2006

d. Parameter not required (NR) under USEPA guideline for POME discharge

e. WHO acceptable standard guideline values for drinking-water

2.1.3 **Contemporary POME treatment technologies**

Consequently, the POME treatment to the highest degree possible before discharge into the environment is a legal imposition POMs in Malaysia need to obey. The POMs are usually overwhelmed by difficulties in handling and treatment of large volumes of POME generated. The inability of a more significant number of POMs to comply with the law led to their consistent failure in meeting the stringent discharge limits legally imposed by the authorities. Instead of upgrading to the more efficient treatment technologies available, most POMs (85%) use the open ponding system that works on the principle of suspended growth-activated sludge (Mohammad *et al.*, 2021b). The relatively low capital, cheaper operational and maintenance costs of the system might justify its wholesale adoption by the POMs. However, ponding facilities cannot comprehensively degrade the harmful organic pollutants in POME (Zainal *et al.*, 2017). They employ anaerobic ponds that could require a large expanse of land (~30-45 acres) to store POME for extended hydraulic retention times (~3 months) to

satisfactorily degrade the effluent before discharge into water bodies (Wang *et al.*, 2015). POME degradation by anaerobic bacterial digestion releases enormous amounts of biogas. An estimated 50% of POMs in Malaysia have effluent treatment plants that cannot capture biogas emissions. The emissions are eventually released into the atmosphere, contributing to the greenhouse effect exacerbating global warming. The need to upgrade the currently deployed obsolete technology has been adversely affected by faulty regulatory enforcement and seasonal and milling-related fluctuations in POME composition and properties (Abdulsalam *et al.*, 2018).

Many alternative physicochemical treatments (evaporation, superficial skimming, coagulation, adsorption, membrane filtration, etc.) and biological technologies have been proposed for the conventional treatment of POME (Zhang et al., 2008). Laboratory-scale high-rate anaerobic bioreactors developed for POME treatment include up-flow anaerobic sludge blanket (UASB) reactor (Fang et al., 2011), up-flow anaerobic filtration (Borja & Banks, 1994), up-flow anaerobic sludge blanket-hollow centred packed bed (UASB-HCPB) reactor (Poh & Chong, 2014), fluidised bed reactor (Borja & Banks, 1995) and up-flow anaerobic sludge fixed-film (UASFF) reactor (Zinatizadeh et al., 2007). Others that have also been studied for POME treatment are anaerobic contact digester and continuously stirred tank reactor (CSTR) (Choorit & Wisarnwan, 2007). Only a few of these approaches have been deployed for full-scale operations due to their unsatisfactory performances, high capital investment and high maintenance costs (Zhang et al., 2008). Although many works have also been carried out on the treatment of POME using advanced oxidation processes (AOPs) such as the conventional homogeneous Fenton processes, the bulk of the literature is still scarce on the utilisation of heterogeneous Fenton or photoFenton processes for POME treatment with only a few pieces of reported works available.

The classical Fenton reaction is restricted by a narrow pH range of 2-4 (Bello *et al.*, 2019). Thus, setting up the treatment pH at values exceeding the upper limit of 4.0 enhances the sequential oxidation and quick precipitation of Fe(II) into Fe(III), which abruptly results in the eventual termination of the Fenton process (Wang *et al.*, 2012).

Table 2.5 enumerates the variety of available Fenton processes. A heterogeneous Fenton treatment utilising solid catalysts based on iron oxides to extend the pH range, prevent the precipitation of Fe(II) ions out of the solution and reduce the formation of iron (III) sludge is required. Although Fe(III) can initiate a Fenton-like reaction at a prolonged rate, the process is sustained by the improved Fe(II) ion regeneration through ionic recycling of the Fe(II)/Fe(III) redox couple. Hyphenating the process with photochemical or electrochemical measures accelerate the further regeneration of Fe(II) ions in the heterogeneous treatment systems is desired in the Fenton-based reaction. Photo-Fenton solid catalysts based on iron oxides can accelerate the recycling of iron species in the Fe(II)/Fe(III) redox couple, which eventually enhances the efficiency of the POME treatment. The heterogeneous Fenton and photo-Fenton processes proposed in this work are among the effective AOPs that promise POME treatment due to their demonstrated process economy and high efficiency in treating similar effluents (Barrera-Salgado et al., 2016; Wang et al., 2012).

Process variant	Fenton reagents	pH range	Remarks
Classical Fenton	H ₂ O ₂ , Fe(II) ion	2–4	It requires activation source but involves loss of iron catalysts
Fenton-like	H ₂ O ₂ , Fe(III) ion	2–4	It needs no activation source but Involves loss of iron catalysts
Classical electro-Fenton	Electrolytically generated H ₂ O ₂ , Fe(II) ions; H ₂ O ₂ , electrolytically generated Fe(II) ions	2–4	It needs electrochemical activation and involves loss of iron catalysts
Classical photo-Fenton	H ₂ O ₂ , Fe(III) complex, Fe(II) ions	Acidic to neutral	It requires light activation and involves loss of iron catalysts
Heterogeneous Fenton	H ₂ O ₂ , solid catalyst based on iron oxide	Wide range	It involves neither activation source nor loss of iron catalysts
Heterogeneous Photo-Fenton	H ₂ O ₂ , solid catalyst based on iron oxide	Wide range	It requires light activation and involves no loss of iron catalysts
Heterogeneous Photoelectro-Fenton	Electrolytically generated H ₂ O ₂ , solid catalyst based on iron oxide	Wide range	It requires both light and electrochemical activation and involves no loss of iron catalysts

Table 2.5Configurational variations of Fenton processes (Wang *et al.*, 2012)

2.2 Conventional Treatment Methods

POME treatments using various conventional methods, including biological and physicochemical techniques, have been reported. In principle, traditional wastewater treatment employs several physical, chemical, and biological techniques to remove contaminants, such as soluble or colloidal substances, organic or inorganic matter, nutrients, or pollutants (metals, organics, etc.) from the effluent. POME treatment by biological techniques such as aerobic activated sludge reactor (Vijayaraghavan *et al.*, 2007) has been reported. Many other studies reported such treatments utilising physicochemical techniques, including membrane technology, coagulation-flocculation, and evaporation methods (Hassan *et al.*, 2002). Few workers

have reported POME treatment using the emerging advanced oxidation process technologies such as Fenton oxidation (Bello & Raman, 2017), and photo-Fenton oxidation (Kanakaraju *et al.*, 2017). Table 2.6 summarises the efficiencies of some studies carried out on the POME treatment.

The pale-yellow colour ($\lambda = 400-700$ nm) of POME for discharge – which is a shade of the initial brownish colour – that remains even after the conventional ponding, biological, coagulation-flocculation treatments signifies the presence of recalcitrant pollutants (Bello *et al.*, 2013; Soleimaninanadegani & Manshad, 2014; Zainuri *et al.*, 2018a). Continued colour accumulation in the receiving water bodies could shield sunlight penetration from reaching underneath, paralysing photosynthetic activities in the aquatic environment (Kant, 2012). In addition, chelation of metal ions by some high-affinity chemical pollutants in POME may occur, leading to exposure of aquatic biota to the toxicity of the resulting hazardous complex products.

Table 2.6Summary of technologies for POME treatment

Technology		Process description	Removal efficiency	Reference
Adsorption techniques				
Steam activated bio-ads from oil palm biomass	orbent	A 200 g of sliced oil palm fronds (OPF) were pyrolyzed at 500 ± 5 °C for 2 h prior to cooling to 38 °C for 2 h at 100 cm ³ min ⁻¹ steam flow rate. The cooled biochar was milled for 10 min into a fine slurry, filtered through a sieve with 250µm and 74µm mesh sizes to obtain granular biochar retentate and micro-fine biochar as filtrate. Finally, both biochar samples were oven-dried for 48 h at 105 °C and stored in separate sealed polypropylene vessels. Finally, batch adsorption experiments were performed on weighed amounts of biochar samples (0- 0.75 g) in 25 mL samples of	COD (81%) Colour (96%)	Lawal <i>et al</i> . (2020)
Activated carbon propored fro	mpolm	and 30°C ambient temperatures for 24 h. At equilibrium, each sample mixture was filtered through a 0.45µm syringe filter and analysed for residual COD concentrations and colour intensities.	Lignin adsorption	Poontham at al
kernel shell (PKSAC)	in paini	of lignin in POME (0.505-5.05 kg m ⁻³), adsorbent weight (100mg), optimum contact time (120h), temperature (300K).	capacity (60-490g kg ^{-1})	(2022)
Electrocoagulation and coag processes	ulation			
Electrocoagulation on aluminium (III) hydroxide (Al coagulant with hydrogen pero an oxidising agent	in-situ l(OH) ₃) oxide as	The electrocoagulation process was carried out in a 10 L polypropylene container as a reactor, accommodated with 8 L of POME sample. both electrodes, an anode and cathode, were made up of aluminium and were connected vertically with 40 mm gap apart. Each electrode is 200 mm x 150 mm x and 5 mm in dimension with active surface area of 1.131×10^{-1} m ² . electrocoagulation reactor was operated for 8 h optimal time.	COD (97%) BOD (92%)	Mohamad <i>et al.</i> (2022)

Table 2.6 (Continued)

Technology	Process description	Removal efficiency	Reference
Coagulation–flocculation using	Coagulation-flocculation experiments using standard jar tests	On fenugreek-okra	Lim et al. (2021)
plant materials fenugreek as a	were employed to determine the influence of optimum	TSS (88.19%),	
coagulant with okra and Aloe vera as	parameters such as effluent initial pH (4), coagulant dosage	TUR (78.35%)	
the flocculants	(22.24 g/L) and flocculant dosage $(16.77 mL/L)$ for	COD (30.56%)	
	tenugreek-okra and effluent initial pH (4), coagulant dosage (24.12 J)		
	(24.13 g/L) and flocculant dosage $(20 mL/L)$ on the removal	Un fenugreek-Aloe vera	
	efficiencies of the coagulant-flocculant samples optimized	155(83.40%)	
	with Response Surface Methodology (RSM).	IUR(82.78%)	
Coogulation with magnetic Marines	Coognition approximants using standard ion tests were	(52.95%)	Mohamad at al. (2022)
claifara (MMO) using Posponso	coaguiation experiments using standard jar tests were	155(65.5%)	Monamed <i>et al.</i> (2022)
surface methodology	weight percent (wt%) of magnetic papoparticles (1.0 wt%)	COD(85.2%)	
surface methodology	sonication time (2.35 min) and sonication temperature (50)	SVI (485 mL/g)	
	$^{\circ}$ C) on the coagulation performance parameters TSS COD	5 VI (405 IIIL/g)	
	and sludge volume index (SVI) removals and fabricate an		
	efficient MMO coagulant		
Advanced oxidation processes			
Fenton oxidation	Batch Fenton oxidation modelled experiments were	NH ₃ -N (73%).	Gamaralalage <i>et al.</i> (2019)
	performed on diluted POME (non-filtered) in a pair set	TOC (91%),	
	involving an open system for liquid samples analyses and a	TN (11%).	
	closed flask system for gaseous samples analyses.	TP (99.9%).	
		COD(74.10) = 7.0.000	N. (1 (2017)
$UV/11O_2$ and $UV/2nO$	Both $11O_2$ and $2nO$ photocatalysts were calcined at 5/3 K	COD (74.1% on ZnO; 80% on	Ng et al. (2017)
photocatalytic systems	and stored in amoer glass sampling bottles. After	1102)	
	times with water and ethanol and then recycled		
	times with water and entation, and then recycled.		
Filtration technique			
Calcined limestone horizontal	First Phase: The limestone was crushed into three different	COD (51%)	Dashti et al. (2019)
roughing filter	sizes (mm), washed, and dried. Second phase: The limestone		
	was calcined at 800 °C and used as horizontal roughing filters		
	in column studies with three different flow rates.		

Pollutant and pigments in POME are non-biodegradable, making conventional treatments insufficient and inefficient for POME degradation and mineralisation (Bello *et al.*, 2013; Wu *et al.*, 2009). Detailed cost analysis revealed that the conventional POME treatment systems, such as ponding, are prone to further environmental pollution and have the lowest utilisation of renewable resources without significant profits (Wu *et al.*, 2009). The benefits and drawbacks of various individual strategies reported in the literature are described in Table 2.7.

The utilisation of these conventional techniques is disadvantaged for having long retention time, slow start-up reactors, large land area requirement for digesters, high energy consumption, a lower rate of pathogen inactivation, membrane shortlife/fouling and high operational costs (Poh & Chong, 2009). Furthermore, replacing or reinforcing the existing conventional treatment techniques becomes necessary to ensure effective degradation and mineralisation of POME pollutants (Bello *et al.*, 2013). Therefore, this warrants an alternative method that should be economical, energyefficient, and environmentally friendly and, above all, must be sustainable. One such method with strongly merited potential as an advanced oxidation process (AOP) is oxidation over heterogeneous Fenton or photo-Fenton catalysts.

2.3 Advanced Oxidation Processes

Multiple research efforts are currently being made in developing inexpensive and more effective methods for treating raw POME (Gamaralalage *et al.*, 2019). The efforts are to ensure complete compliance with the existing stringent environmental regulations. Wastewater treatment using advanced oxidation processes (AOPs) is based on the generation of highly reactive and non-selective radicals as powerful oxidants (Huang *et al.*, 1993). The term referred to oxidation processes capable of rendering water treatment at ambient temperature and pressure by generating an adequate amount

of hydroxyl radicals as originally defined by (Glaze et al., 1987).

Table 2.7	Advantages and disadvantages of conventional methods for POME
trea	tment (Abdurahman et al., 2011; Crini & Lichtfouse, 2019)

Technique Ad	vantages	Di	sadvantages
Aerobic digestion			
a) b)	It has a shorter hydraulic retention time than anaerobic digestion It is highly efficient in handling toxic wastes	a) b) c)	It requires high energy due to aeration Its sludge has a lower rate of pathogen inactivation than anaerobic sludge It is unsuitable for land use as fertilizer
Anaerobic digestion	1		
a) b) c)	It has low energy requirements due to the absence of aeration It produces methane gas as a valuable end-product It generates sludge that could be used for land applications as fertilizer	a) b) c)	It has a longer hydraulic retention time the aerobic digestion It requires a large expanse of land area for digesters It has slow start-up reactors (granulating reactors)
Membrane filtration	l It consistently and here there to	-	Its manshrough has a short life
a) b) c)	It consistently produces treated water of good quality It requires smaller space for membrane treatment plants It is capable of disinfecting water	a) b) c)	Its membrane has a short life Its membrane suffers from fouling It is more expensive than some other conventional methods
a)	Its solid residues can be used as a	a)	It involves the consumption of a high
a) b) c)	raw material supply for the manufacture of fertilizer Evaporators have various configurations with established energy costs to suit a purpose Versatile in recycling water distillates for rinsing operations	a) b) c) d)	amount of energy Unbearable high costs of investments for medium- and small-scale industries Its High load of effluent concentrates may pose secondary pollution risks Its Concentrates may corrode evaporator heating elements and incur additional costs for replacement
Ausorption processo	Technologically simple process	a)	The relatively high cost of
b) c) d) e)	design and adaptable to many treatment formats Wide range of available adsorbent materials Global and selective elimination of target contaminants Highly efficient treatment with fast kinetics and high-quality treated effluent It has a low capital cost requirement	 b) c) d) e) f) g) 	commercially activated carbons Generation of a high amount of sludge poses risks for secondary pollution Increased costs for handling and disposal of generated sludge Large variability in performances among adsorbent materials Increased costs for chemical derivatization of materials to improve efficiency Increased costs for regeneration due to rapid saturation, clogging and losses of materials Cost-inefficient and non-viable for
			certain industrial applications

In the past two decades, AOPs have received great attention as alternative methods for the reduction of the organic load in different kinds of wastewaters generated from different processing agro-industries such as olive oil mills (Alver et al., 2015; Michael et al., 2014), winery (Amor et al., 2019; Souza et al., 2013) and POMs (Aris et al., 2008; Bashir et al., 2017; Bello & Raman, 2017). AOPs can transform nonbiodegradable pollutants into nontoxic, biodegradable substances by oxidizing a broad range of organic pollutants quickly and non-selectively by generating very reactive species such as hydroxyl radical ('OH) (Mohajeri et al., 2010; Salari et al., 2009). Oxidation by H₂O₂ alone has been found ineffective for high concentrations of certain refractory contaminants because of low reaction rates at reasonable H₂O₂ concentrations. The utilisation of ozonation AOPs, for example, could have the disadvantage of forming bromate ion species, a strong carcinogen, as a by-product during the treatment of bromide-containing effluent (Baus et al., 2005). Transition metal salts (e.g. iron salts), ozone and UV-light, can activate H2O2 to form 'OH (Shu et al., 2006). AOPs have currently evolved to include, among other methods, photocatalysis (Cheng et al., 2017; Ng & Cheng, 2017), ozonation/UV at elevated pH's (Wu et al., 2018), ozonation/hydrogen peroxide (Qiang et al., 2010), ozonation@Catalysts (Dai et al., 2014), ozonation/activated carbon (Wang et al., 2019), ultrasound-assisted oxidation (Manickam et al., 2014), microwave-assisted oxidation (Garcia-Costa et al., 2019), wet air oxidation (Palas et al., 2018), per-sulphate oxidation (Vicente et al., 2011), and Fenton oxidation processes (Saleh & Taufik, 2019). Among AOPs, photo-Fenton processes using both homogeneous and heterogeneous catalysts have been investigated to be a cheaper and more effective alternative for treating palm oil mill effluent. The homogeneous Fenton process has particularly attracted great interest given its high capacity to generate 'OH through the